JPH07181090A - Load sensor board and load sensor - Google Patents

Load sensor board and load sensor

Info

Publication number
JPH07181090A
JPH07181090A JP6287122A JP28712294A JPH07181090A JP H07181090 A JPH07181090 A JP H07181090A JP 6287122 A JP6287122 A JP 6287122A JP 28712294 A JP28712294 A JP 28712294A JP H07181090 A JPH07181090 A JP H07181090A
Authority
JP
Japan
Prior art keywords
load sensor
load
strain gauge
pin
sensor substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6287122A
Other languages
Japanese (ja)
Inventor
Kazuyuki Nabeoka
和之 鍋岡
Taku Murakami
卓 村上
Masami Kitsunai
雅美 橘内
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Komatsu Ltd
Original Assignee
Komatsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Komatsu Ltd filed Critical Komatsu Ltd
Priority to JP6287122A priority Critical patent/JPH07181090A/en
Publication of JPH07181090A publication Critical patent/JPH07181090A/en
Priority to KR1019950036521A priority patent/KR960014897A/en
Priority to TW84111261A priority patent/TW295622B/zh
Priority to PCT/JP1995/002189 priority patent/WO1996013703A1/en
Priority to EP95935560A priority patent/EP0789234A4/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01LMEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
    • G01L1/00Measuring force or stress, in general
    • G01L1/20Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress
    • G01L1/22Measuring force or stress, in general by measuring variations in ohmic resistance of solid materials or of electrically-conductive fluids; by making use of electrokinetic cells, i.e. liquid-containing cells wherein an electrical potential is produced or varied upon the application of stress using resistance strain gauges

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Measurement Of Force In General (AREA)

Abstract

PURPOSE:To obtain a highly accurate high strength load sensor having simple structure by embedding a disc incorporating a strain gauge into a structural body, e.g. a pin, and then recovering the surface completely. CONSTITUTION:A stainless steel disc 10 is provided with four small holes 21-24 symmetrically to axes L1, L2 intersecting perpendicularly at the center O0 of the disc. Thin film strain gauges 31-34 are patterned on the axes L1, L2 between the adjacent small holes while being insulated from the disc 10 with the direction of sensitivity being matched with the axes L1, L2. Electrodes 41-44 for bridging the gauges 31-34 are patterned in other regions. The small holes 21-24 prevent concentration of of stress and since elongating/contracting parts are provided radially between the small holes 21-24, the anisotropy of stress becomes conspicuous and since the board is made of a plate, the load is converted immediately into stress thus enhancing the accuracy in measurement.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高強度、高測定精度、
かつ簡素な構造の荷重センサ基板及び荷重センサに関す
る。
BACKGROUND OF THE INVENTION The present invention has a high strength, a high measurement accuracy,
And a load sensor substrate having a simple structure and a load sensor.

【0002】[0002]

【従来の技術】機械構造部材に加わる荷重の測定は、設
計上、制御上重要である。測定には通常、歪ゲージを使
ったブリッジを用いる。歪ゲージは、可撓性の樹脂基板
の一面(又は両面)に線ゲージや箔ゲージを設置し、他
面に接着剤を施したものが殆どであり、接着剤側の面を
被測定部材に貼付して使用する。
2. Description of the Related Art Measurement of loads applied to mechanical structural members is important for design and control. A bridge using a strain gauge is usually used for the measurement. Most strain gauges have a line gauge or foil gauge installed on one side (or both sides) of a flexible resin substrate and adhesive applied to the other side, and the adhesive side is used as the member to be measured. Attach and use.

【0003】例えば、ピン連結した部材間に加わる荷重
を測定するピン形荷重センサは、ピンに歪ゲージを組み
込んだものであり、次のようなものが知られる。 (1)ピン外面に凹部を設け、凹部内に歪ゲージを貼付
したもの (2)筒形ピンの内面に歪ゲージを貼付したもの (3)ピン両端面に凹部を設け、凹部内に、歪感度部に
歪ゲージを貼付してなる部材を挿入し、さらに栓したも
の(例えば特開昭61ー145426号参照)
For example, a pin-type load sensor for measuring a load applied between members connected to a pin is one in which a strain gauge is incorporated in a pin, and the following ones are known. (1) A pin with a recess on the outer surface and a strain gauge attached inside the recess (2) A pin with a strain gauge attached on the inner surface (3) A recess on both end faces of the pin A member in which a strain gauge is attached to the sensitive section is inserted and further plugged (see, for example, JP-A-61-145426).

【0004】上記ピン形荷重センサによる荷重測定は、
ピンに加わった荷重に基づき生じた剪断歪を歪ゲージの
抵抗変化で受け、この抵抗変化によるブリッジの出力電
圧を荷重に換算して行う。従って、歪ゲージはその感度
方向を剪断力に基づく主応力方向に合わせて貼付するの
が普通である。
The load measurement by the pin type load sensor is
Shear strain caused by the load applied to the pin is received by the resistance change of the strain gauge, and the output voltage of the bridge due to this resistance change is converted into the load. Therefore, the strain gauge is usually attached with its sensitivity direction aligned with the principal stress direction based on the shearing force.

【0005】[0005]

【発明が解決しようとする課題】ところで、機械構造部
材に加わる荷重測定のための荷重センサは、例えば上記
ピン形荷重センサで分かるように、単に測定精度ばかり
でなく、それ自体の強度が高いことが重要である。しか
るに上記従来例のピン形荷重センサには次の問題があ
る。
By the way, the load sensor for measuring the load applied to the mechanical structural member is not only high in measurement accuracy but also high in strength itself, as can be seen from the above-mentioned pin type load sensor. is important. However, the conventional pin type load sensor has the following problems.

【0006】(1)のピン形荷重センサは、凹部が応力
集中部となるため、ピン強度が低くなる。これを高強度
化するにはピン径を太くすればよいが、このようにする
と、測定精度が低下する。また歪ゲージが露出している
ため、取り付けは容易だが、歪ゲージが剥がれ易く、ま
た損傷し易いので短寿命となる。
In the pin type load sensor of (1), since the concave portion serves as a stress concentration portion, the pin strength is low. In order to increase the strength of this, it is sufficient to make the pin diameter thick, but if this is done, the measurement accuracy will decrease. Also, since the strain gauge is exposed, it is easy to install, but the strain gauge is easily peeled off and damaged, resulting in a short life.

【0007】(2)のピン形荷重センサは、筒厚を厚く
すると、高強度となるが、測定精度は低くなる。また歪
ゲージは筒内に取付けられるため、取付け難く、かつ上
記(1)のピン形荷重センサほどでないにせよ、剥がれ
易ので短寿命である。
The pin type load sensor of (2) has a high strength as the cylinder thickness is increased, but the measurement accuracy is lowered. Further, since the strain gauge is mounted inside the cylinder, it is difficult to mount it, and it is easy to peel off if it is not as thick as the pin type load sensor of the above (1), so that the life is short.

