JPH0718302B2 - Magnetic shield room door - Google Patents

Magnetic shield room door

Info

Publication number
JPH0718302B2
JPH0718302B2 JP1204351A JP20435189A JPH0718302B2 JP H0718302 B2 JPH0718302 B2 JP H0718302B2 JP 1204351 A JP1204351 A JP 1204351A JP 20435189 A JP20435189 A JP 20435189A JP H0718302 B2 JPH0718302 B2 JP H0718302B2
Authority
JP
Japan
Prior art keywords
door
thin film
superconducting thin
magnetic field
room
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1204351A
Other languages
Japanese (ja)
Other versions
JPH0369785A (en
Inventor
敏文 新納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP1204351A priority Critical patent/JPH0718302B2/en
Publication of JPH0369785A publication Critical patent/JPH0369785A/en
Publication of JPH0718302B2 publication Critical patent/JPH0718302B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Magnetic Resonance Imaging Apparatus (AREA)
  • Shielding Devices Or Components To Electric Or Magnetic Fields (AREA)

Description

【発明の詳細な説明】 「産業上の利用分野」 本発明は、磁気共鳴診断装置等のような強磁場発生装置
を設置する室の扉に関し、特に扉内に超電導薄膜を設け
て扉部分から磁場が漏洩しないようにしたものである。
TECHNICAL FIELD The present invention relates to a door of a room in which a strong magnetic field generator such as a magnetic resonance diagnostic apparatus is installed, and particularly, a superconducting thin film is provided in the door to remove the door from a door portion. This is to prevent the magnetic field from leaking.

「従来の技術」 最近、病院では磁気共鳴診断装置(以下MRIと記載す
る)を設置するようになっているが、病院ではペースメ
ーカーを装着した患者が居るとともに、コンピューター
等のように磁気で悪影響を受ける機器が多数ある。その
ため第4図に示すようにMRIからの漏洩磁場を外部に漏
らさない目的で、室の4面あるいは6面に純鉄のような
強磁性体による磁気シールドAを設けたり、外来電波に
よる影響を遮断する目的で室の6面に電波シールドBを
設けている。
“Prior art” Recently, a magnetic resonance diagnostic device (hereinafter referred to as MRI) has been installed in a hospital, but there are patients with pacemakers installed in the hospital, and magnetic effects such as computers can cause adverse effects. There are many devices to receive. Therefore, as shown in Fig. 4, in order to prevent the leakage magnetic field from MRI from leaking to the outside, a magnetic shield A made of a ferromagnetic material such as pure iron is provided on the 4th or 6th side of the room, and the influence of external radio waves is reduced. A radio wave shield B is provided on the six sides of the room for the purpose of shutting off.

磁気シールドAや電波シールドBを設けた室でも、その
室の出入口の部分などに隙間があると両シールド効果は
著しく低下してしまう。そのためMRI等を設置した室の
隙間を全溶接、全ハンダ付け等により磁気及び電波漏洩
の隙間をなくすようにしている。また室の出入口等の開
口部にも、ステンレス板やシールドガラスやフィンガー
コンタクト等により電波シールドを施している。
Even in a room where the magnetic shield A and the radio wave shield B are provided, if there is a gap at the entrance and exit of the room, both shield effects will be significantly reduced. For this reason, the gaps in the room where the MRI, etc. are installed are all welded, all soldered, etc. to eliminate the gaps for magnetic and radio wave leakage. In addition, the openings such as the entrance and exit of the room are also provided with a radio wave shield by a stainless plate, shield glass, finger contacts, and the like.

しかし、磁気シールドに関しては重い磁性材を使うた
め、出入口の扉部分を磁気シールド処理することが難し
い。MRI室の出入口は、患者を乗せたストレッチャーや
治療機器が出入りするため、大きさが例えば幅1400mm、
高さ2100mm程度になり、扉も大きなものが必要になる。
このように大きな扉を磁性体で作ると磁石により引っ張
られて開閉が極めて困難になる。そのため、やむを得ず
扉には磁気シールドを施さないのが実状である。
However, since a heavy magnetic material is used for the magnetic shield, it is difficult to magnetically shield the door portion of the entrance / exit. The entrance and exit of the MRI room is for entry and exit of the stretcher and treatment equipment on which the patient is placed, so the size is, for example, 1400 mm,
The height is about 2100 mm, and a large door is required.
When such a large door is made of a magnetic material, it is pulled by a magnet and opening and closing becomes extremely difficult. Therefore, it is unavoidable that the door is not magnetically shielded.

