WO2020031540A1 - Torque sensor - Google Patents
Torque sensor Download PDFInfo
- Publication number
- WO2020031540A1 WO2020031540A1 PCT/JP2019/025563 JP2019025563W WO2020031540A1 WO 2020031540 A1 WO2020031540 A1 WO 2020031540A1 JP 2019025563 W JP2019025563 W JP 2019025563W WO 2020031540 A1 WO2020031540 A1 WO 2020031540A1
- Authority
- WO
- WIPO (PCT)
- Prior art keywords
- strain
- torque sensor
- fixing portion
- torque
- connecting portion
- Prior art date
Links
Images
Classifications
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/04—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft
- G01L3/10—Rotary-transmission dynamometers wherein the torque-transmitting element comprises a torsionally-flexible shaft involving electric or magnetic means for indicating
-
- G—PHYSICS
- G01—MEASURING; TESTING
- G01L—MEASURING FORCE, STRESS, TORQUE, WORK, MECHANICAL POWER, MECHANICAL EFFICIENCY, OR FLUID PRESSURE
- G01L3/00—Measuring torque, work, mechanical power, or mechanical efficiency, in general
- G01L3/02—Rotary-transmission dynamometers
- G01L3/14—Rotary-transmission dynamometers wherein the torque-transmitting element is other than a torsionally-flexible shaft
Definitions
- the present invention relates to a torque sensor.
- a torque sensor having a disk-shaped strain body and a strain gauge has been used in a joint part of a robot or the like.
- a strain body having an annular outer fixed portion, an inner fixed portion disposed inside the outer fixed portion, and a connecting portion connecting the outer fixed portion and the inner fixed portion.
- the flexure element is arranged perpendicular to the rotation axis, and the rotation element (rotation axis, robot arm, etc.) is fixed to the outer fixed part and the inner fixed part, respectively, and the connection generated by the rotation of the rotation element
- the torque applied to the flexure element is detected by detecting the distortion of the portion using a strain gauge.
- the connecting portion of the conventional flexure element extends in the radial direction of the flexure element. For this reason, the distortion of the connecting portion caused by the rotation of the rotating body became maximum on the side surface of the connecting portion.
- it is necessary to dispose a strain gauge on the side surface of the connecting portion and it becomes difficult to assemble the torque sensor. Further, if the strain gauge is arranged on the surface of the connecting portion, the assembly of the torque sensor becomes easy, but there is a problem that the accuracy of detecting the torque is reduced.
- the present invention has been made in view of the above problems, and has as its object to provide a torque sensor that can be easily assembled and that can accurately detect torque.
- the torque sensor includes an annular first fixing part, a second fixing part sharing a center with the first fixing part, and a plurality of coupling parts connecting the first fixing part and the second fixing part. And a plurality of strain gauges provided on the strain body, wherein the connection portion is disposed between the first fixed portion and the second fixed portion. Both ends are connected to the inner periphery of the first fixed portion, and the center portion is connected to the outer periphery of the second fixed portion.
- FIG. 2 is a plan view showing an example of a torque sensor.
- FIG. 2 is an exploded perspective view of the torque sensor.
- FIG. 4 illustrates an example of a circuit configuration over an insulating layer.
- FIG. 10 is a perspective view showing a second modification of the flexure element.
- FIG. 7 is an external perspective view of a torque sensor according to another embodiment.
- FIG. 7 is an exploded perspective view of a torque sensor according to another embodiment.
- FIG. 9 is an external perspective view of a torque sensor (in a state where a circuit board is removed) according to another embodiment.
- FIG. 9 is a plan view of a strain body provided in a torque sensor according to another embodiment.
- FIG. 9 is a bottom view of the torque sensor according to another embodiment.
- the torque sensor 100 according to one embodiment will be described with reference to FIGS.
- the torque sensor 100 according to the present embodiment is a disk-shaped sensor that detects torque.
- the torque sensor 100 is mounted on a joint part of the robot or the like perpendicular to the rotation axis.
- FIG. 1 is a plan view showing an example of the torque sensor 100.
- FIG. FIG. 2 is an exploded perspective view of the torque sensor 100.
- FIG. 3 is a plan view of the flexure element 1.