【0008】(3)のピン形荷重センサは、高強度かつ
高測定精度であるが、挿入部材や栓など、部品点数が多
く、また構造が複雑である。
The pin type load sensor of (3) has high strength and high measurement accuracy, but has a large number of parts such as an insertion member and a plug, and has a complicated structure.

【0009】本発明は、上記従来技術の問題点に着目
し、高強度、高測定精度、かつ簡素な構造の荷重センサ
基板及び荷重センサを提供することを目的とする。
It is an object of the present invention to provide a load sensor substrate and a load sensor having high strength, high measurement accuracy and a simple structure, paying attention to the above problems of the prior art.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、第1発明なる荷重センサは、歪ゲージを組み込んだ
円板をピン等の構造体に埋め込み、その表面を完全に元
通りしてなることを特徴としている。
In order to achieve the above object, the load sensor according to the first aspect of the present invention comprises a disk, in which a strain gauge is incorporated, embedded in a structure such as a pin, and the surface thereof is completely restored. It is characterized by that.

【0011】また、第2発明なる荷重センサは、上記第
1発明なる荷重センサにおいて、元通りした後、表面硬
化処理されてなることを特徴としている。
The load sensor according to the second aspect of the invention is characterized in that, in the load sensor according to the first aspect of the invention, the surface is hardened after being restored.

【0012】また、第3発明なる荷重センサは、上記第
1発明又は第2発明なる荷重センサにおいて、アンプ基
板70をセンサ部近傍に装着したことを特徴としてい
る。
The load sensor of the third invention is characterized in that, in the load sensor of the first invention or the second invention, the amplifier board 70 is mounted in the vicinity of the sensor portion.

【0013】また、第4発明なる荷重センサ基板は、円
板において、なだらかな形状を有する切り欠き孔を備え
ると共に、孔間の隙間に歪ゲージを設置してなる構成を
特徴とする荷重センサ基板。
A load sensor substrate according to a fourth aspect of the present invention is characterized in that a circular plate is provided with notched holes having a gentle shape, and a strain gauge is installed in a gap between the holes. .

【0014】また、第5発明なる荷重センサ基板は、第
4発明なる荷重センサ基板において、円板をステンレス
製とし、この円板上に薄膜歪ゲージを設置してなること
を特徴としている。
A load sensor substrate according to a fifth aspect of the present invention is characterized in that, in the load sensor substrate according to the fourth aspect of the present invention, the disc is made of stainless steel, and the thin film strain gauge is installed on the disc.

【0015】また、第6発明なる荷重センサ基板は、図
1(a)、(b)を参照して説明すれば、金属製の円板
10において、円板中心Ooを交点とする直交軸L1、
L2に対し互いに線対象な4つの小孔20を設けると共
に、相隣合う小孔20間の直交軸L1、L2上に、円板
10から絶縁され、かつ感度方向が直交軸L1、L2方
向とされた歪ゲージ30を設置してなることを特徴とし
ている。
The load sensor substrate according to the sixth aspect of the present invention will be described with reference to FIGS. 1A and 1B. In the metal disc 10, an orthogonal axis L1 with the disc center Oo as an intersection point. ,
Four small holes 20 which are line-symmetrical to L2 are provided, and the orthogonal directions L1 and L2 between the adjacent small holes 20 are insulated from the disc 10 and the sensitivity direction is the orthogonal axes L1 and L2 directions. The strain gauge 30 is installed.

【0016】また、第7発明なる荷重センサ基板は、図
示しないが、金属製の十字形板において、交差部の端面
をなだらかに成形すると共に、長手部の面上に、十字形
板から絶縁され、かつ感度方向がこの長手部の長手方向
とされた歪ゲージ30を設置してなることを特徴として
もよい。
Although not shown, the load sensor substrate according to the seventh aspect of the present invention is a metal cross-shaped plate in which the end faces of the intersections are gently formed and the lengthwise surface is insulated from the cross-shaped plate. In addition, the strain gauge 30 having the sensitivity direction set to the longitudinal direction of the longitudinal portion may be installed.

【0017】また、第8発明なる荷重センサは、図2
(a)、(b)及び図3(a)〜(c)を参照して説明
すれば、部材400、500間をピン連結するピン30
0において、部材400、500間に加わった荷重Fに
基づく剪断力が発生する部位Pに凹部320を設け、凹
部320内に、前記請求項6或いは7記載の荷重センサ
基板をその感度方向が前記剪断力に基づく主応力方向と
なるように固設し、さらに栓330でピン300と一体
的になるように栓をし、また凹部320内からピン30
0外へ向けて歪ゲージ30のリード線60を導くリード
孔310を設けたことを特徴としている。
The load sensor of the eighth invention is shown in FIG.
Referring to (a), (b) and FIGS. 3 (a) to (c), the pin 30 for connecting the members 400 and 500 with a pin.
0, a concave portion 320 is provided in a portion P where a shearing force is generated based on the load F applied between the members 400 and 500, and the load sensor substrate according to claim 6 or 7 is provided in the concave portion 320 when the sensitivity direction is the It is fixed so as to have a principal stress direction based on the shearing force, and is further plugged with a plug 330 so as to be integrated with the pin 300.
It is characterized in that a lead hole 310 for guiding the lead wire 60 of the strain gauge 30 toward the outside of 0 is provided.

【0018】[0018]

【作用】上記荷重センサ基板及び荷重センサの作用を一
括説明する。荷重Fが部材400、500間に加わる
と、これらの継ぎ目位置に対応するピン300の部位P
に剪断力が生ずる。そして部位Pに直交方向の主応力が
生ずる。他方、荷重センサ基板は、円板であれ、十字形
板であれ、歪ゲージ30を、その感度方向が互いに直交
するように設置してある。そこで、このような荷重セン
サ基板を、その歪ゲージ30の感度方向が前記主応力方
向に合うように、ピン300に取り付ける。このように
すると、荷重Fを高精度で測定できる。ところがこのま
までは、ピン強度は変わらないが、歪ゲージ30が露出
するので短寿命となる。そこで、部位Pに凹部320を
設け、この凹部320内に、先ず荷重センサ基板を溶接
などで固設し、その後、ピン300と一体的になるよう
に、栓330をする。尚、歪ゲージ30からのリード線
60は、凹部320内からピン300外へ向けて設けた
リード孔310に導く。このように荷重センサによれ
ば、高強度、高測定精度、かつ簡素な構造の荷重センサ
基板及び荷重センサとなる。
The operation of the load sensor substrate and the load sensor will be described collectively. When the load F is applied between the members 400 and 500, the portion P of the pin 300 corresponding to the joint position of these members.
Shear force is generated in the. Then, a principal stress in the orthogonal direction is generated in the portion P. On the other hand, whether the load sensor substrate is a disc or a cross, the strain gauges 30 are installed so that their sensitivity directions are orthogonal to each other. Therefore, such a load sensor substrate is attached to the pin 300 so that the sensitivity direction of the strain gauge 30 matches the principal stress direction. By doing so, the load F can be measured with high accuracy. However, if it is left as it is, the pin strength does not change, but since the strain gauge 30 is exposed, the life becomes short. Therefore, a concave portion 320 is provided in the portion P, and the load sensor substrate is first fixed in the concave portion 320 by welding or the like, and then the plug 330 is integrated with the pin 300. The lead wire 60 from the strain gauge 30 is guided to the lead hole 310 provided from the inside of the recess 320 toward the outside of the pin 300. As described above, according to the load sensor, the load sensor substrate and the load sensor have high strength, high measurement accuracy, and a simple structure.