「発明が解決しようとする課題」 従来のMRI室のように扉に磁気シールドを施さない場合
には、その扉の部分で磁場の大きな漏洩が生じる。
[Problems to be Solved by the Invention] When the door is not magnetically shielded as in the conventional MRI room, a large magnetic field leaks at the door.

すなわち第4図に示すように、1.5T(テスラ)のMRIを
設置した場合、ペースメーカー装着者の立入禁止の管理
区域、かつコンピューター設置の目安になる5G(ガウ
ス)ラインが扉部分から大きく拡がり、管理上の問題が
大きかった。
That is, as shown in Fig. 4, when a 1.5T (Tesla) MRI is installed, a 5G (Gauss) line, which is a controlled area for pacemaker wearers and a standard for computer installation, greatly expands from the door, There was a big management problem.

また扉部分をMRIからできるだけ離し、距離減衰を利用
して漏洩磁場を小さく抑えようとすると、扉の位置の制
約を受け、建築計画上の問題が生じる。さらにMRIの画
像に歪を生じさせないためのシムコイルによる調整が大
変であった。
In addition, if the door is separated from the MRI as much as possible and the distance attenuation is used to suppress the leakage magnetic field, the position of the door is restricted, which causes a problem in construction planning. Furthermore, it was difficult to adjust the shim coil to prevent distortion in the MRI image.

なお、MRIからの磁場発生を迎えるため、扉開閉時にはM
RIへの供給電力を遮断することが考えられるが、強磁場
を発生する超電導タイプのMRIは超電導電磁石を利用し
てそれに永久電流を流すため24時間のフル作動となり、
MRIからの漏洩磁場を迎えることはできなかった。
Since the magnetic field is generated from the MRI, M when opening and closing the door
It is possible to cut off the power supplied to the RI, but the superconducting type MRI that generates a strong magnetic field uses a superconducting electromagnet to send a permanent current to it, so it will be in full operation for 24 hours,
The stray magnetic field from the MRI could not be reached.

そこで本発明は、MRI室の扉に磁気シールドを施させる
ようにするとともに、扉の開閉時に扉が磁気的影響を受
けないようにして容易に開閉できるようにすることを目
的とする。
Therefore, an object of the present invention is to make a door of an MRI room magnetically shielded, and to easily open and close the door so that the door is not magnetically affected when the door is opened and closed.

「課題を解決するための手段」 本発明の磁気シールドルーム用扉は、強磁場発生装置を
備えた室の扉内に超電導薄膜を設けて、磁気シールドす
る場合は、超電導薄膜に電極を介して臨界電流密度以下
の電流を供給できるようにし、扉の開閉時には臨界電流
密度以上の電流を供給できるようになっている。
"Means for Solving the Problem" The magnetic shield room door of the present invention is provided with a superconducting thin film in the door of a room equipped with a strong magnetic field generator, and in the case of magnetic shielding, the superconducting thin film via an electrode. A current below the critical current density can be supplied, and a current above the critical current density can be supplied when the door is opened and closed.

超電導薄膜の電流密度を上げるためには、一部断面を小
さくすればよく、切り欠き等により平面形状の異なる超
電導薄膜を複数枚ラップさせれば切り欠き等から磁気が
洩れることはない。なお、超電導薄膜に超電導のマイス
ナー効果を生じさせるため、超電導薄膜を冷媒により被
っておく。
In order to increase the current density of the superconducting thin film, a part of the cross section may be made small, and if a plurality of superconducting thin films having different planar shapes are wrapped by the notches or the like, the magnetism will not leak from the notches or the like. In order to generate the superconducting Meissner effect in the superconducting thin film, the superconducting thin film is covered with a refrigerant.

「作用」 上記手段の磁気シールドルーム用扉において、扉を閉じ
ている状態では、電極を介して超電導薄膜に臨界電流密
度以下の電流を供給して超電導状態にする。このとき超
電導薄膜はマイスナー効果により完全反磁性体になり、
扉部分からの漏洩磁場が大幅に減少する。なお、超電導
の特性を示すには、臨界電流密度だけでなく、臨界温度
と臨界磁場に関しても条件を満足しなければならず、臨
界温度に関しては冷媒により所定のものに保たれ、臨界
磁場も所定のものに設定されている。
"Operation" In the magnetic shield room door of the above means, when the door is closed, a current not higher than the critical current density is supplied to the superconducting thin film through the electrode to bring the superconducting state. At this time, the superconducting thin film becomes a perfect diamagnetic material due to the Meissner effect,
The leakage magnetic field from the door is greatly reduced. In order to show the characteristics of superconductivity, not only the critical current density but also the critical temperature and the critical magnetic field must be satisfied, and the critical temperature is kept at a predetermined value by the refrigerant, and the critical magnetic field is also predetermined. Is set to.

