JPH07181255A - Ship collision ground-hitting prevention system - Google Patents

Ship collision ground-hitting prevention system

Info

Publication number
JPH07181255A
JPH07181255A JP5325578A JP32557893A JPH07181255A JP H07181255 A JPH07181255 A JP H07181255A JP 5325578 A JP5325578 A JP 5325578A JP 32557893 A JP32557893 A JP 32557893A JP H07181255 A JPH07181255 A JP H07181255A
Authority
JP
Japan
Prior art keywords
depth
reef
seabed
ship
vehicle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5325578A
Other languages
Japanese (ja)
Inventor
邦彦 ▲真▼野
Kunihiko Mano
Fumio Nakamura
文夫 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Oki Electric Industry Co Ltd
Original Assignee
Oki Electric Industry Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oki Electric Industry Co Ltd filed Critical Oki Electric Industry Co Ltd
Priority to JP5325578A priority Critical patent/JPH07181255A/en
Publication of JPH07181255A publication Critical patent/JPH07181255A/en
Pending legal-status Critical Current

Links

Landscapes

  • Measurement Of Velocity Or Position Using Acoustic Or Ultrasonic Waves (AREA)

Abstract

PURPOSE:To obtain a ship collision ground-hitting prevention system for preventing collision against the reef by detecting the depth and distance to a hazardous material such as unknown reef existing under water in the advancing direction rapidly, easily, and from far away. CONSTITUTION:An unmanned helicopter 2 mounted at a large transport ship 1 is allowed to fly remotely by a helicopter controller 1b, the depth to the water surface and to the bottom of the water and a current flight position based on the reflection of laser beams from the unmanned helicopter 2 are received on a ship, and then a sea-bottom information extraction means 1 receives the depth from the unmanned helicopter 2 and the current flight position and then displays them on CRT 1d. Then, when it is judged that the reef exists according to the depth, a cruising body 3 is allowed to cruise near the reef, the detailed information on the sea bottom or reel is obtained by ultrasonic waves, and then a sea-bottom shape calculation means 1g displays the reel or the sea bottom three-dimensionally based on the detailed information.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は船舶衝突座礁予防システ
ムに関し、特に暗礁又は狭い海域を安全に航行させるた
めに、より速く海底の形状を検出できる船舶衝突座礁予
防システムに関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a ship collision and grounding prevention system, and more particularly to a ship collision and grounding prevention system which can detect the shape of the seabed faster in order to safely navigate a reef or a narrow sea area.

【0002】[0002]

【従来の技術】従来は暗礁のある浅海や狭水路を大型の
船舶が通行するとき、経験豊かな船員等が操舵しながら
船舶を航行させたり、また大型の船舶が入出港をする場
合は、湾内の海底地形が港毎に異なるため水先案内人が
操舵して、暗礁等への衝突を防止していたり、あるいは
暗礁のある浅海や狭水路を大型の船舶が通行するとき、
船首の船底付近に取付けたソーナーによって、暗礁等を
検知して暗礁等への衝突を防止していた。図8は従来の
船舶衝突座礁予防装置の概略構成図である。同図におい
てはソナーを用いた船舶衝突座礁予防装置について例示
する。図において、40は超音波を発射させるためのパ
ルスを出力し、その反射音波より船舶と反射物までの距
離を求める制御処理部、41は制御処理部40からのパ
ルスが出力されたとき、そのパルス幅に相当する時間だ
け発信する超音波発信回路、42は超音波発信回路42
からの発信信号を増幅する電力増幅器、43は電力増幅
器42からの発信信号に基づいた音波を放射する送波
器、44は音波を受波する受波器、45は受波器44か
らの受信信号を増幅する増幅器、46は増幅器45から
出力される受信信号より必要な信号を取出して制御処理
部40に出力するフィルタである。この受波器44、送
波器43、増幅器45、フィルタ46、電力増幅回路4
2、超音波発信回路41などからなるソーナーは船舶の
船首の船底付近に取付けられている。
2. Description of the Related Art Conventionally, when a large vessel passes through a shallow sea with narrow reefs or a narrow waterway, experienced sailors steer the vessel while navigating it or when a large vessel enters or leaves a port. Since the seabed topography in the bay varies from port to port, pilots steer to prevent collisions with reefs, or when large ships pass through shallow waters with narrow reefs or narrow waterways.
A sonar installed near the bottom of the bow was used to detect reefs and prevent collisions with reefs. FIG. 8 is a schematic configuration diagram of a conventional ship collision grounding prevention device. In the figure, a ship collision grounding prevention device using sonar is illustrated. In the figure, reference numeral 40 denotes a control processing unit that outputs a pulse for emitting an ultrasonic wave, and obtains the distance between the ship and a reflecting object from the reflected sound wave, and 41 indicates when the pulse from the control processing unit 40 is output. An ultrasonic wave transmission circuit that transmits only the time corresponding to the pulse width, and 42 is an ultrasonic wave transmission circuit 42.
A power amplifier for amplifying a transmission signal from the power amplifier 43, a transmitter for emitting a sound wave based on the transmission signal from the power amplifier 42, a receiver 44 for receiving the sound wave, and a reference numeral 45 for receiving from the receiver 44 An amplifier that amplifies the signal, and a filter 46 that extracts a necessary signal from the reception signal output from the amplifier 45 and outputs the signal to the control processing unit 40. The wave receiver 44, the wave transmitter 43, the amplifier 45, the filter 46, and the power amplifier circuit 4
2. A sonar composed of an ultrasonic wave transmission circuit 41 and the like is attached near the bottom of the bow of the ship.

【0003】上記のように構成された従来の船舶衝突座
礁予防装置について以下に動作を説明する。船舶の操舵
室等に配置された制御処理部40がパルスを出力する
と、超音波発信回路41は、そのパルス幅に相当する時
間だけ、例えば数十KHzで発信し、その発信信号を電
力増幅回路42に出力する。電力増幅回路42はこの発
信信号を電力増幅して、船首の船底付近に取付けられて
いる送波器43に出力し、送波器43は電力増幅回路4
2からの発信信号に基づいた超音波を水中に放射する。
The operation of the conventional ship collision grounding preventive apparatus configured as described above will be described below. When the control processing unit 40 arranged in the steering room or the like of the ship outputs a pulse, the ultrasonic wave transmission circuit 41 transmits at a time corresponding to the pulse width, for example, at several tens of KHz, and the transmission signal is the power amplification circuit. To 42. The power amplifier circuit 42 amplifies the power of the transmitted signal and outputs it to the wave transmitter 43 mounted near the bottom of the bow, and the wave transmitter 43 outputs the power amplifier circuit 4.
Ultrasonic waves based on the transmission signal from 2 are emitted into the water.