【0019】[0019]

【実施例】荷重センサ基板100の実施例を図1に示
す。図1(a)〜(c)に示すように、ステンレス製円
板10には、円板中心Ooを交点とする直交軸L1、L
2に対して互いに線対象(言い換えれば、中心Ooで9
0度位相して点対象)な4つの小孔20(21〜24)
が設けてある。そして、互いに隣合う小孔(21と2
2、22と23、23と24、24と21)間の直交軸
L1、L2上に、円板10から絶縁され、かつ感度方向
が直交軸L1、L2方向と一致する薄膜歪ゲージ30
(31〜34)がそれぞれパターニングされている。他
領域には、各薄膜歪ゲージ30(31〜34)間をブリ
ッジ接続するための電極40(41〜44)がパターニ
ングされている。
EXAMPLE An example of the load sensor substrate 100 is shown in FIG. As shown in FIGS. 1 (a) to 1 (c), the stainless steel disk 10 has orthogonal axes L 1 and L with the disk center Oo as an intersection.
2 are line-symmetric to each other (in other words, 9 at center Oo
4 small holes 20 (21 to 24) that are phased by 0 degrees and are point objects)
Is provided. And the small holes (21 and 2) adjacent to each other
2, 22 and 23; 23 and 24;
(31 to 34) are patterned respectively. Electrodes 40 (41 to 44) for bridge connection between the thin film strain gauges 30 (31 to 34) are patterned in the other region.

【0020】小孔20は、応力集中を阻止するための孔
である。小孔20は、円形が理想的であるが、応力集中
を阻止できればよく、円形でなくとも、例えば長孔、半
孔、おにぎり状の孔のように、なだらかな形状であれば
何でもよい。なだらかな形状であれば、円板10でな
く、交差部の端面をなだらかに成形した例えば略十字形
板であってもよい。
The small holes 20 are holes for preventing stress concentration. The small hole 20 is ideally circular, but may be any shape as long as it can prevent stress concentration, and may be any shape that is gentle, such as a long hole, a half hole, or a rice ball-shaped hole. If the shape is gentle, the circular plate 10 may be used instead of the circular plate 10, for example, a substantially cross-shaped plate in which the end faces of the intersecting portions are gently formed.

【0021】薄膜歪ゲージ30(31〜34)と電極4
0(41〜44)とのブリッジパターンは、例えば図1
(e)で示す全ブリッジとしてある。このパターニング
は、図1(d)に示すように、例えば円板10上にSi
O2製の絶縁膜51と、蒸着による半導体薄膜でなる歪
ゲージ30と、アルミニウムの蒸着でなる薄膜電極40
と、SiNx製の保護膜52とをこの順で積層したもの
である。尚、図1(e)中の符号eはブリッジへの印加
電圧を示し、符号Eはブリッジの出力電圧を示す。各電
極40(41〜44)にはリード線60(61〜64)
が夫々半田付けされている。
Thin film strain gauge 30 (31-34) and electrode 4
The bridge pattern with 0 (41 to 44) is, for example, as shown in FIG.
It is an all bridge shown in (e). As shown in FIG. 1D, this patterning is performed by, for example, Si on the disk 10.
An insulating film 51 made of O2, a strain gauge 30 made of a semiconductor thin film by vapor deposition, and a thin film electrode 40 made by vapor deposition of aluminum
And a protective film 52 made of SiNx are laminated in this order. In FIG. 1 (e), the symbol e indicates the voltage applied to the bridge, and the symbol E indicates the output voltage of the bridge. Lead wires 60 (61 to 64) are provided on each of the electrodes 40 (41 to 44).
Are soldered respectively.

【0022】他の実施例として、図示しないが、歪ゲー
ジ30や電極40の数は、荷重センサ基板100の用途
(つまり、剪断力、垂直力、捩じり力(尚、捩じり力を
測定する場合は、荷重センサと言うより、トルクセンサ
と言える)などの測定目的)ごとに、また許容誤差、両
面設置、片面設置、外部抵抗の有無、前記全ブリッジ、
半ブリッジ、直列ブリッジ、並列ブリッジ、電算処理の
内容等の構成ごとに、各種アレンジできる。次に、実施
例の効果を述べる。
As another embodiment, although not shown, the number of strain gauges 30 and the number of electrodes 40 depend on the application of the load sensor substrate 100 (that is, shearing force, vertical force, twisting force (twisting force). When measuring, it can be said that it is more like a torque sensor than a load sensor) and for each measurement purpose) such as tolerance, double-sided installation, single-sided installation, external resistance, all bridges
Various arrangements can be made for each configuration such as half bridge, series bridge, parallel bridge, and contents of computer processing. Next, the effect of the embodiment will be described.

【0023】(1)次のような理由によって測定精度が
向上する。 (イ)円板10に4つの小孔20を備えたため、また略
十字形板などでは交差部をなだらかな形状としたため、
応力集中が起こりにくい。このため、測定精度が向上す
る。 (ロ)小孔20間の半径方向が伸縮部となるため、応力
異方性が顕著となる。このため、測定精度が向上する。 (ハ)基板が板であるため、荷重が直ちに歪へと変化す
る。このため、測定精度が向上する。 (ニ)円板10や略十字形板を金属製としたので、歪ゲ
ージ30や電極40を薄膜化できる。このような薄膜歪
ゲージは、そもそも線ゲージや泊ゲージと比較し数倍の
測定精度を備える。尚、歪ゲージ30は、薄膜歪ゲージ
に限る必要はなく、線ゲージや箔ゲージでもよい。
(1) The measurement accuracy is improved for the following reasons. (A) Since the circular plate 10 is provided with four small holes 20, and in the case of a substantially cross-shaped plate or the like, the intersecting portion has a gentle shape,
Stress concentration is unlikely to occur. Therefore, the measurement accuracy is improved. (B) Since the radial direction between the small holes 20 serves as a stretchable portion, stress anisotropy becomes remarkable. Therefore, the measurement accuracy is improved. (C) Since the substrate is a plate, the load immediately changes to strain. Therefore, the measurement accuracy is improved. (D) Since the circular plate 10 and the substantially cross-shaped plate are made of metal, the strain gauge 30 and the electrode 40 can be thinned. Such a thin film strain gauge has measurement accuracy several times higher than that of a line gauge or a night gauge. The strain gauge 30 is not limited to the thin film strain gauge, and may be a line gauge or a foil gauge.