扉を開閉するときは、電極を介して超電導薄膜に臨界電
流密度以上の電流を流して常電導の非磁性体にさせ、超
電導薄膜が磁気を通すようにする。このため、強磁場発
生装置からの漏洩磁場で扉が吸収されたり、反発された
りすることはない。
When the door is opened and closed, a current having a critical current density or more is passed through the superconducting thin film through the electrode to make it a non-conducting non-magnetic substance, so that the superconducting thin film can pass magnetism. Therefore, the door is not absorbed or repelled by the leakage magnetic field from the strong magnetic field generator.

なお、超電導薄膜の完全反磁性と常磁性への切り換え
は、可逆的な現象であり、臨界電流密度(物質により固
有のもので、数百〜数十万A/cm2位で製造方法によりコ
ントロールできる)を境に突然に起こるものである。
The switching of the superconducting thin film to complete diamagnetism and paramagnetism is a reversible phenomenon and is controlled by the manufacturing method at the critical current density (specific to the substance, several hundred to several hundred thousand A / cm 2). It can happen).

「実施例」 本発明の実施例を第1〜3図により説明する。[Example] An example of the present invention will be described with reference to Figs.

磁気共鳴診断装置(MRI)等のように強磁場を発生する
装置を、純鉄を使用した磁気シールド壁Aと銅箔等の電
波シールド壁Bとを設けた室内に設置するため、室1の
扉2を次の構成により磁気シールドさせた。
Since a device for generating a strong magnetic field such as a magnetic resonance diagnostic device (MRI) is installed in a room provided with a magnetic shield wall A made of pure iron and a radio wave shield wall B made of copper foil or the like, The door 2 was magnetically shielded by the following constitution.

なお、扉2を設ける室周壁の開口部周縁にステンレス枠
3を設け、さらにステンレス枠3に沿ってアモルファス
・パーマロイ等の高透磁率材4を設けるとともに、ステ
ンレス枠3と扉との間に電磁気的に接続するフィンガー
コンタクト5を設けて扉周縁部が磁気シールド及び電波
シールドされる。
In addition, a stainless frame 3 is provided around the opening of the chamber peripheral wall where the door 2 is provided, a high magnetic permeability material 4 such as amorphous permalloy is further provided along the stainless frame 3, and an electromagnetic field is provided between the stainless frame 3 and the door. By providing finger contacts 5 that are electrically connected, the peripheral edge of the door is magnetically shielded and radio wave shielded.

扉2は、非磁性のステンレス板により中空状に形成し、
その内部に複数枚の超電導薄膜6をラップさせて配置し
た。超電導薄膜6は、扉2とほぼ同一平面形のステンレ
ス製支持板7の両面に例えばスパッタリング法により数
十ミクロンの厚さだけ付着され、本実施例では超電導薄
膜6を両面に付着させた2枚の支持板7を扉2内に設け
た。超電導薄膜6の両端には第2図に示すように電極8
が設けられ、それらを介して直流電源9から臨界電流密
度以下の電流を供給すると超電導状態になってマイスナ
ー効果により完全反磁性体になり、磁気シールド機能を
持たせられる。また超電導薄膜6に臨界電流密度以上の
電流を供給すると、常電導の非磁性体になるようになっ
ている。なお、超電導薄膜6に臨界電流密度以上又は以
下の電流を供給するためには、スイッチ10をオン、オフ
することにより行っているが、スイッチの代りに可変抵
抗により電流値を制御するようにしてもよい。また超電
導の臨界電流密度の値は小さい方が流す電流を小さくで
きて、切換を楽にできる。各超電導薄膜6は、扉2とほ
ぼ同一平面形状であるが、部分的に電流密度を上げるた
め第3図(a)、(b)に示すように切り欠いたり、複
数の小孔を切り抜いたりしてもよい。
The door 2 is formed of a non-magnetic stainless plate in a hollow shape,
A plurality of superconducting thin films 6 were wrapped and arranged therein. The superconducting thin film 6 is adhered to both sides of a stainless steel supporting plate 7 having substantially the same plane as the door 2 by a sputtering method, for example, by a thickness of several tens of microns. In this embodiment, two superconducting thin films 6 are adhered to both sides. The support plate 7 of No. 2 was provided in the door 2. As shown in FIG. 2, electrodes 8 are provided on both ends of the superconducting thin film 6.
Is provided, and when a current having a critical current density or less is supplied from the DC power source 9 through them, the superconducting state is established and the Meissner effect is used to form a complete diamagnetic material, which has a magnetic shield function. Further, when a current having a critical current density or more is supplied to the superconducting thin film 6, the superconducting thin film 6 becomes a normal conducting non-magnetic material. In order to supply the superconducting thin film 6 with a current equal to or higher than the critical current density, the switch 10 is turned on and off, but the current value is controlled by a variable resistor instead of the switch. Good. Also, the smaller the critical current density of superconductivity, the smaller the current flowing, and the easier switching. Each superconducting thin film 6 has substantially the same plane shape as that of the door 2, but it may be cut out as shown in FIGS. You may.