【0004】そして、この超音波が水中を伝搬し、例え
ば岩礁等の反射物に当ると、それによって発生した反射
音波が船首の船底付近に取付けられている受波器44に
よって捕らえられる。受波器44で、この反射音波は電
気信号に変換され、増幅器45で増幅され、フィルタ4
6で必要な信号のみが取出されて制御処理部40に送出
される。制御処理部40は送波器43から超音波が発射
されてから受波器44で受信されるまでの時間Tを計測
し、この計測値に基づいて以下の(1)式に示すように
して船舶と水中における反射物までの距離を求めてい
た。 L=(C×T)/2………………………………(1) L:距離 C:音速 T:伝達時間
When this ultrasonic wave propagates in water and hits a reflector such as a reef, the reflected sound wave generated thereby is captured by a wave receiver 44 mounted near the bottom of the bow. The reflected sound wave is converted into an electric signal by the wave receiver 44, is amplified by the amplifier 45, and is transmitted to the filter 4
At 6, only the necessary signals are taken out and sent to the control processing unit 40. The control processing unit 40 measures the time T from when the ultrasonic wave is emitted from the wave transmitter 43 to when it is received by the wave receiver 44, and based on this measured value, as shown in the following formula (1), I was looking for the distance between the ship and the reflector in the water. L = (C × T) / 2 ………………………… (1) L: Distance C: Speed of sound T: Transmission time

【0005】[0005]

【発明が解決しようとする課題】一般に船舶に取付けら
れるソーナーというのは、発射方向を前方向にすると、
拡散しながら伝搬し、岸や海面、海底で反射が起こり、
複雑な伝搬を繰返すことになるため残響分が多くなっ
て、暗礁からの反射波かどうかを区別することができな
くなる。このため、上記のようにソーナーが船首の船底
付近に取付けられ、送波器及び受波器の指向性は所定の
角度をもって海底方向になるようにされている。しか
し、送波器及び受波器の指向性は所定の角度をもって海
底方向になるようにされているため、ある程度、暗礁等
の反射物に近付かなければ、その反射物を検出すること
ができない。つまり、暗礁等が検出されたときは、船舶
がこの暗礁に近付いており、反射物と船舶との距離は短
いことになる。特に、大型輸送船舶が水路(航路)の幅
が狭い場所、又は暗礁等があって水深が浅い場所を航行
する場合は、船舶というのは停止させても、長さの数十
倍移動するものであるから、暗礁の検出に伴って停止を
試みても間に合わない場合があるという問題点があっ
た。また、音波というのは、水中においては、水温等に
基づいた伝達進路でもって進行する。このため、ソーナ
ーの放射軸が船舶の進行方向となるように船首の前に取
り付けた場合は、そのソーナーからの超音波は水面付近
の水深が浅いところを伝達し、岸や海面、海底で複雑な
反射が起こり、残響となってしまい、暗礁なのか海面反
射等によるものかが区別することが困難であったという
問題点があった。さらに、暗礁であることが分かったと
しても、水深の浅いところを複雑な伝達進路でもって進
行するため、どのような経路で受信されたエコーかが分
からないので、暗礁までの距離を求めることが困難であ
るという問題点があった。本発明は以上の問題点を解決
するためになされたもので、船舶の航行中において、進
行方向の水中に存在する暗礁等の危険物までの深さ及び
距離を、より遠くから速く容易に検出することで暗礁へ
の衝突を防止させる船舶衝突座礁予防システムを得るこ
とを目的とする。
In general, a sonar mounted on a ship has the following features:
Propagating while diffusing, reflection occurs on the shore, the sea surface, the seabed,
Since the complex propagation is repeated, the reverberation amount increases and it becomes impossible to distinguish whether the wave is a reflected wave from a reef. For this reason, the sonar is attached near the bottom of the bow as described above, and the directivity of the wave transmitter and the wave receiver is set to a direction toward the sea bottom with a predetermined angle. However, since the directivity of the wave transmitter and the wave receiver is set so as to be directed toward the seabed at a predetermined angle, the reflection object cannot be detected unless it approaches the reflection object such as a reef to some extent. That is, when a reef or the like is detected, the ship is approaching the reef and the distance between the reflector and the ship is short. In particular, when a large transport ship navigates in a place where the width of the waterway (route) is narrow or where there is a reef or the like and the water depth is shallow, even if the ship is stopped, it will move several tens of times the length. Therefore, there is a problem in that even if an attempt is made to stop due to the detection of a reef, it may not be in time. Further, a sound wave travels in water along a transmission path based on the water temperature and the like. For this reason, if the sonar's radiation axis is installed in front of the bow so that it is in the direction of travel of the vessel, the ultrasonic waves from that sonar will transmit where the water depth near the water surface is shallow, and will be complicated on the shore, sea surface, or seabed. However, there was a problem that it was difficult to distinguish whether it was a reef or a sea surface reflection. Furthermore, even if it is found that the reef is a reef, it travels in shallow water with a complicated transmission path, so it is not possible to know the route of the echo received. There was a problem that it was difficult. The present invention has been made to solve the above-mentioned problems, and during navigation of a ship, the depth and distance to a dangerous material such as a reef existing in the water in the traveling direction can be detected easily from a farther distance. The aim is to obtain a ship collision grounding prevention system that prevents collisions on reefs.