- the X1 and X2 directions are collectively referred to as an X direction, the Y1 and Y2 directions as a Y direction, and the Z1 and Z2 directions as a Z direction. Further, the Z1 direction and the Z2 direction may be referred to as upper and lower directions. Note that the X, Y, and Z directions are orthogonal to each other.
- the torque sensor 100 includes a strain body 1, an insulating layer 2, and strain gauges 3a to 3h.
- strain gauges 3a to 3h are referred to as strain gauges 3. The same applies to other configurations.
- the strain body 1 is a disk-shaped member to which torque is applied by rotation of the rotating body.
- the strain body 1 is formed of, for example, a metal.
- the torque sensor 100 detects the strain applied to the flexure element 1 by detecting the distortion of the flexure element 1 using the strain gauge 3.
- the strain body 1 has a first fixing part 11, a second fixing part 12, and four connecting parts 13a to 13d.
- the broken line in FIG. 3 shows the boundary of the 1st fixing part 11, the 2nd fixing part 12, and the connection part 13 for convenience.
- the first fixing portion 11 is a substantially annular portion located outside the strain body 1.
- substantially annular used herein includes an annular shape, a shape in which a part of an annular shape is cut out, and a shape in which a part of an annular shape is protruded.
- the first fixing portion 11 is used to fix, by bolts, a transmission member (rotating body) that transmits a driving force from a driving source, or an operating body (rotating body) that receives a driving force through the strain body 1. It has a plurality of openings 14.
- the center of the first fixing portion 11 is referred to as a center C.
- the second fixing portion 12 is a substantially annular portion located inside the strain body 1.
- the second fixing portion 12 shares the center C with the first fixing portion 11, and has an outer radius (radius of the outer periphery) smaller than the inner radius (radius of the inner periphery) of the first fixing portion 11.
- the second fixing portion 12 has a plurality of openings 15 for fixing, by bolts, a transmission member for transmitting the driving force from the driving source or an operating body to which the driving force is transmitted via the strain body 1.
- the first fixing part 11 is fixed to the operating body.
- the first fixing part 11 is fixed to the transmitting member. Is done.
- the transmission member and the operating body are arranged on different surfaces in the Z direction.
- the second fixing portion 12 may be formed in a substantially circular shape.
- the substantially circular shape here includes a circular shape, a shape in which a part of a circle is cut out, and a shape in which a part of a circle is protruded.
- the connecting portion 13 is a substantially rectangular portion that connects the first fixing portion 11 and the second fixing portion 12 and extends from the outer periphery of the second fixing portion 12 in a tangential direction of the outer periphery.
- the substantially rectangular shape here includes a rectangular shape, a shape in which a part of the rectangle is cut out, and a shape in which a part of the rectangle is protruded.
- the connecting portion 13 is disposed between the inner periphery of the first fixing portion 11 and the outer periphery of the second fixing portion 12, both ends are connected to the inner periphery of the first fixing portion 11, and the center portion is the second fixing portion. 12 is connected to the outer periphery.
- both ends of the connecting portion 13 are not connected to the outer periphery of the second fixing portion 12, and the center portion is not connected to the inner periphery of the first fixing portion 11. Therefore, an opening 16 is formed between both ends of the connecting portion 13 and the outer periphery of the second fixing portion 12, and an opening is formed between the central portion of the connecting portion 13 and the inner periphery of the first fixing portion 11.
- the part 17 is formed.
- the connecting portion 13a is a substantially rectangular portion extending in the Y direction, the Y1 side end is connected to the X2Y1 side portion of the inner periphery of the first fixing portion 11, and the Y2 side end is the first fixing portion.
- the inner portion of the portion 11 is connected to the X2Y2 side portion, and the central portion is connected to the outer portion of the second fixing portion 12 on the X2 side.
- An opening 16a is formed between the Y1 side end of the connecting portion 13a and the outer periphery of the second fixing portion 12, and between the Y2 side end of the connecting portion 13a and the outer periphery of the second fixing portion 12.
- An opening 17d is formed between the central portion of the connecting portion 13a and the inner periphery of the first fixing portion 11.