そして超電導薄膜6の切り欠き部等から磁気が漏れるの
で、切り欠き等の異なる複数の超電導薄膜6を多層にラ
ップさせて漏れが防止されている。なお、扉2は丁番部
を支点に揺動して開閉され、各超電導薄膜の電極と電源
とは丁番部を介して接続される。
Since the magnetism leaks from the cutout portion of the superconducting thin film 6 and the like, a plurality of superconducting thin film 6 having different notches and the like are wrapped in multiple layers to prevent leakage. The door 2 is opened and closed by swinging around the hinge portion as a fulcrum, and the electrode of each superconducting thin film and the power source are connected through the hinge portion.

扉2内において、各超電導薄膜6はステンレス製ケース
11内に収容した冷媒12により被われ、各超電導薄膜6を
臨界温度以下に保てるようになっている。超電導薄膜6
の臨界温度が90K〜120Kのものであれば、冷媒12として
液体窒素を使用できる。また、ステンレスケース11と扉
2の周壁との間に真空層13が設けられ、超電導薄膜6を
有効に冷却できるようになっている。なお、各超電導薄
膜6を超電導状態にするためには、臨界電流密度以下の
電流を供給し、臨界温度以下に保つだけでなく、臨界磁
場の条件をも満足しなければならず、本実施例でも図示
を省略したが臨界磁場の条件を満足するようになってい
る。
In the door 2, each superconducting thin film 6 is a stainless steel case.
The superconducting thin film 6 is covered with the refrigerant 12 contained in 11 and can keep each superconducting thin film 6 at a critical temperature or lower. Superconducting thin film 6
If the critical temperature is 90 K to 120 K, liquid nitrogen can be used as the refrigerant 12. A vacuum layer 13 is provided between the stainless case 11 and the peripheral wall of the door 2 so that the superconducting thin film 6 can be effectively cooled. In order to bring each superconducting thin film 6 into a superconducting state, it is necessary not only to supply a current below the critical current density and keep it below the critical temperature but also to satisfy the condition of the critical magnetic field. However, although not shown, the condition of the critical magnetic field is satisfied.

なお、前記実施例では、超電導薄膜を使用したが、薄膜
でなく、その薄板状のものを使用してもよいものであ
る。
Although the superconducting thin film is used in the above embodiment, a thin plate-like one may be used instead of the thin film.

「発明の効果」 本発明の磁気シールドルーム用扉では、扉の内部に超電
導薄膜が設けられ、それに臨界電流密度以下、又は以上
の電流が供給されることにより、超電導のマイスナー効
果による反磁性体と非磁性体とに容易に切り換えられ
る。よって反磁性体にしたときに扉部分が磁気シールド
されて、そこからの漏洩磁場を大巾に減少できる。また
人間や物が出入りする扉の開閉時には、超電導薄膜を非
磁性体にすれば、扉が室内からの漏洩磁場に吸引された
り、反発されたりすることがない。
"Effects of the Invention" In the magnetic shield room door of the present invention, a superconducting thin film is provided inside the door, and a diamagnetic substance due to the Meissner effect of superconductivity is provided by supplying a current equal to or lower than the critical current density or higher. And a non-magnetic material can be easily switched. Therefore, when the diamagnetic material is used, the door is magnetically shielded, and the leakage magnetic field from the door can be greatly reduced. Further, when the door for people and things to enter and exit is opened and closed, if the superconducting thin film is made of a non-magnetic material, the door will not be attracted to or repelled by the leakage magnetic field from the room.