【0006】[0006]

【課題を解決するための手段】本発明に係わる船舶衝突
座礁予防システムは、遠隔制御によって飛行して、レー
ザ光を発射し、レーザ光の反射光の強度に基づいて、水
面と水底までの第1の深さを求め、飛行現在位置と共に
第1の深さを送信する無人ヘリと、無人ヘリを操作する
操作信号に基づいた遠隔制御信号を無人ヘリに送信し、
無人ヘリから送信される第1の深さ及び飛行現在位置を
受信して表示させる第1の海底探索部と、十文字送受波
器アレーを底部に備えて、遠隔制御によって水中を航行
し、十文字送受音器アレーを駆動して超音波を発射さ
せ、その反射音の受音レベルに基づいて、水底までの距
離を求め、この距離と水中現在位置と現在の自己の深さ
とを共に出力する航走体と、水中航走体を操作する操作
信号に基づいた遠隔制御信号を航走体に送出し、航走体
から送出される航走体の深さ及び水中現在位置を受信
し、航走体の深さと距離とに基づいて、水面から海底ま
での第2の深さを求め、第2の深さと水中現在位置とに
基づいた海底の3次形状を求めて表示する第2の海底探
索部とを備えたものである。
A ship collision grounding prevention system according to the present invention flies by remote control to emit laser light, and based on the intensity of reflected light of the laser light, the first and second water surfaces. The depth of 1 is obtained, and an unmanned helicopter that transmits the first depth together with the current flight position and a remote control signal based on an operation signal for operating the unmanned helicopter are transmitted to the unmanned helicopter,
It is equipped with a first submarine search unit that receives and displays the first depth and current flight position transmitted from an unmanned helicopter, and a cross-shaped transducer array at the bottom to navigate underwater by remote control and cross-character transmission / reception. Driving a sound array to emit ultrasonic waves, determine the distance to the bottom of the water based on the received sound level of the reflected sound, and output this distance, the underwater current position, and the current self depth together. Body and a remote control signal based on an operation signal for operating the underwater vehicle, and sends to the vehicle the remote control signal, and receives the depth and current underwater position of the vehicle sent from the vehicle, A second seabed search unit that obtains and displays a second depth from the water surface to the seabed based on the depth and the distance, and obtains and displays the tertiary shape of the seabed based on the second depth and the current underwater position. It is equipped with and.

【0007】[0007]

【作用】本発明においては、船舶に搭載された無人ヘリ
を遠隔制御によって飛行させ、この無人ヘリからのレー
ザ光の反射光に基づいた水面と水底までの第1の深さと
飛行現在位置を船舶上で受信し、この無人ヘリからの第
1の深さ及び飛行現在位置を受信して表示させる。ま
た、船舶に搭載された航走体を水中に発射させ、この航
走体が航行しながら十文字送受波器アレーを駆動して得
た航走体と水底までの距離、水中現在位置及び航走体の
深さとを受けて、この航走体の深さ及び水中現在位置と
前記距離とに基づいて、水面から海底までの第2の深さ
を求め、第2の深さと水中現在位置とに基づいた海底の
3次形状を求めて表示する。
In the present invention, an unmanned helicopter mounted on a ship is caused to fly by remote control, and the first depth to the water surface and bottom based on the reflected light of the laser light from this unmanned helicopter and the current flight position are set. Received above and received and displayed the first depth and current flight position from this unmanned helicopter. In addition, by launching a vehicle onboard the ship into the water and driving the array of cross-shaped transducers while the vehicle is navigating, the distance to the vehicle and the bottom of the water, the current position in water and the running In consideration of the depth of the body, the second depth from the water surface to the bottom of the sea is obtained based on the depth of the navigation body and the current position in water and the distance, and the second depth and the current position in water are obtained. The 3D shape of the seabed is calculated and displayed.

【0008】[0008]

【実施例】図1は本発明の船舶座礁衝突防止システムの
概念図である。この場合は、海を例にして説明する。図
において、1は大型輸送船、1aは大型輸送船1に搭載
されている無線機、1bは無線機1aに接続されたヘリ
コントローラ、1cは無線機1aからの受信信号よりヘ
リ位置信号及び海底の深さ信号を取り出し、所定の表示
形式にしてCRT1dに表示させる海底情報抽出手段で
ある。この1a〜1cまでを第1の海底探索部という。
1 is a conceptual diagram of a ship grounding collision prevention system of the present invention. In this case, the sea will be described as an example. In the figure, 1 is a large transport ship, 1a is a radio mounted on the large transport ship 1, 1b is a helicopter controller connected to the radio 1a, 1c is a helicopter position signal and a seabed from a received signal from the radio 1a. It is a seabed information extracting means for extracting the depth signal of and displaying it on the CRT 1d in a predetermined display format. These 1a to 1c are called the first seabed search unit.

【0009】1eは操作信号に基づいて後述する航走体
を制御する航走体コントローラ、1fは航走体に制御信
号を出力すると共に、航走体からの情報を受けて出力す
る伝送手段、1gは伝送手段1fからの情報より海底形
状を立体的に算出してCRT1dに表示させる海底形状
算出手段、1hは伝送手段1fからの情報より、航走体
の位置信号を取り出し、所定の表示形式にしてCRT1
dに表示させる航走体位置表示手段である。この1e〜
1hを第2の海底探索部という。2は無人ヘリ、3は海
中遠隔制御航走体である。同図は幅が狭い水路(又は航
路)の場所や水深が浅い場所を大型輸送船1が通過する
とき、暗礁等に坐礁しないように、航路の前方上空に無
人ヘリ2を飛ばし、この無人ヘリ2よりレーザを発射さ
せて海中の一次広域探索を行い、また航路の前方海上又
は海中に海中遠隔制御航走体3を走らせて海中で超音波
を使用させて海中の2次探索をおこなわせるものであ
る。初めに、この一次広域探索について図を用いて以下
に説明する。
Reference numeral 1e is a running body controller for controlling a running body, which will be described later, based on an operation signal, and 1f is a transmission means for outputting a control signal to the running body and receiving and outputting information from the running body. 1g is a seabed shape calculation means for three-dimensionally calculating the seabed shape from the information from the transmission means 1f and displaying it on the CRT 1d. 1h is a predetermined display format for extracting the position signal of the vehicle from the information from the transmission means 1f. And CRT1
It is a vehicle position display means to be displayed in d. This 1e
1h is called the second seabed search unit. 2 is an unmanned helicopter and 3 is an underwater remote control vehicle. In the figure, when the large transport ship 1 passes through a narrow waterway (or channel) or a place with shallow water, the unmanned helicopter 2 is flown above the channel so as not to stranded on a reef. A laser is emitted from the helicopter 2 to perform a primary wide-area search in the sea, and a remote-controlled underwater vehicle 3 is run in front of or in the sea of the route to use ultrasonic waves in the sea to perform a secondary search in the sea. It is a thing. First, the primary wide area search will be described below with reference to the drawings.