- the connecting portion 13b is a substantially rectangular portion extending in the X direction, the X1 side end is connected to the X1Y1 side portion of the inner periphery of the first fixing portion 11, and the X2 side end is the inner periphery of the first fixing portion 11. , And the central portion is connected to the Y1 side portion of the outer periphery of the second fixed portion 12.
- An opening 16b is formed between the X1 end of the connecting portion 13b and the outer periphery of the second fixing portion 12, and an opening 16b is formed between the X2 end of the connecting portion 13b and the outer periphery of the second fixing portion 12.
- An opening 16a is formed, and an opening 17b is formed between the central portion of the connecting portion 13b and the inner periphery of the first fixing portion 11.
- the connecting portion 13c is a substantially rectangular portion extending in the Y direction.
- the Y1 side end is connected to the X1Y1 side portion of the inner periphery of the first fixed portion 11, and the Y2 side end is the inner periphery of the first fixed portion 11.
- a central portion thereof is connected to the X1 side portion of the outer periphery of the second fixing portion 12.
- An opening 16b is formed between the Y1 side end of the connecting portion 13c and the outer periphery of the second fixing portion 12, and between the Y2 side end of the connecting portion 13c and the outer periphery of the second fixing portion 12.
- An opening 16c is formed, and an opening 17c is formed between the central portion of the connecting portion 13c and the inner periphery of the first fixing portion 11.
- the connecting portion 13d is a substantially rectangular portion extending in the X direction, and the X1 side end is connected to the X1Y2 side portion of the inner periphery of the first fixing portion 11, and the X2 side end is the inner periphery of the first fixing portion 11. , And a central portion thereof is connected to the Y2 side portion of the outer periphery of the second fixing portion 12.
- An opening 16c is formed between the X1 end of the connecting portion 13d and the outer periphery of the second fixing portion 12, and an opening 16c is formed between the X2 end of the connecting portion 13d and the outer periphery of the second fixing portion 12.
- An opening 17d is formed between the center of the connecting portion 13d and the inner periphery of the first fixing portion 11.
- the connecting portion 13 is distorted according to the torque.
- the distortion of the connecting portion 13 is caused not by the side surface (the surface parallel to the Z direction) of the connecting portion 13 but by the surfaces at both ends of the connecting portion 13 (the surface perpendicular to the Z direction) (the first surface).
- the surface mentioned here includes an upper surface and a lower surface.
- the torque sensor 100 can accurately output the torque. Can be detected. Further, since it is easy to dispose the strain gauges 3 on the surfaces of both ends of the connecting portion 13, the torque sensor 100 can be easily assembled.
- the four connecting portions 13 are arranged in a square around the second fixing portion 12. In other words, the four connecting portions 13 are arranged at equal intervals around the second fixing portion 12.
- the distortion of each connecting portion 13 can be made uniform, and the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased.
- the strain body 1 may have two, three, or four or more connecting portions 13.
- the connecting portions 13 may have a curved shape or may be arranged at unequal intervals.
- the first fixing portion 11 and the second fixing portion 12 may be made of a material that does not deform. In that case, another member is integrated so that both behave integrally.
- the strain body 1 is formed.
- the insulating layer 2 is an insulating layer provided on the strain body 1 and has a printed wiring formed on the surface.
- the insulating layer 2 is disposed on the flexure element 1 so as to cover at least the connecting portion 13.
- the insulating layer 2 is assumed to be a printed circuit board fixed to the strain body 1 with an adhesive, but an oxide film, a nitride film, or a resin film formed on the strain body 1 is assumed. It may be an insulating film.
- Printed circuit boards include flexible boards and rigid boards. In any case, the insulating layer 2 is fixed to the connecting part 13 so as to be distorted in accordance with the distortion of the connecting part 13.
- the strain body 1 since it is sufficient that at least the surface of the strain body 1 is insulative and the strain gauge 3 can be arranged without shorting, the strain body 1 itself may be formed of a printed board or a synthetic resin. In this case, the strain body 1 plays the role of the insulating layer 2.
- the insulating layer 2 is preferably formed so as to cover the entire area between the first fixing part 11 and the second fixing part 12, as in the example of FIG. As a result, the area of the insulating layer 2 increases, so that the degree of freedom in circuit design can be improved.
- the rotating body is fixed to the second fixing portion 12 on the surface on which the insulating layer 2 is arranged by a bolt.