【0024】(2)歪ゲージ30を薄膜化すると、荷重
センサ基板を小形化できる。また、薄膜ゲージは、線ゲ
ージや泊ゲージと異なり、外部からの振動や機械的損傷
力に対し耐力がある。尚、前述の通り、歪ゲージ30
は、薄膜歪ゲージに限る必要はなく、線ゲージや箔ゲー
ジでもよい。
(2) If the strain gauge 30 is made thin, the load sensor substrate can be downsized. Further, unlike the line gauge and the night gauge, the thin film gauge has resistance to external vibration and mechanical damage. As described above, the strain gauge 30
Is not limited to the thin film strain gauge, and may be a line gauge or a foil gauge.

【0025】(3)円板10や略十字形板を金属製とし
たので、この荷重センサ基板100をピンや鋼板など被
測定体に溶接や冷しばめなどで直接固着できる。
(3) Since the circular plate 10 and the substantially cruciform plate are made of metal, the load sensor substrate 100 can be directly fixed to a measured object such as a pin or a steel plate by welding or cold fitting.

【0026】次に、上記実施例なる荷重センサ基板10
0を用いた荷重センサの実施例を、ピン連結された部材
400、500間に加わる荷重Fを測定するためのピン
形荷重センサで説明する。
Next, the load sensor substrate 10 according to the above embodiment.
An example of the load sensor using 0 will be described with a pin-type load sensor for measuring the load F applied between the members 400 and 500 connected to each other by a pin.

【0027】第1実施例を図2に示す。ピン300はS
C材であり、固定部材400と、回転部材500とをピ
ン連結した片持ち支持である。ピン300には、図2
(a)、(b)に示すように、図示下方へほぼ一定方向
の荷重Fが加わっている。そして、この荷重Fに基づく
剪断力が発生する部位P(部材400、500の継ぎ
目)に、歪ゲージ30の感度方向が剪断力に基づく主応
力方向と一致するように、1個の上記実施例なる荷重セ
ンサ基板100gが埋設固定されている。
The first embodiment is shown in FIG. Pin 300 is S
The C member is a cantilever support in which the fixed member 400 and the rotating member 500 are pin-connected. The pin 300 is shown in FIG.
As shown in (a) and (b), a load F in a substantially constant direction is applied downward in the drawing. Then, in the portion P (the joint between the members 400 and 500) where the shearing force is generated based on the load F, one of the above-described embodiments is provided so that the sensitivity direction of the strain gauge 30 matches the principal stress direction based on the shearing force. 100 g of the load sensor substrate is embedded and fixed.

【0028】部位Pには、図3(a)に示すように、3
段のザグリ穴(以下、凹部320とする)が設けてあ
り、図3(b)に示すように、2段目322の底部に荷
重センサ基板100gが外周を溶接されて固設してあ
る。そして、1段目323には、図3(c)に示すよう
に、SC材製の盲栓330が嵌め込まれ、外周溶接され
ている。そして、この盲栓330はピン300の表面と
共に高周波焼入れされて表面硬化層350を備え、その
後、研磨してある。従って、外観上は普通のピンと何ら
変わるところがない。尚、3段目311の底には、図2
(a)〜(c)に示すように、メインリード孔312を
介してアンプ基板70を格納した室313に連通するサ
ブリード孔311を設けてあり、このリード孔310
(311、312)を介してピン形荷重センサ100g
からのリード線60(61〜64)がアンプ基板70に
接続されている。アンプ基板70からのリード線は、外
置きの図示しない演算器に接続され、この演算器で荷重
Fが算出される。
At the part P, as shown in FIG.
A stepped counterbore (hereinafter referred to as a recess 320) is provided, and as shown in FIG. 3B, the load sensor substrate 100 g is fixed to the bottom of the second step 322 by welding the outer periphery. Then, as shown in FIG. 3C, a blind plug 330 made of SC material is fitted into the first stage 323 and welded on the outer circumference. The blind plug 330 is induction hardened together with the surface of the pin 300 to provide a surface hardened layer 350, and is then polished. Therefore, there is no difference in appearance from ordinary pins. It should be noted that the bottom of the third stage 311 is shown in FIG.
As shown in (a) to (c), a sub lead hole 311 communicating with the chamber 313 storing the amplifier substrate 70 via the main lead hole 312 is provided.
Pin type load sensor 100g via (311, 312)
The lead wires 60 (61 to 64) are connected to the amplifier substrate 70. The lead wire from the amplifier board 70 is connected to an external calculator (not shown), and the load F is calculated by this calculator.

【0029】尚、凹部320は、上記のように、3段に
限定される必要はなく、多断、2段、1段、又はテーパ
穴などでもよい。また盲栓330の裏面にも凹部を設
け、この凹部内に荷重センサ基板100gの外周を溶接
固定し、この盲栓330をピン300の凹部320内に
嵌め込み外周溶接してもよい(このような構成も、前記
特許請求の範囲の記載に含まれるものとする)。また図
2(a)では、サブリード孔311はピン300に垂直
掘りとしたが、ピン300の強度上、斜め掘りとするの
が好ましい。尚、本第1実施例のブリッジは、図2
(c)のように、結線する。
The recess 320 is not limited to three stages as described above, but may be multiple cuts, two stages, one stage, or a tapered hole. Also, a recess may be provided on the back surface of the blind plug 330, the outer periphery of the load sensor substrate 100g may be welded and fixed in the recess, and the blind plug 330 may be fitted into the recess 320 of the pin 300 and welded to the outer periphery (such a case). Configurations are also included in the scope of the claims). Further, in FIG. 2A, the sub lead hole 311 is dug vertically to the pin 300, but it is preferable to be dug obliquely in view of the strength of the pin 300. The bridge of the first embodiment is shown in FIG.
Connect as shown in (c).

【0030】第2実施例を図4に示す。ピン300は、
部材500に対して両持ち支持となっており、荷重Fに
基づく剪断力が生ずる図示左右の部位P1、P2に、そ
れぞれ2個の荷重センサ基板100b、100c、10
0f、100gが上記図3の要領で埋設固定されてい
る。即ち、部位P1には、荷重センサ基板100b、1
00cが図示表裏にそれぞれ1個ずつ埋設してある。他
方、位置P2には、荷重センサ基板100f、100g
が上記同様図示表裏にそれぞれ1個ずつ埋設してある。
尚、第2実施例のブリッジ例は、後述する第4実施例の
図7(c)の複数ブリッジで説明すれば、ブリッジ20
3、204及びアンプ基板72を除いた回路となる。
The second embodiment is shown in FIG. Pin 300 is
The load sensor substrates 100b, 100c, 10 are provided at both left and right portions P1 and P2 in FIG.
0f and 100g are buried and fixed in the manner shown in FIG. That is, the load sensor boards 100b, 1
One 00c is buried in the front and back of the drawing. On the other hand, at the position P2, the load sensor boards 100f and 100g are provided.
In the same manner as the above, one is embedded in each of the front and back of the drawing.
The bridge example of the second embodiment will be described with reference to the bridge 20 of FIG.
The circuit does not include the circuits 3, 204 and the amplifier board 72.