【0010】図2は無人ヘリの概略構成図である。図に
おいて、4はレーザ発信器、5と6はレーザ発信器4か
らのレーザビームの広がり角を制御する凹レンズと凸レ
ンズ、7は凸レンズ6からのレーザビームを反射するミ
ラーである。8はミラー7からのレーザビームを反射す
るミラー9を備え、このミラー9を左右に振ることで捜
索海域を広げる走査部、13はレーザ集光器、14は絞
り機構、15は凸レンズ、16は光シャッタ、17は干
渉フィルタ、18は干渉フィルタ17からの反射光を電
気信号に変換する光検出部、19は無線機、20は光検
出部18からの受信信号の強度に基づいて海面から海底
までの深さを算出する深さ算出部、22はGPS(Gl
obal Positioning System)受
信機である。上記の構成に基づいて以下に動作を説明す
る。大型輸送船1が海底の状況が必要な航路に入ると
(例えば岩礁等がある海域)、大型輸送船1の船員がヘ
リコントローラ1bを操作し、無線機1aを介して無人
ヘリ2を飛ばす。そして、船員がヘリコントローラ1b
を操作し、無線機1aを介して、無線誘導によって、大
型輸送船1の進行方向に向かって飛ばし、少なくとも、
大型輸送船1の幅以上の海域を蛇行させながら飛ばす。
FIG. 2 is a schematic diagram of an unmanned helicopter. In the figure, 4 is a laser oscillator, 5 and 6 are concave and convex lenses that control the divergence angle of the laser beam from the laser oscillator 4, and 7 is a mirror that reflects the laser beam from the convex lens 6. Reference numeral 8 includes a mirror 9 that reflects the laser beam from the mirror 7, and a scanning unit that widens the search area by swinging the mirror 9 left and right, 13 is a laser condenser, 14 is a diaphragm mechanism, 15 is a convex lens, and 16 is An optical shutter, 17 is an interference filter, 18 is a photodetector that converts the reflected light from the interference filter 17 into an electric signal, 19 is a wireless device, and 20 is the sea surface to the seabed based on the intensity of the received signal from the photodetector 18. To a GPS (Gl
It is a global positioning system) receiver. The operation will be described below based on the above configuration. When the large-sized transport ship 1 enters a route that requires a seabed condition (for example, in a sea area where a reef or the like exists), the crew member of the large-sized transport ship 1 operates the helicopter controller 1b to fly the unmanned helicopter 2 via the radio 1a. And the sailor is the helicopter controller 1b
To fly in the traveling direction of the large transport ship 1 by wireless guidance through the wireless device 1a, and at least,
Fly in a sea area that is wider than the width of the large transport ship 1 while meandering.

【0011】図3は無人ヘリの蛇行飛行の説明図であ
る。同図に示すように、無人ヘリ2を大型輸送船1の進
行方向に向かって飛ばし、所定ポイントに到達したこ
ろ、蛇行飛行させ、ヘリコントローラ1bを操作して無
線機1aを介して無人ヘリ2に計測指令信号を送信させ
る。無人ヘリ2はこの計測指令信号を無線機19により
受信し、無線機19が受信に伴って、トリガ信号をレー
ザ発信器4に出力する。レーザ発信器4はトリガ信号に
より発信し、青緑色レーザをレンズ5、レンズ6、ミラ
ー7、走査部8のミラー9を介して高速で繰り返し海域
に放射させる。つまり、青緑色レーザは凹レンズ5と凸
レンズ6の組み合わせにより、ビームの広がり角を制御
し、ミラー7により反射させ、走査部8のミラー9より
海中に向けて放射するのである。また、走査部8はミラ
ー9を左右に振ることにより、捜索海域を広げる。
FIG. 3 is an illustration of meandering flight of an unmanned helicopter. As shown in the figure, the unmanned helicopter 2 is flown in the traveling direction of the large-scale transport ship 1, and when it reaches a predetermined point, it is meandered and the helicopter controller 1b is operated to operate the unmanned helicopter 2 via the radio 1a. To send a measurement command signal. The unmanned helicopter 2 receives this measurement command signal by the wireless device 19, and outputs a trigger signal to the laser oscillator 4 when the wireless device 19 receives the measurement command signal. The laser oscillator 4 emits in response to a trigger signal, and repeatedly emits a blue-green laser to the sea area at high speed through the lens 5, the lens 6, the mirror 7, and the mirror 9 of the scanning unit 8. That is, the blue-green laser controls the divergence angle of the beam by the combination of the concave lens 5 and the convex lens 6, reflects it by the mirror 7, and emits it toward the sea from the mirror 9 of the scanning unit 8. Further, the scanning unit 8 widens the search sea area by swinging the mirror 9 left and right.

【0012】これにより、無人ヘリ2から放射された青
緑色レーザ光は空中を伝搬し、一部の光は海面で反射
し、大部分の光は海中に透過する。海中に透過した光は
海底又は暗礁で反射される。また、レーザ光は海面での
スポット径は小さいが海中に入るとき屈折し、漏斗状態
に分散し広がるものである。そして、反射したレーザ光
は、光の可逆性の原理より、もときた光路を進み、海中
から出て空中を進み無人ヘリ2の走査部8に入る。走査
部8からの反射レーザ光はレーザ集光器13に入り、こ
こでレーザ集光器13は凹面鏡により集光され、絞り機
構14を通過して外部からの不要な光がカットされる。
そして、凸レンズ15で平行光に直されて、光シャッタ
14により、強力な後方散乱光がカットされる。続い
て、干渉フィルタ17により、不要な波長の光がカット
され、レーザ光による反射レーザ光のみが光検出部18
に入り、電気信号に変換される。次に深さ算出部20
は、この電気信号のレベルに応じて無人ヘリ2と海底又
は暗礁等までの高さを求め、所定の演算をして海面から
海底又は暗礁等までの深さを求めて無線機19に出力す
る。
As a result, the blue-green laser light emitted from the unmanned helicopter 2 propagates in the air, part of the light is reflected on the sea surface, and most of the light is transmitted into the sea. Light transmitted through the sea is reflected by the seabed or a reef. Further, the laser beam has a small spot diameter on the sea surface, but is refracted when entering the sea, and is dispersed and spread in a funnel state. Then, the reflected laser light travels along the original optical path, exits from the sea, travels in the air, and enters the scanning unit 8 of the unmanned helicopter 2 due to the principle of reversibility of light. The reflected laser light from the scanning unit 8 enters the laser condenser 13, where the laser condenser 13 is condensed by the concave mirror, passes through the diaphragm mechanism 14, and unnecessary light from the outside is cut.
The convex lens 15 converts the light into parallel light, and the optical shutter 14 cuts the strong backscattered light. Subsequently, the interference filter 17 cuts light having an unnecessary wavelength, and only the reflected laser light from the laser light is detected by the light detection unit 18.
Enters and is converted into an electrical signal. Next, the depth calculator 20
Determines the height from the unmanned helicopter 2 to the seabed or a reef according to the level of this electric signal, performs a predetermined calculation to obtain the depth from the sea surface to the seabed or a reef, and outputs the result to the radio device 19. .