- the strain gauge 3 is an element whose resistance value changes according to deformation.
- the strain gauges 3 are mounted on the insulating layer 2 and arranged at positions corresponding to both ends of the connecting portion 13 in the insulating layer 2. That is, the strain gauges 3 are arranged at both ends of the connecting portion 13. Specifically, the strain gauge 3a is disposed at the Y1 end of the connecting portion 13a, the strain gauge 3b is disposed at the X2 end of the connecting portion 13b, and the strain gauge 3c is disposed at the X1 end of the connecting portion 13b.
- the strain gauge 3d is arranged at the Y1 end of the connecting portion 13c, the strain gauge 3e is arranged at the Y2 end of the connecting portion 13c, and the strain gauge 3f is arranged at the X1 end of the connecting portion 13d.
- the strain gauge 3g is arranged at the X2 end of the connecting part 13d, and the strain gauge 3h is arranged at the Y2 end of the connecting part 13a.
- the torque sensor 100 can detect the torque based on the change in the resistance value.
- FIG. 4 is a diagram showing an example of a circuit configuration in which the strain gauge 3 on the insulating layer 2 is connected to a circuit component (not shown).
- the circuit includes strain gauges 3a to 3h, fixed resistors Ra to Rh, a switch circuit 21, an amplifier circuit 22, an AD converter 23, and a determination circuit 24.
- the strain gauge 3a and the fixed resistor Ra are connected in series between the power supply and the ground. The same applies to the strain gauges 3b to 3h and the fixed resistors Rb to Rh. As shown in FIG. 4, the strain gauge 3a functions as a variable resistor.
- the switch circuit 21 receives a voltage between the strain gauge 3 and the fixed resistor R, and outputs any one of the input voltages.
- the voltage output from the switch circuit 21 is controlled by a channel switching instruction input from the AD converter 23.
- the voltage output from the switch circuit 21 is input to the amplifier circuit 22.
- the amplifier circuit 22 amplifies and outputs the voltage input from the switch circuit 21.
- the voltage output from the amplifier circuit 22 is input to the AD converter 23.
- the AD converter 23 AD-converts the voltage input from the amplifier circuit 22 and outputs the obtained voltage value V (digital value). Further, the AD converter 23 outputs to the switch circuit 21 a channel switching instruction for supporting the switching of the output voltage. The voltage value V output from the AD converter 23 is input to the determination circuit 24.
- the determination circuit 24 determines (detects) the torque applied to the flexure element 1 based on the voltage value V input from the AD converter 23.
- the voltage values Va to Vh corresponding to the resistance values of the strain gauges 3a to 3h are sequentially input from the AD converter 23 to the determination circuit 24.
- the determination circuit 24 can calculate the torque based on the voltage values Va to Vh. For example, the torque is calculated by the following equation.
- ⁇ T k ⁇ ⁇ (Va ⁇ Vh) + (Vc ⁇ Vb) + (Ve ⁇ Vd) + (Vg ⁇ Vf) ⁇ (1)
- T is a torque
- k is a preset coefficient.
- the differences between the voltage values Vb, Vd, Vf and Vh corresponding to the arranged strain gauges 3b, 3d, 3f and 3h are totaled. The reason is as follows.
- both ends of the connecting portion 13 are distorted in the opposite direction. That is, one end of the connecting portion 13 contracts, and at the same time, the other end extends. For this reason, when torque is applied to the flexure element 1, one of the voltage values V corresponding to the two strain gauges 3 arranged at both ends of the same connecting portion 13 increases, and the other decreases. Therefore, when the voltage values V corresponding to the two strain gauges 3 arranged on the same connecting portion 13 are summed, a change in the voltage value V according to the torque is canceled.
- the strain gauges 3a, 3c, 3e, and 3g disposed on one side in the rotation direction in each connecting portion 13 so that the change in the voltage value V according to the torque is not offset.
- the differences between the voltage values Va, Vc, Ve, Vg and the voltage values Vb, Vd, Vf, Vh corresponding to the strain gauges 3b, 3d, 3f, 3h arranged on the other side in the rotation direction are totaled. .
- the amounts of change in the voltage values Va to Vh according to the torque are summed, and the torque according to the sum of the changes can be calculated.