【0031】第3実施例を図5に示す。図5(a)に示
すように、両持ち支持である点は、上記第2実施例と同
じである。但し、部位P1の図示表側には荷重センサ基
板100cが、他方、部位P2の図示裏側には荷重セン
サ基板100fが埋設してある。第3実施例のブリッジ
の第1例を図6(b)に、第2例を(c)に示す。これ
らブリッジ例は、いずれも各荷重センサ基板100c、
100fのブリッジを並列接続し、両出力を平均化させ
ている。
A third embodiment is shown in FIG. As shown in FIG. 5A, the two-sided support is the same as in the second embodiment. However, a load sensor substrate 100c is embedded on the front side of the portion P1 in the drawing, and a load sensor substrate 100f is embedded on the rear side of the portion P2 in the drawing. A first example of the bridge of the third embodiment is shown in FIG. 6 (b), and a second example is shown in (c). In each of these bridge examples, each load sensor substrate 100c,
A 100f bridge is connected in parallel to average both outputs.

【0032】第4実施例を図6に示す。このピン300
も、図6(a)、(b)に示すように、上記第2実施例
及び第3実施例と同様に両持ち支持である。剪断力が生
ずる図示左右の部位P1、P2には、8つの荷重センサ
基板100a〜100hが前記図3の要領で埋設固定さ
れている。即ち、部位P1には、荷重センサ基板100
a〜100dが図示上下表裏にそれぞれ1個ずつ埋設固
定されている。他方、位置P2には、荷重センサ基板1
00e〜100hが図示上下表裏にそれぞれ1個ずつ埋
設されている。
A fourth embodiment is shown in FIG. This pin 300
Also, as shown in FIGS. 6 (a) and 6 (b), both ends are supported as in the second and third embodiments. Eight load sensor substrates 100a to 100h are embedded and fixed in the left and right portions P1 and P2 in the drawing where a shearing force is generated, in the same manner as shown in FIG. That is, the load sensor substrate 100 is provided at the portion P1.
One a to 100d is embedded and fixed on the upper and lower sides in the drawing. On the other hand, at the position P2, the load sensor substrate 1
00e to 100h are embedded in the front and back sides in the drawing, respectively.

【0033】図7(c)は第4実施例のブリッジ例であ
る。図7(a)は、図6(b)の模式図である。図7
(b1)〜(b8)は、図7(a)に埋設固定した8個
の荷重センサ基板100a〜100hの各歪ゲージ30
である。
FIG. 7C shows an example of the bridge of the fourth embodiment. FIG. 7A is a schematic diagram of FIG. 6B. Figure 7
(B1) to (b8) are the strain gauges 30 of the eight load sensor substrates 100a to 100h embedded and fixed in FIG. 7 (a).
Is.

【0034】第4実施例の作用及び効果を、図8を参照
し、第1実施例及び第2実施例と比較しつつ説明する。
The operation and effect of the fourth embodiment will be described with reference to FIG. 8 in comparison with the first and second embodiments.

【0035】図8(a)には、2つの荷重センサ基板1
00b、100cが、円板中心Ooが荷重Fに基づくピ
ン300の曲げ中立平面Coと一致するように、かつ各
歪ゲージ30が中立平面Coから45度回転した位置と
なるように、埋設固定してある。例えばダンプトラック
のサスペンションシリンダの取付けピンのように、ピン
に対する荷重F(車体重量)方向が一定であるときは、
曲げ中立平面Coも一定であるため、荷重センサ基板は
1個でもよい(即ち、第1実施例)。詳しくは、歪ゲー
ジ30が曲げ中立平面Coに対して互いに対象に配置さ
れているため、荷重Fに基づき中立平面Coの反荷重F
側に生ずる引張応力同士が相殺され、かつ荷重Fに基づ
き中立平面Coの荷重F側に生ずる圧縮応力同士が相殺
されるように、ブリッジを構成できるためである。従っ
て、荷重Fによる剪断力で生じた主応力だけを検出でき
る。これにより、荷重Fを高精度で測定できる。
FIG. 8A shows two load sensor substrates 1
00b and 100c are embedded and fixed so that the center Oo of the disk coincides with the bending neutral plane Co of the pin 300 based on the load F, and each strain gauge 30 is at a position rotated by 45 degrees from the neutral plane Co. There is. For example, when the load F (vehicle body weight) direction with respect to the pin is constant, such as a mounting pin of a suspension cylinder of a dump truck,
Since the bending neutral plane Co is also constant, the number of load sensor substrates may be one (that is, the first embodiment). Specifically, since the strain gauges 30 are arranged symmetrically with respect to the bending neutral plane Co, the counter load F of the neutral plane Co based on the load F.
This is because the bridge can be configured so that the tensile stresses generated on the side of the neutral plane C are canceled by each other and the compressive stress generated on the side of the load F of the neutral plane Co is canceled by the load F. Therefore, only the principal stress generated by the shearing force due to the load F can be detected. Thereby, the load F can be measured with high accuracy.

【0036】ところが、例えば油圧式掘削機の旋回台と
ブーム、ブームとアーム又はアームとバケットのよう
に、ピンに対する荷重Fの方向が変化するときは、図8
(b)に示すように、荷重センサ基板100b、100
cの位置Coが、荷重Fに基づく真の曲げ中立平面C1
から回転角θだけずれるようになる。このため、上記第
1実施例のように、荷重センサ基板100が只1個だけ
では、荷重Fを正確に測定することができない。但し、
荷重Fの方向変動が余り大きくなく、これによる測定誤
差も許容範囲内とされるときは、図8(a)に示すよう
に(即ち、第2実施例及び第3実施例のように)、2つ
の荷重センサ基板100b、100cの各歪ゲージ30
を、荷重Fに基づく曲げによる引張応力同士を相殺し、
かつ圧縮応力同士を相殺するブリッジとする必要があ
り、このようにすれば、誤差はあるが、荷重Fによる剪
断力のみ測定できる。尚、誤差は、荷重Fの方向変化が
大きくなる程(即ち、図示θが大きくなる程)、測定値
が小さくなることから生ずる誤差である)不都合があ
る。従って、例えば予め15%(−30°<θ<+30
°)の誤差での使用を許容範囲とするような場合に好適
である。
However, when the direction of the load F with respect to the pin changes, as in the case of a swivel and a boom of a hydraulic excavator, a boom and an arm, or an arm and a bucket, for example, as shown in FIG.
As shown in (b), the load sensor boards 100b, 100
The position Co of c is the true bending neutral plane C1 based on the load F.
From the angle of rotation θ. Therefore, the load F cannot be accurately measured with only one load sensor substrate 100 as in the first embodiment. However,
When the directional fluctuation of the load F is not so large and the measurement error due to this is within the allowable range, as shown in FIG. 8A (that is, as in the second and third embodiments), Each strain gauge 30 of the two load sensor substrates 100b and 100c
To cancel the tensile stresses due to bending based on the load F,
In addition, it is necessary to use a bridge that cancels the compressive stresses. In this way, although there is an error, only the shear force due to the load F can be measured. It should be noted that the error is inconvenient as the direction change of the load F becomes larger (that is, the larger θ in the figure shows), the smaller the measured value becomes. Therefore, for example, 15% (−30 ° <θ <+30 in advance
This is suitable when the use with an error of () is within the allowable range.