【0013】無線機19はGPS(Global Po
sitioning)受信機22が得た位置とこの深さ
とを一組にした送信データを大型輸送船1に送信する。
次に、大型輸送船1の無線機1aは無人ヘリ2からの送
信データを受信して海底情報抽出手段1cに出力する。
海底情報抽出手段1cは送信データを入力すると無人ヘ
リ2と大型輸送船1との距離による受信レベルの変化の
補正、高速返し計測によるS/N等の補正を行い、海底
又は暗礁までの深さ及び位置を抽出し、所定の表示形式
にしてCRT1dに表示させる。例えば、順次現在の無
人ヘリ2の地球座標を、そのときの海底又は暗礁の位置
とし、そのときの深さを一組にして、数値表示又はグラ
フ表示する。また、大型輸送船1と無人ヘリ2までの距
離と方向を求め、その値を位置として表示するようにし
てもよい。これにより、初めてその海域を航海するとし
ても、大型輸送船1の航海士は暗礁等のある海域の海底
を3次元的に把握できる。
The radio device 19 is a GPS (Global Po
(positioning) The transmission data, which is a set of the position obtained by the receiver 22 and this depth, is transmitted to the large transport vessel 1.
Next, the radio 1a of the large transport ship 1 receives the transmission data from the unmanned helicopter 2 and outputs it to the seabed information extracting means 1c.
When the transmission data is input, the seabed information extraction means 1c corrects the change in the reception level due to the distance between the unmanned helicopter 2 and the large transport ship 1, and the S / N correction by high-speed return measurement to determine the depth to the seabed or a reef. And the position are extracted and displayed on the CRT 1d in a predetermined display format. For example, the present earth coordinates of the unmanned helicopter 2 are sequentially set as the position of the seabed or the reef at that time, and the depths at that time are set as a set and displayed numerically or graphically. Alternatively, the distance and direction between the large-sized transport ship 1 and the unmanned helicopter 2 may be obtained and the value may be displayed as the position. As a result, even if the operator sails in the sea area for the first time, the navigator of the large transport vessel 1 can three-dimensionally understand the sea floor of the sea area where there are reefs and the like.

【0014】しかし、無人ヘリ2からのレーザ光という
のは海中に入るとさまざまな要因により減衰する。従っ
て、暗礁の凸部は検出できたとしても、それより深い稜
線の状態は検出できないこともある。そこで、無人ヘリ
2によって、大型輸送船1の進行方向に暗礁が検出され
ると、海中遠隔制御航走体3を船首から発射させて2次
探索を行う。この海中遠隔制御航走体3には以下に説明
する超音波送波器アレー(以下単に送波器アレーとい
う)と超音波受波器アレー(以下単に受波器アレーとい
う)とが備えられており、送波器アレーと受波器アレー
を総称して以下単に送受波器アレーという。
However, the laser light from the unmanned helicopter 2 is attenuated by various factors when it enters the sea. Therefore, even if the convex portion of the reef can be detected, the state of the ridge line deeper than that may not be detected. Therefore, when a reef is detected by the unmanned helicopter 2 in the traveling direction of the large transport ship 1, the underwater remote control vehicle 3 is launched from the bow to perform a secondary search. The undersea remote control vehicle 3 is provided with an ultrasonic wave transmitter array (hereinafter simply referred to as a wave transmitter array) and an ultrasonic wave receiver array (hereinafter simply referred to as a wave receiver array) described below. Therefore, the wave transmitter array and the wave receiver array are collectively referred to as a wave transmitter / receiver array.

【0015】図4は海中遠隔制御航走体の送受器アレイ
の指向特性の説明図である。同図に示すように、送受波
器アレーは海中遠隔制御航走体3の底部に備えられ、送
波器アレ−と受波器アレーとが互いに90度ずらした十
文字構造となっている。また、送波器アレ−は航走体3
が進行する方向にn個の送波器からなり、受波器アレ−
は航走体3が進行する方向と直角方向にm個の受波器で
構成されている。従って、超音波の送波パルスは進行方
向に薄く、進行方向と直角方向に広い指向性をもった扇
形の送波ビームとして放射される。また受波器アレーの
受波指向性は進行方向に厚く、進行方向と直角方向に薄
い指向性をもった扇形の指向性となり、同図に示すよう
に送波と受波がクロスした斜線部分で反射した超音波を
受信する。図5は海中遠隔制御航走体の概略構成図であ
る。図において、26は海中遠隔制御航走体3内の伝送
部、27は演算制御部、28は送信信号発生器、29は
送信信号発生器28からの信号をnチャンネルに分け
て、nチャンネルの送波器アレイ30に出力する電力増
幅回路、33はmチャンネルの受波器アレイ、34は受
波器アレイ33からのmチャンネルの受送信号を増幅す
る増幅器、35は電子スキャニング回路、36は水圧
計、37は深度検出器、38はINS(慣性航法)装
置、39は位置検出回路である。
FIG. 4 is an explanatory diagram of the directional characteristics of the handset array of the undersea remote control vehicle. As shown in the figure, the transducer array is provided at the bottom of the underwater remote control vehicle 3, and the transducer array and the transducer array have a cross-shaped structure in which they are offset from each other by 90 degrees. In addition, the transmitter array is
Consists of n transmitters in the direction in which the
Is composed of m wave receivers in a direction perpendicular to the direction in which the navigation body 3 advances. Therefore, the ultrasonic transmission pulse is emitted as a fan-shaped transmission beam that is thin in the traveling direction and has a wide directivity in the direction orthogonal to the traveling direction. The wave receiving directivity of the wave receiver array is a fan-shaped directivity with a thick directivity in the traveling direction and a thin directivity in the direction orthogonal to the traveling direction.As shown in the figure, the shaded area where the transmitting wave and the receiving wave cross. The ultrasonic waves reflected by are received. FIG. 5 is a schematic configuration diagram of an undersea remote control vehicle. In the figure, 26 is a transmission unit in the undersea remote control vehicle 3, 27 is an arithmetic control unit, 28 is a transmission signal generator, and 29 is a signal from the transmission signal generator 28 divided into n channels. A power amplifier circuit for outputting to the wave transmitter array 30, 33 is an m channel receiver array, 34 is an amplifier for amplifying m channel received signals from the wave receiver array 33, 35 is an electronic scanning circuit, and 36 is A water pressure gauge, 37 is a depth detector, 38 is an INS (inertial navigation) device, and 39 is a position detection circuit.