- the determination circuit 24 determines whether the force applied to the flexure element 1 is a torque or any other force (a torsional load or a load in the rotation axis direction) based on the voltage values Va to Vh. May be. For example, when the difference between the voltage values Va, Vc, Ve, and Vg corresponding to the four strain gauges 3a, 3c, 3e, and 3g arranged in every other direction in the rotation direction is within a predetermined range, It is determined that the force applied to the flexure element 1 is torque, and if the difference is out of the predetermined range, it may be determined that the force applied to the flexure element 1 is not torque. By making such a determination, the determination circuit 24 can calculate and output the torque only when it is determined that the force applied to the flexure element 1 is a torque.
- the strain gauge 3, the fixed resistor R, the switch circuit 21, the amplifier circuit 22, the AD converter 23, and the determination circuit 24 may be mounted on the insulating layer 2.
- both ends of the connecting portion 13 are connected to the inner periphery of the first fixing portion 11, and the center portion is connected to the outer periphery of the second fixing portion 12.
- the opening portions 16 and 17 form the substantially rod-shaped connecting portion 13 having a long length in the circumferential direction to which the rotational force is applied. Is added, and the force is measured by the strain gauge 3. Therefore, compared to a conventional connecting portion formed so as to extend in the radial direction and apply a force to the side surface in that direction, the amount of deformation of the connecting portion 13 can be reduced, and a large torque can be measured. Thus, the strain body 1 can be reduced in size, weight, and thickness.
- the connecting portion 13 provided with the strain gauge 3 is formed in the circumferential direction, the diameter can be reduced as compared with the conventional example formed in the radial direction.
- FIG. 5 is a plan view showing a first modification of the flexure element 1.
- both end portions of the connecting portion 13 are formed thinner than the central portion.
- the connecting portions 13a and 13c extending in the Y direction are formed such that the X-direction dimensions at both ends are smaller than the X-direction dimensions at the central portion.
- the connecting portions 13b and 13d extending in the X direction are formed such that the dimension in the Y direction at both ends is smaller than the dimension in the Y direction at the central portion.
- FIG. 6 is a perspective view showing a second modification of the flexure element 1.
- the connecting portion 13 is formed thinner than the first fixing portion 11 and the second fixing portion 12. That is, the connecting portion 13 is formed such that the dimension in the Z direction is smaller than the dimension of the first fixing portion 11 and the second fixing portion 12 in the Z direction.
- the connecting portion 13 is made thinner by lowering the surface of the connecting portion 13 on the Z1 side, but the connecting portion 13 is made higher by increasing the surface of the connecting portion 13 on the Z2 side. 13 may be made thinner.
- the connecting portion 13 may be thinned by lowering the surface of the connecting portion 13 on the Z1 side and increasing the height of the connecting portion 13 on the Z2 side.
- FIG. 7 is a plan view showing a third modification of the flexure element 1.
- eight connecting portions 13a to 13h are provided on the strain body 1.
- the eight connecting portions 13 are arranged in a regular octagon around the second fixing portion 12.
- the eight connecting portions 13 are arranged at equal intervals around the second fixing portion 12.
- the strain body 1 has two connecting portions 13
- the two connecting portions 13 may be arranged at equal intervals so that the two connecting portions 13 are parallel at opposing positions.
- the distortion of each connecting portion 13 can be made uniform, and the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased.
- the present invention is not limited to the configuration shown here, such as a combination of the configuration described in the above embodiment with other elements. These points can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form.
- a torque sensor 100 ⁇ / b> A includes a plurality of strain gauges 122 ⁇ / b> D provided on the upper surface side of the strain body 110 and a plurality of strain gauges 124 ⁇ / b> D provided on the lower surface side of the strain body 110. That is, in the torque sensor 100 ⁇ / b> A according to another embodiment, a plurality of strain gauges are provided double on the upper surface side and the lower surface side of the strain body 110.
- the torque sensor 100A can detect the torque applied to the flexure element 110 by detecting the strain of the flexure element 110 using the plurality of strain gauges 122D and 124D.
- FIG. 8 is an external perspective view of a torque sensor 100A according to another embodiment.
- FIG. 9 is an exploded perspective view of a torque sensor 100A according to another embodiment.