【0037】即ち、第4実施例は、第2実施例及び第3
実施例において、荷重Fの方向変化が測定誤差として無
視できないとき、又は正確に測定したい場合に好適であ
る。図8(c)に示すように、荷重センサ基板100
c、100bには、荷重Fによる剪断力のcosθに基
づく主応力が測定される。他方、荷重センサ基板100
a、100bには剪断力のsinθに基づく主応力が測
定される。従って、図7(c)のブリッジに示すよう
に、両出力E1、E2をマイコン600で演算させるこ
とにより、荷重Fを正確に出力することができる。尚、
この場合でも、ブリッジは、図7(c)のブリッジに示
すように、荷重Fに基づく曲げによる引張応力同士を相
殺し、かつ圧縮応力同士を相殺するブリッジとする必要
がある。即ち、第4実施例によれば、荷重Fの方向変化
に依らず、高精度に荷重Fを測定することができるよう
になる。
That is, the fourth embodiment is similar to the second embodiment and the third embodiment.
In the embodiment, it is suitable when the change in the direction of the load F cannot be ignored as a measurement error or when accurate measurement is desired. As shown in FIG. 8C, the load sensor substrate 100
In c and 100b, the principal stress based on the cos θ of the shear force due to the load F is measured. On the other hand, the load sensor substrate 100
In a and 100b, the main stress based on the shearing force sin θ is measured. Therefore, as shown in the bridge of FIG. 7C, the load F can be accurately output by calculating both outputs E1 and E2 by the microcomputer 600. still,
Even in this case, as shown in the bridge of FIG. 7C, the bridge needs to be a bridge that cancels tensile stresses due to bending based on the load F and cancels compressive stresses. That is, according to the fourth embodiment, the load F can be measured with high accuracy regardless of the change in the direction of the load F.

【0038】尚、第4実施例の態様例として、2つの荷
重センサ基板だけでも、荷重Fの方向変化に対応でき
る。図6(a)、(b)において、例えば図示左の荷重
センサ基板100aと100b、また例えば図示右の荷
重センサ基板100eと100g、また例えば図示左右
の荷重センサ基板100aと100gのように、互いに
90度位相した2つの荷重センサ基板を備えた荷重セン
サである。
As an example of the fourth embodiment, the change in the direction of the load F can be dealt with by using only two load sensor substrates. In FIGS. 6A and 6B, for example, load sensor boards 100a and 100b on the left side in the figure, load sensor boards 100e and 100g on the right side in the figure, and load sensor boards 100a and 100g on the left and right sides in the figure, The load sensor includes two load sensor substrates that are 90 degrees in phase.

【0039】他の実施例を説明する。上記実施例では図
示左右に同じ数の荷重センサ基板100を埋設したが、
左右等荷重(F1=F2)であるならば、片側だけの埋
設でよい。尚、目的精度によっては、左右の荷重センサ
基板100の数が異なっても構わない。第2実施例及び
第4実施例では、2つのブリッジ(201と202、2
03と204)を直列接続し、かつ極性を同じくして加
算形としたが、前述の通り、目的によっては、並列ブリ
ッジ、直列、交直流電源ブリッジ等、適宜準備できる。
Another embodiment will be described. In the above embodiment, the same number of load sensor substrates 100 are embedded on the left and right sides of the drawing,
If the load is equal on the left and right (F1 = F2), it is sufficient to embed only one side. The number of left and right load sensor substrates 100 may be different depending on the purpose accuracy. In the second and fourth embodiments, two bridges (201 and 202, 2
03 and 204) are connected in series and have the same polarity to form an addition type, but as described above, a parallel bridge, a series, an AC / DC power supply bridge, or the like can be appropriately prepared depending on the purpose.

【0040】他の実施例を説明する。上記実施例のピン
形荷重センサでは、荷重センサ基板100を部材40
0、500の継ぎ目(部位P1、P2)に配置したが、
実際は、これら部位P1、P2は極めて狭いのが普通で
ある。このような場合は、例えば次に示すような荷重セ
ンサ基板とし、かつこれを配置した荷重センサとするの
がよい。 (1)図9(a)に示すように、図示左右の荷重センサ
基板100c、100fのそれぞれの図示左側の歪ゲー
ジ33c、34c、33f、34fだけが部位P1、P
2となるように、両荷重センサ基板100c、100f
を図示右側へ寄せる。 (2)図9(b)に示すように、図示左側の荷重センサ
基板100cの図示左側の歪ゲージ33c、34cだけ
が部位P1となるように、荷重センサ基板100cを図
示右側へ寄せる。逆に、図示右側の荷重センサ基板10
0fの図示右側の歪ゲージ31f、32fだけが部位P
2となるように、荷重センサ基板100fを図示左側へ
寄せる。 (3)図9(c)に示すように、図示左側の荷重センサ
基板100cの図示右側の歪ゲージ31c、32cだけ
が部位P1となるように、荷重センサ基板100cを図
示左側へ寄せる。逆に、図示右側の荷重センサ基板10
0fの図示左側の歪ゲージ33f、34fだけが部位P
2となるように、荷重センサ基板100fを図示右側へ
寄せる。
Another embodiment will be described. In the pin type load sensor of the above embodiment, the load sensor substrate 100 is mounted on the member 40.
It was placed at the seam of 0,500 (parts P1, P2),
Actually, these parts P1 and P2 are usually extremely narrow. In such a case, for example, a load sensor substrate as shown below and a load sensor in which the load sensor substrate is arranged are preferably used. (1) As shown in FIG. 9A, only the strain gauges 33c, 34c, 33f, 34f on the left side of the load sensor boards 100c, 100f on the left and right sides of the figure are the parts P1, P.
Both load sensor boards 100c, 100f
To the right in the figure. (2) As shown in FIG. 9B, the load sensor substrate 100c is moved to the right side in the figure so that only the strain gauges 33c and 34c on the left side of the load sensor substrate 100c on the left side in the figure are located at the region P1. On the contrary, the load sensor board 10 on the right side of the drawing
Only the strain gauges 31f and 32f on the right side of 0f in the figure have the part P.
The load sensor substrate 100f is moved to the left side in the drawing so as to be 2. (3) As shown in FIG. 9C, the load sensor substrate 100c is moved to the left side in the drawing so that only the strain gauges 31c and 32c on the right side of the load sensor substrate 100c on the left side in the drawing are the portions P1. On the contrary, the load sensor board 10 on the right side of the drawing
Only the strain gauges 33f and 34f on the left side of 0f in the figure have a portion P.
The load sensor substrate 100f is moved to the right side in the drawing so as to be 2.