【0016】上記のような海中遠隔制御航走体3は、大
型輸送船1からの指示に基づいて船首から発射される。
例えば、上記の無人ヘリ2によって暗礁がどこにあるか
が分かったとき、その暗礁を詳細に探索されるために発
射され、その暗礁付近に到達したとき船員により航走体
コントローラ1eにより蛇行と進行方向と検索指示が入
力される。この指示を伝送部1fに出力する。伝送部1
fは制御信号を所定の形式で接続ケーブル23を介して
海中遠隔制御航走体3に送出する。伝送部26は蛇行指
示と進行方向等の駆動制御信号は操舵制御部(図示せ
ず)に渡し、検索指示を演算制御部27に渡す。また、
このとき大型輸送船1からはモータ駆動用の電力も送ら
れる。そして航走体の航路は、大型輸送船舶の横幅をカ
バーする範囲で蛇行していく。演算制御部27は検索指
示を送信信号発生器28に出力する。送信信号発生器2
8は、検索指示が入力する毎に、所定の時間だけ高周波
数f1の発信信号を増幅器29に出力する。この発信信
号は増幅器群29によって電力増幅され、超音波送波器
アレイ30に出力される。
The underwater remote control vehicle 3 as described above is launched from the bow based on an instruction from the large transport ship 1.
For example, when the unmanned helicopter 2 finds out where the reef is, it is fired to search the reef in detail, and when it reaches the vicinity of the reef, the seafarer makes a meandering and traveling direction by the navigation controller 1e. And the search instruction is input. This instruction is output to the transmission unit 1f. Transmission unit 1
f transmits a control signal in a predetermined format to the undersea remote control vehicle 3 via the connection cable 23. The transmission unit 26 passes a meandering instruction and a drive control signal such as a traveling direction to a steering control unit (not shown), and passes a search instruction to the arithmetic control unit 27. Also,
At this time, electric power for driving the motor is also sent from the large transport ship 1. The course of the vehicle is meandering in a range that covers the width of large transport vessels. The arithmetic control unit 27 outputs the search instruction to the transmission signal generator 28. Transmit signal generator 2
Each time the search instruction is input, the reference numeral 8 outputs the oscillation signal of the high frequency f1 to the amplifier 29 for a predetermined time. This transmission signal is power-amplified by the amplifier group 29 and output to the ultrasonic wave transmitter array 30.

【0017】送波器アレー30は、この信号の電気信号
の電気エネルギーを音響エネルギーに変換し、超音波パ
ルスとして進行方向に対して直角方向に扇形の指向性で
もって海中に放射する。このとき、電子スキャニング回
路35は電気的にm個の受波器3で受かった受波信号に
加える遅延時間を変えて、受波器アレー33の指向性を
左A1から右Azまで振り、A1、A2、……Azの各
点での受波波形状をメモリ(図示せず)に記憶する。次
に演算制御部27は、送波器アレー30から放射した超
音波は海底又は暗礁で反射されるため、受波器アレー3
3で受かるまでの時間tを音速で割って航走体3と海底
又は暗礁までの距離Lを求め、深度検出回路37は水圧
計36の出力に基づいて、海面から航走体3の深度Hを
求める。そして、演算制御部27は、この航走体3の深
度Hと海底又は暗礁までの距離Lとに基づいて、海面か
ら海底又は暗礁までの深度(深さ)を得る。例えば、深
度H+距離L=海面から海底又は暗礁までの深度として
求める。
The wave transmitter array 30 converts the electric energy of the electric signal of this signal into acoustic energy, and radiates it as an ultrasonic pulse into the sea with a fan-shaped directivity in a direction perpendicular to the traveling direction. At this time, the electronic scanning circuit 35 changes the delay time to be added to the received signals electrically received by the m number of wave receivers 3 to swing the directivity of the wave receiver array 33 from left A1 to right Az, and , A2, ... Az The received wave shape at each point is stored in a memory (not shown). Next, the arithmetic control unit 27 determines that the ultrasonic wave radiated from the wave transmitter array 30 is reflected by the seabed or a reef, so that the wave receiver array 3
The distance L between the vehicle 3 and the seabed or reef is calculated by dividing the time t until the vehicle 3 is received by the sound velocity, and the depth detection circuit 37 determines the depth H of the vehicle 3 from the sea surface based on the output of the water pressure gauge 36. Ask for. Then, the arithmetic control unit 27 obtains the depth (depth) from the sea surface to the seabed or the reef based on the depth H of the navigation body 3 and the distance L to the seabed or the reef. For example, the depth H + the distance L = the depth from the sea surface to the sea bottom or a reef are obtained.

【0018】このようにして、航走体3は進行しながら
蛇行し、同様の測定をしながら海面から海底又は暗礁ま
での深度を求める。また、航走体3の位置検出回路39
はINS装置38からINS航法により求めれた位置を
検出して演算制御部27に出力する。演算制御部27は
海面から海底又は暗礁までの深度と共に、航走体3の位
置を伝送部26を介して大型輸送船1に送出する。大型
輸送船1の海底形状算出部1gは、この海底又は暗礁ま
での深度を蓄積して以下に説明する海底の3次元形状を
作成して表示させ、航海士に大型輸送船1に対してどの
ような位置にあるかを立体的に知らせる。図6は航走体
による表示画面例の説明図である。同図に示すように、
暗礁又は海底等が詳細に立体的に表示され、距離軸、方
向軸及び深さ軸に基づいているため、自船に対する暗礁
又は海底の状況が詳細に分かるので、航海士はこの画面
を参照して大形輸送船1を航行させると、暗礁等があっ
ても安全に航行させることができる。
In this manner, the running body 3 meanders while advancing, and the depth from the sea surface to the sea bottom or a reef is obtained while performing the same measurement. In addition, the position detection circuit 39 of the navigation body 3
Detects the position obtained by the INS navigation from the INS device 38 and outputs it to the arithmetic control unit 27. The arithmetic control unit 27 sends out the position of the running body 3 to the large-sized transport ship 1 via the transmission unit 26 together with the depth from the sea surface to the seabed or the reef. The seafloor shape calculation unit 1g of the large transport ship 1 accumulates the depth to the seabed or a reef to create and display a three-dimensional shape of the seabed described below, and the officer can tell the It tells you in three dimensions whether it is in such a position. FIG. 6 is an explanatory diagram of an example of a display screen displayed by the vehicle. As shown in the figure,
Since the reef or seabed is displayed in detail in three dimensions and is based on the distance axis, direction axis and depth axis, the situation of the reef or seabed with respect to the ship can be understood in detail, so the navigator can refer to this screen. When the large-sized transport ship 1 is made to travel, it is possible to safely navigate even if there is a reef or the like.