さらに、室の扉部分をも磁気シールドできることによ
り、MRI等から生じる磁場の距離減衰をあまり考慮しな
くてよいので、MRI室の面積を小さく抑えることがで
き、かつ室内の磁場の歪が小さくなるのでシムコイルに
よる調整も容易である。
Furthermore, since the door part of the room can be magnetically shielded, the distance attenuation of the magnetic field generated from MRI etc. need not be considered so much, the area of the MRI room can be kept small, and the distortion of the magnetic field inside the room can be reduced. Therefore, adjustment by the shim coil is easy.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の磁気シールドルーム用扉の側面断面
図、第2図は超電導薄膜への給電状態を示す回路図、第
3図(a)、(b)はそれぞれ異なる平面形状の超電導
薄膜の平面図、第4図は従来のMRI室の磁場状態を示す
説明図である。 2;扉、6;超電導薄膜 8;電極、12;冷媒 13;真空層
FIG. 1 is a side sectional view of a door for a magnetically shielded room according to the present invention, FIG. 2 is a circuit diagram showing a power feeding state to a superconducting thin film, and FIGS. 3 (a) and 3 (b) are superconducting thin films having different planar shapes. FIG. 4 is an explanatory view showing a magnetic field state of a conventional MRI room. 2; Door, 6; Superconducting thin film 8; Electrode, 12; Refrigerant 13; Vacuum layer

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】強磁場発生装置を設置する磁気シールドル
ームの扉において、扉とほぼ同一平面形の超電導薄膜を
扉内に設けるとともに、その超電導薄膜の両端に電極を
設け、両電極を介して適宜臨界電流密度以下又は以上の
電流を供給できるようにした磁気シールドルーム用扉。
1. In a door of a magnetically shielded room in which a strong magnetic field generator is installed, a superconducting thin film having substantially the same plane shape as that of the door is provided in the door, and electrodes are provided at both ends of the superconducting thin film through both electrodes. A door for a magnetically shielded room that can supply a current that is below or above the critical current density as appropriate.
【請求項2】超電導薄膜は、異なる平面形状の複数枚を
ラップさせて配置させてある請求項1に記載の磁気シー
ルドルーム用扉。
2. The door for a magnetically shielded room according to claim 1, wherein a plurality of superconducting thin films are arranged so as to be wrapped with each other.
【請求項3】超電導薄膜は、扉内で冷媒により被われて
いる請求項1又は2に記載の磁気シールドルーム用扉。
3. The door for a magnetically shielded room according to claim 1, wherein the superconducting thin film is covered with a refrigerant in the door.
JP1204351A 1989-08-07 1989-08-07 Magnetic shield room door Expired - Lifetime JPH0718302B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1204351A JPH0718302B2 (en) 1989-08-07 1989-08-07 Magnetic shield room door

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1204351A JPH0718302B2 (en) 1989-08-07 1989-08-07 Magnetic shield room door

Publications (2)

Publication Number Publication Date
JPH0369785A JPH0369785A (en) 1991-03-26
JPH0718302B2 true JPH0718302B2 (en) 1995-03-01

Family

ID=16489069

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1204351A Expired - Lifetime JPH0718302B2 (en) 1989-08-07 1989-08-07 Magnetic shield room door

Country Status (1)

Country Link
JP (1) JPH0718302B2 (en)

Also Published As

Publication number Publication date
JPH0369785A (en) 1991-03-26

Similar Documents

Publication Publication Date Title
US5519372A (en) Magnets providing patient accessibility
US5061897A (en) Eddy current control in magnetic resonance imaging
US4675609A (en) Nuclear magnetic resonance apparatus including permanent magnet configuration
EP0676647B1 (en) Open MRI magnet
EP0770881A1 (en) Shielded and open MRI magnet
US5414399A (en) Open access superconducting MRI magnet having an apparatus for reducing magnetic hysteresis in superconducting MRI systems
US5517169A (en) Superconducting magnet with magnetic shielding
US4980641A (en) Method and apparatus of reducing magnetic hysteresis in MRI systems
JPH0669027A (en) Magnetic field generation device
JPH021238A (en) Magnetic field gradient coil apparatus and magnetic resonance imaging system using the same
JP4043946B2 (en) Low leakage magnetic field magnet and shield coil assembly
US4931759A (en) Magnetic resonance imaging magnet having minimally symmetric ferromagnetic shield
JPH0718302B2 (en) Magnetic shield room door
US5128643A (en) Method and apparatus for producing a region of low magnetic field
US6812702B2 (en) Magnetic resonance imaging apparatus
MY125722A (en) Superconducting magnet device for crystal pulling device
JPH02186094A (en) Door for magnetic shielded room
JPH0672937B2 (en) Magnetic shield room door
JPS61159950A (en) Magnet for mri
JPH02162798A (en) Door of magnetically shielding room
JP2000262486A (en) Device and method for generating static magnetic field
JPH0828296B2 (en) Electric coil
JP2001110626A (en) Superconducting magnet
JP2004065398A (en) Magnetic resonance imaging apparatus having hybrid magnet composed of permanent magnet and electromagnet
JP3492003B2 (en) Static magnetic field generator for magnetic resonance imaging