【0041】[0041]

【発明の効果】以上説明したように本発明に係わる荷重
センサ基板によれば、4つの小孔であれ、端面がなだら
かな交差部であれ、これらが応力集中を緩和するため、
また板材であるので荷重による歪みが現れ易いため、測
定精度が高くなる。さらに、金属製であるため、歪ゲー
ジを、測定精度が高くかつ小型化が容易な薄膜式の歪ゲ
ージとすることもできる。また、金属製の被測定体に対
し、溶接や冷しばめ等により容易に固設できる。
As described above, according to the load sensor substrate according to the present invention, whether it is four small holes or an intersection where the end faces are gentle, they alleviate stress concentration.
Further, since it is a plate material, distortion due to load is likely to appear, so that the measurement accuracy becomes high. Further, since it is made of metal, the strain gauge can be a thin film strain gauge that has high measurement accuracy and can be easily downsized. Further, it can be easily fixed to a metal object to be measured by welding, cold fitting, or the like.

【0042】他方、本発明に係わる荷重センサによれ
ば、荷重による剪断力が生ずる部位に設けた凹部内に上
記荷重センサ基板をその感度方向が前記剪断力に基づく
主応力方向と一致するように配設したため、負荷を高感
度かつ高精度で測定できる。しかも、荷重センサ基板を
埋設したため、ピンなどの強度低下が少ない。また歪ゲ
ージが露出しないため、長寿命である。使用部品は、ピ
ンなど、栓及び上記荷重センサ基板だけであり、簡素で
ある。
On the other hand, according to the load sensor of the present invention, the sensitivity direction of the load sensor substrate is aligned with the principal stress direction based on the shearing force in the recess provided in the portion where the shearing force is generated by the load. Since it is provided, the load can be measured with high sensitivity and high accuracy. Moreover, since the load sensor substrate is embedded, the strength of the pin or the like is not significantly reduced. In addition, since the strain gauge is not exposed, it has a long life. The parts used are only the plugs such as pins and the load sensor substrate, and are simple.

【図面の簡単な説明】[Brief description of drawings]

【図1】荷重センサ基板の実施例であり、(a)、
(b)は正面図、(c)は(b)のA−A断面図、
(d)は(b)のB−B断面図、(e)はブリッジであ
る。
FIG. 1 is an example of a load sensor substrate, (a),
(B) is a front view, (c) is a sectional view taken along the line A-A of (b),
(D) is a BB sectional view of (b), and (e) is a bridge.

【図2】荷重センサの第1実施例であり、(a)は側面
断面図、(b)は組立正面図、(c)はブリッジであ
る。
FIG. 2 is a first embodiment of the load sensor, (a) is a side sectional view, (b) is an assembled front view, and (c) is a bridge.

【図3】荷重センサ基板を荷重センサに埋設固定する手
順図であり、(a)は第1工程、(b)は第2工程、
(c)は最終工程を示す図である。
FIG. 3 is a procedure diagram for embedding and fixing the load sensor substrate in the load sensor, where (a) is a first step, (b) is a second step,
(C) is a figure which shows the final process.

【図4】荷重センサの第2実施例であり、(a)は側面
断面図、(b)は組立正面断面図である。
4A and 4B show a second embodiment of the load sensor, wherein FIG. 4A is a side sectional view and FIG. 4B is an assembled front sectional view.

【図5】荷重センサの第3実施例であり、(a)は正面
図、(b)、(c)はブリッジである。
FIG. 5 is a third embodiment of the load sensor, (a) is a front view, and (b) and (c) are bridges.

【図6】荷重センサの第4実施例であり、(a)は側面
図、(b)は組立正面断面図である。
FIG. 6 is a fourth embodiment of the load sensor, (a) is a side view and (b) is an assembled front sectional view.

【図7】荷重センサの第4実施例のブリッジであり、
(a)は荷重センサ基板の配置図、(b1)〜(b8)
は各荷重センサ基板の歪センサの図、(c)のブリッジ
である。
FIG. 7 is a bridge of a fourth embodiment of the load sensor,
(A) is a layout view of the load sensor substrate, (b1) to (b8)
Is a diagram of a strain sensor on each load sensor substrate, and a bridge in (c).

【図8】荷重センサの第4実施例の作用及を説明する図
であり、(a)は負荷方向が一定であるとき、(b)は
負荷方向が変化するとき、(c)は負荷の合成を示す図
である。
8A and 8B are views for explaining the action and effect of the fourth embodiment of the load sensor, where FIG. 8A is a constant load direction, FIG. 8B is a load direction change, and FIG. It is a figure which shows composition.

【図9】荷重センサの他の実施例図であり、(a)は2
つの荷重センサ基板を片方へ寄せた形式、(b)は2つ
の荷重センサ基板を中側へ寄せた形式、(c)は2つの
荷重センサ基板を外側へ寄せた形式の図である。
FIG. 9 is a diagram of another embodiment of the load sensor, (a) of FIG.
FIG. 6 is a diagram in which two load sensor substrates are moved to one side, (b) is a type in which two load sensor substrates are moved to the inside, and (c) is a diagram in which two load sensor substrates are moved to the outside.

【符号の説明】[Explanation of symbols]

100…荷重センサ基板、10…円板、L1、L2…直
交軸、20(21〜24)…小孔、30(31〜34)
…歪ゲージ、40(41〜44)…電極、60(61〜
64)…リード線、300…ピン、310…リード孔、
320…凹部、330…栓、400、500…部材、C
…ピン中心(ピン軸心)、Co…ピンの曲げ中立平面、
Oo…円板中心、F…荷重、P(P1、P2)…剪断力
発生部位。
100 ... Load sensor substrate, 10 ... Disc, L1, L2 ... Orthogonal axis, 20 (21-24) ... Small hole, 30 (31-34)
... Strain gauge, 40 (41-44) ... Electrode, 60 (61-
64) ... lead wire, 300 ... pin, 310 ... lead hole,
320 ... Recessed portion, 330 ... Stopper, 400, 500 ... Member, C
… Pin center (pin axis center), Co… Pin bending neutral plane,
Oo ... Disk center, F ... Load, P (P1, P2) ... Shear force generation site.