【0019】図7は無線誘導によって海底又は暗礁の情
報を得るための概略構成図である。同図に示すように、
大形輸送船1と航走体3とを有線で接続しなくとも、航
走体に伝送部の代わりに送受信部を、背面にアンテナを
備えると、大形輸送船から無線誘導によって海底又は暗
礁の情報を得ることができる。このようにすると、有線
が不要になるため、大形輸送船の発射部に有線巻取用の
モータ等を備える必要がないため、システム的に安価に
なる。
FIG. 7 is a schematic configuration diagram for obtaining information on the seabed or a reef by wireless guidance. As shown in the figure,
Even if the large transport vessel 1 and the vehicle 3 are not connected by wire, if the vehicle is provided with a transmitter / receiver instead of a transmitter and an antenna on the back side, the large vehicle is wirelessly guided to the seabed or a reef. Information can be obtained. By doing so, no cable is required, and it is not necessary to equip the launching portion of the large-sized transport ship with a motor for winding the cable or the like, so that the system is inexpensive.

【0020】[0020]

【発明の効果】以上のように本発明によれば、船舶に搭
載された無人ヘリを遠隔制御によって飛行させ、この無
人ヘリからのレーザ光の反射光に基づいた水面と水底ま
での深さと飛行現在位置を船舶上で受信し、この無人ヘ
リからの深さ及び飛行現在位置を受信して表示させるよ
うにし、その深さから暗礁であると判断したときは、そ
の暗礁付近に航走体を航走させて、超音波による海底又
は暗礁の詳細情報を得て、この詳細情報に基づいて暗礁
又は海底を3次元表示させるようにしたことにより、例
えば船舶が狭い又は暗礁のある水域を航行するときに、
前もって無人ヘリによって暗礁がある場所を判断し、そ
の暗礁付近に航走体を航走させると、速く詳細に海底又
は暗礁形状を知らせることができるため、前もって航海
士はその暗礁の形状と進行方向に対してどのような位置
にあるかが分かるため、暗礁衝突を未然に防ぐことがで
きるという効果が得られる。
As described above, according to the present invention, an unmanned helicopter mounted on a ship is caused to fly by remote control, and the depth and flight to the water surface and the bottom of the water based on the reflected light of the laser light from this unmanned helicopter. When the current position is received on the ship, the depth from this unmanned helicopter and the current flight position are received and displayed, and when it is determined that the reef is a reef from that depth, a vehicle is placed near the reef. By navigating and obtaining detailed information on the seabed or reef by ultrasonic waves, and displaying the reef or seabed in three dimensions based on this detailed information, for example, a ship navigates in a narrow or reef water area. sometimes,
If the unmanned helicopter determines the location of a reef in advance and runs a vehicle in the vicinity of the reef, the navigator can inform the seabed or reef shape quickly and in detail. Since it is possible to know the position of the reef, it is possible to prevent the reef collision from occurring.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の船舶座礁衝突防止システムの概念図で
ある。
FIG. 1 is a conceptual diagram of a ship grounding collision prevention system of the present invention.

【図2】無人ヘリの概略構成図である。FIG. 2 is a schematic configuration diagram of an unmanned helicopter.

【図3】無人ヘリの蛇行飛行の説明図である。FIG. 3 is an explanatory diagram of meandering flight of an unmanned helicopter.

【図4】海中遠隔制御航走体の送受波器アレーの指向特
性の説明図である。
FIG. 4 is an explanatory diagram of directional characteristics of a transducer array of an undersea remote control vehicle.

【図5】海中遠隔制御航走体の概略構成図である。FIG. 5 is a schematic configuration diagram of an undersea remote control vehicle.

【図6】航走体による表示画面例の説明図である。FIG. 6 is an explanatory diagram of an example of a display screen displayed by the vehicle.

【図7】無線誘導によって海底又は暗礁の情報を得るた
めの概略構成図である。
FIG. 7 is a schematic configuration diagram for obtaining information on a seabed or a reef by wireless guidance.

【図8】従来の船舶衝突座礁予防装置の概略構成図であ
る。
FIG. 8 is a schematic configuration diagram of a conventional ship collision grounding prevention device.

【符号の説明】[Explanation of symbols]

1 大型輸送船 1a 無線機 1b ヘリコントローラ 1c 海底情報抽出手段 1e 航走体コントローラ 1f 伝送手段 1g 海底形状算出手段 1h 航走体位置表示手段 2 無人ヘリ 3 海中遠隔制御航走体 1 Large Transport Ship 1a Radio 1b Helicopter Controller 1c Seabed Information Extraction Means 1e Vehicle Controller 1f Transmission Means 1g Seafloor Shape Calculation Means 1h Vehicle Position Display Means 2 Unmanned Helicopter 3 Underwater Remote Control Vehicle