Claims (8)

【特許請求の範囲】[Claims] 【請求項1】 歪ゲージを組み込んだ円板をピン等の構
造体に埋め込み、その表面を完全に元通りしてなること
を特徴とする荷重センサ。
1. A load sensor, wherein a disk having a strain gauge incorporated therein is embedded in a structure such as a pin, and the surface of the disk is completely restored.
【請求項2】 請求項1記載の荷重センサにおいて、元
通りした後、表面硬化処理されてなることを特徴とする
荷重センサ。
2. The load sensor according to claim 1, wherein the load sensor is surface-hardened after being restored.
【請求項3】 請求項1又は2記載の荷重センサにおい
て、アンプ基板をセンサ部近傍に装着したことを特徴と
する荷重センサ。
3. The load sensor according to claim 1, wherein an amplifier board is mounted near the sensor section.
【請求項4】 円板において、なだらかな形状を有する
切り欠き孔を備えると共に、孔間の隙間に歪ゲージを設
置してなる構成を特徴とする荷重センサ基板。
4. A load sensor substrate comprising a circular plate having cutout holes having a gentle shape, and a strain gauge being installed in a gap between the holes.
【請求項5】 請求項4記載の荷重センサ基板におい
て、円板をステンレス製とし、この円板上に薄膜歪ゲー
ジを設置してなることを特徴とする荷重センサ基板。
5. The load sensor substrate according to claim 4, wherein the circular plate is made of stainless steel, and the thin film strain gauge is installed on the circular plate.
【請求項6】 金属製の円板(10)において、円板中心(O
o)を交点とする直交軸(L1,L2) に対し互いに線対象な4
つの小孔(20)を設けると共に、相隣合う小孔(20)間の直
交軸(L1,L2) 上に、円板(10)から絶縁され、かつ感度方
向が直交軸(L1,L2) 方向とされた歪ゲージ(30)を設置し
てなることを特徴とする荷重センサ基板。
6. A metal disk (10), wherein the disk center (O
4) which are line-symmetric with respect to the orthogonal axes (L1, L2) whose intersection is o)
Two small holes (20) are provided, and on the orthogonal axes (L1, L2) between adjacent small holes (20), insulated from the disc (10) and the sensitivity direction is the orthogonal axes (L1, L2). A load sensor substrate comprising a strain gauge (30) oriented in a direction.
【請求項7】 金属製の十字形板において、交差部の端
面をなだらかに成形すると共に、長手部の面上に、十字
形板から絶縁され、かつ感度方向がこの長手部の長手方
向とされた歪ゲージ(30)を設置してなることを特徴とす
る荷重センサ基板。
7. In a metal cross-shaped plate, the end face of the intersection is gently formed, and the surface of the longitudinal portion is insulated from the cross-shaped plate, and the sensitivity direction is the longitudinal direction of this longitudinal portion. A load sensor substrate comprising a strain gauge (30) installed.
【請求項8】 部材(400,500) 間をピン連結するピン(3
00) において、部材(400,500) 間に加わった荷重(F) に
基づく剪断力が発生する部位(P) に凹部(320) を設け、
凹部(320) 内に、前記請求項6或いは7記載の荷重セン
サ基板をその感度方向が前記剪断力に基づく主応力方向
となるように固設し、さらに栓(330)でピン(300) と一
体的になるように栓をし、また凹部(320) 内からピン(3
00) 外へ向けて歪ゲージ(30)のリード線(60)を導くリー
ド孔(310) を設けたことを特徴とする荷重センサ。
8. A pin (3) for connecting pins between members (400, 500).
In (00), a recess (320) is provided in the part (P) where shearing force is generated based on the load (F) applied between the members (400,500),
The load sensor substrate according to claim 6 or 7 is fixed in the concave portion (320) so that the sensitivity direction thereof is the main stress direction based on the shearing force, and further, the pin (300) is fixed with a stopper (330). Plug the plug (1) into the recess (320) and
00) A load sensor characterized by being provided with a lead hole (310) for guiding the lead wire (60) of the strain gauge (30) to the outside.
JP6287122A 1993-10-29 1994-10-28 Load sensor board and load sensor Pending JPH07181090A (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP6287122A JPH07181090A (en) 1993-10-29 1994-10-28 Load sensor board and load sensor
KR1019950036521A KR960014897A (en) 1993-10-29 1995-10-21 Load Sensor Board and Load Sensor
TW84111261A TW295622B (en) 1994-10-28 1995-10-23
PCT/JP1995/002189 WO1996013703A1 (en) 1994-10-28 1995-10-25 Load sensor substrate and load sensor
EP95935560A EP0789234A4 (en) 1994-10-28 1995-10-25 Load sensor substrate and load sensor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP29408393 1993-10-29
JP5-294083 1993-10-29
JP6287122A JPH07181090A (en) 1993-10-29 1994-10-28 Load sensor board and load sensor

Publications (1)

Publication Number Publication Date
JPH07181090A true JPH07181090A (en) 1995-07-18

Family

ID=17803070

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6287122A Pending JPH07181090A (en) 1993-10-29 1994-10-28 Load sensor board and load sensor

Country Status (2)

Country Link
JP (1) JPH07181090A (en)
KR (1) KR960014897A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181242A (en) * 2009-02-04 2010-08-19 Omron Healthcare Co Ltd Load cell

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR101416063B1 (en) * 2012-11-30 2014-07-07 전자부품연구원 Strain gauge sensor, strain gauge sensor structure and manufacturing method thereof
KR102276844B1 (en) * 2017-07-06 2021-07-12 미네베아미츠미 가부시키가이샤 Strain gauge and multiple axis force sensor

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010181242A (en) * 2009-02-04 2010-08-19 Omron Healthcare Co Ltd Load cell

Also Published As

Publication number Publication date
KR960014897A (en) 1996-05-22

Similar Documents

Publication Publication Date Title
JPH10153499A (en) Improve force transducer having coplanar strain gauge
US20040045372A1 (en) Force moment sensor
US20190226929A1 (en) Strain generation body and force sensor equipped with strain generation body
US20120266694A1 (en) Multiaxial force-torque sensors
JPH07209104A (en) Force converter, manufacture thereof, computer system and keyboard
US20030000314A1 (en) System and method for measuring bending in a pin member
US20060189201A1 (en) Printed circuit board with integral strain gage
EP0789234A1 (en) Load sensor substrate and load sensor
JP2008145342A (en) Chip for force/torque sensor
CN113465802B (en) Torque sensor
US20040159162A1 (en) Strain gage
JPH07181090A (en) Load sensor board and load sensor
JP5046321B2 (en) 3-axis force sensor
US20120186091A1 (en) Geomagnetic sensor device and digital compass with the same
WO2024093444A1 (en) Elastomer of torque sensor and torque sensor
JP2767766B2 (en) 6-axis force sensor
US4954216A (en) Process of making thin film vector magnetometer
JP2019015590A (en) Strain gauge and multiaxial force sensor
JP2007504465A (en) Housingless load cell
WO2006041577A1 (en) Foil strain gage for automated handling and packaging
CN1161743A (en) Load sensor substrate and load sensor
JPS63302333A (en) Pin type load cell
JP5647567B2 (en) Stress sensor
JPH0238830A (en) Contact sensor
US20230417846A1 (en) Magnetic sensor device and magnetic sensor system