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 遠隔制御によって飛行して、レーザ光を
発射し、該レーザ光の反射光の強度に基づいて、水面と
水底までの第1の深さを求め、飛行現在位置と共に前記
第1の深さを送信する無人ヘリと、 前記無人ヘリを操作する操作信号に基づいた遠隔制御信
号を前記無人ヘリに送信し、前記無人ヘリから送信され
る第1の深さ及び前記飛行現在位置を受信して表示させ
る第1の海底探索部と、 十文字送受波器アレーを底部に備えて、遠隔制御によっ
て水中を航行し、前記十文字送受音器アレーを駆動して
超音波を発射させ、その反射音の受音レベルに基づい
て、水底までの距離を求め、この距離と水中現在位置と
現在の自己の深さとを共に出力する航走体と、 前記水中航走体を操作する操作信号に基づいた遠隔制御
信号を前記航走体に送出し、前記航走体から送出される
前記航走体の深さ及び前記水中現在位置を受信し、前記
航走体の深さと前記距離とに基づいて、前記水面から海
底までの第2の深さを求め、該第2の深さと前記水中現
在位置とに基づいた海底の3次形状を求めて表示する第
2の海底探索部とを船舶に搭載したことを特徴とする船
舶衝突座礁予防システム。
1. Flying under remote control to emit a laser beam, obtain a first depth to a water surface and a water bottom based on an intensity of a reflected light of the laser beam, and determine the first depth together with the current flight position. And a remote control signal based on an operation signal for operating the unmanned helicopter, the first depth and the current flight position transmitted from the unmanned helicopter. It is equipped with a first submarine search unit for receiving and displaying, and a cross-shaped transducer array at the bottom. It sails underwater by remote control, drives the cross-shaped transducer array to emit ultrasonic waves, and reflect it. Based on the sound receiving level of the sound, the distance to the bottom of the water is obtained, and based on an operation signal for operating the underwater vehicle, which outputs the distance and the current underwater position and the current depth of the self. Remote control signal to the above-mentioned vehicle Then, the depth of the vehicle and the current position in water sent from the vehicle are received, and the second depth from the water surface to the seabed is received based on the depth of the vehicle and the distance. And a second seabed search unit for determining and displaying the third shape of the seabed based on the second depth and the current underwater position, and the second seabed searching unit is mounted on the ship. .
JP5325578A 1993-12-24 1993-12-24 Ship collision ground-hitting prevention system Pending JPH07181255A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5325578A JPH07181255A (en) 1993-12-24 1993-12-24 Ship collision ground-hitting prevention system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5325578A JPH07181255A (en) 1993-12-24 1993-12-24 Ship collision ground-hitting prevention system

Publications (1)

Publication Number Publication Date
JPH07181255A true JPH07181255A (en) 1995-07-21

Family

ID=18178459

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5325578A Pending JPH07181255A (en) 1993-12-24 1993-12-24 Ship collision ground-hitting prevention system

Country Status (1)

Country Link
JP (1) JPH07181255A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376882C (en) * 2005-12-24 2008-03-26 山东省科学院海洋仪器仪表研究所 Method for detecting rule of wave and motion of ship along with the wave using laser distance measuring principle
WO2018168564A1 (en) * 2017-03-12 2018-09-20 株式会社ナイルワークス Drone for measuring water depth of field
CN109444894A (en) * 2018-12-27 2019-03-08 镇江市高等专科学校 Road depth of accumulated water fast moves measuring device and method
KR20190036405A (en) * 2017-09-27 2019-04-04 한국해양과학기술원 System and method for supporting ship entering and leaving port using 3d lidar mounted on unmanned aerial vehicle
JP2019078695A (en) * 2017-10-26 2019-05-23 日本電気株式会社 Acoustic sensor device, information display device, acoustic sensor signal processing method, and program
JP2021116551A (en) * 2020-01-23 2021-08-10 五洋建設株式会社 Construction management method and construction method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN100376882C (en) * 2005-12-24 2008-03-26 山东省科学院海洋仪器仪表研究所 Method for detecting rule of wave and motion of ship along with the wave using laser distance measuring principle
WO2018168564A1 (en) * 2017-03-12 2018-09-20 株式会社ナイルワークス Drone for measuring water depth of field
CN110392819A (en) * 2017-03-12 2019-10-29 株式会社尼罗沃克 For measuring the unmanned plane of the farm depth of water
JPWO2018168564A1 (en) * 2017-03-12 2020-01-09 株式会社ナイルワークス Drone for measuring water depth in the field
CN110392819B (en) * 2017-03-12 2022-02-01 株式会社尼罗沃克 Unmanned aerial vehicle for measuring water depth of farm
KR20190036405A (en) * 2017-09-27 2019-04-04 한국해양과학기술원 System and method for supporting ship entering and leaving port using 3d lidar mounted on unmanned aerial vehicle
JP2019078695A (en) * 2017-10-26 2019-05-23 日本電気株式会社 Acoustic sensor device, information display device, acoustic sensor signal processing method, and program
CN109444894A (en) * 2018-12-27 2019-03-08 镇江市高等专科学校 Road depth of accumulated water fast moves measuring device and method
CN109444894B (en) * 2018-12-27 2023-11-28 镇江市高等专科学校 Road ponding depth rapid movement measuring device and method
JP2021116551A (en) * 2020-01-23 2021-08-10 五洋建設株式会社 Construction management method and construction method

Similar Documents

Publication Publication Date Title
US10037701B2 (en) Watercraft navigation safety system
US9223002B2 (en) System and method for determining the position of an underwater vehicle
US6738314B1 (en) Autonomous mine neutralization system
JPH0339742Y2 (en)
US20190331779A1 (en) Sonar transducer having a gyroscope
EP0535044B2 (en) Method and device for tracing an object
US4200922A (en) Self-propelled vehicle for destroying ground mines
AU2022200934B2 (en) Sonar beam footprint presentation
JP2003127983A (en) Navigation control device for autonomous underwater vehicle
KR20190141341A (en) Method for Inspection Underwater Structures Using Drone and Sonar
US5379034A (en) Apparatus and method of radio communication from a submerged underwater vehicle
JPH07181255A (en) Ship collision ground-hitting prevention system
US4980868A (en) Sonar system
US3213410A (en) Channel navigating system
KR101158721B1 (en) Mobile mine, and method to induce mobile mine on laying position
JP2666765B2 (en) Acoustic target for underwater vehicles
US4954999A (en) Double phase-lock-loop sonar
US6215732B1 (en) Expendable device for measurement of sound velocity profile
JP2004077391A (en) Vessel surrounding monitor system
US7190637B2 (en) Guided underwater object
AU2012200886A1 (en) System and method for determining the position of an underwater vehicle
JP7083049B1 (en) Port support system and port support method
RU2755751C1 (en) Mobile acoustic reflector
JP2011170575A (en) Sailing control method for and device forunderwater vehicle
CN219475828U (en) Submarine pipeline internal inspection system