- FIG. 10 is an external perspective view of a torque sensor 100A (in a state where the circuit board 130 is removed) according to another embodiment.
- FIG. 11 is a plan view of a strain body 110 provided in a torque sensor 100A according to another embodiment. In FIG. 11, the plurality of strain gauges 122 ⁇ / b> D are superimposed on the upper surface of the flexure element 110 to indicate the arrangement positions of the plurality of strain gauges 122 ⁇ / b> D on the upper face of the flexure element 110.
- FIG. 12 is a bottom view of a torque sensor 100A according to another embodiment. In FIG. 12, a plurality of strain gauges 124D are superimposed on the lower surface of the flexure element 110 to indicate the arrangement positions of the plurality of strain gauges 124D on the lower face of the flexure element 110.
- the torque sensor 100A includes a circuit board 130, a sensor board 122, a strain body 110, and a sensor board 124 in this order from the top.
- the strain body 110 is a disk-shaped member to which torque is applied by rotation of the rotating body.
- the strain body 110 is formed of, for example, a metal such as aluminum.
- the flexure element 110 has a first fixing part 111, a second fixing part 112, and a plurality of connecting parts 113.
- the first fixing portion 111 is an annular portion located on the outermost side of the strain body 110.
- the second fixing part 112 is a circular part located inside the first fixing part 111.
- the second fixing part 112 shares the center C with the first fixing part 111 and has an outer diameter smaller than the inner diameter of the first fixing part 111.
- a transmission member for transmitting a driving force from a driving source is fixed to one of the first fixing portion 111 and the second fixing portion 112 by a bolt.
- An operating body to which the driving force is transmitted via the strain body 110 is fixed to the other of the first fixing portion 111 and the second fixing portion 112 by a bolt.
- the plurality of connecting portions 113 are provided side by side on the same circumference between the first fixing portion 111 and the second fixing portion 112, and connect the first fixing portion 111 and the second fixing portion 112.
- Each of the plurality of connecting portions 113 includes an overhang portion 113a and a beam portion 113b.
- the overhang portion 113a is a portion extending in the radial direction from the first fixing portion 111 to the second fixing portion 112 side.
- the overhang portion 113a has a shape whose width gradually decreases from both end portions toward the middle portion.
- the beam 113b is a portion extending in the circumferential direction from the end of the overhang 113 on the second fixing portion 112 side.
- the beam portion 113b is connected to the outer periphery of the second fixing portion 112 at a portion facing the second fixing portion 112 in the middle.
- An opening 117 corresponding to the opening 17 of the above-described embodiment is formed on the first fixing portion 111 side in the middle of the beam 113b.
- an opening 116 corresponding to the opening 16 of the above-described embodiment is formed between two adjacent beam portions 113b and the second fixing portion 112. That is, the connecting portion 113 in the other embodiment is different from the first embodiment in that the overhang portion 113a is provided and functions as a part of the first fixing portion 111.
- the overhang portion 113a is formed by integrating the ends of the two adjacent connection portions 113.
- the connecting portion 113 is branched from the overhang portion 113a into two branch paths at the end on the second fixing portion 112 side, and has a substantially Y-shape.
- strain gauges 122D provided on the sensor substrate 122 are disposed on the upper surfaces of both ends of the beam 113b.
- strain gauges 124D provided on the sensor substrate 124 are disposed on the lower surfaces of both ends of the beam 113b.
- the torque sensor 100A can more accurately detect the torque applied to the strain body 110 by detecting the strain of the beam 113b by the strain gauges 122D and 124D.
- the connecting portion 113 has the same shape in the thickness direction (Z-axis direction), and since the strain gauges 122D and 124D are arranged at opposing positions on the upper and lower surfaces, when the torque is applied to the torque sensor 100A, they oppose each other. The same strain is applied to the strain gauges 122D and 124D at the positions.
- the sensor boards 122 and 124 are film-like members on which the plurality of strain gauges 122D and 124D are mounted.
- the sensor substrate 122 is an example of a “first sensor substrate”, and is provided so as to overlap the upper surface of the strain body 110 (an example of “one surface”).
- the sensor substrate 124 is an example of a “second sensor substrate”, and is provided on the lower surface of the strain body 110 (an example of the “other surface”).
- As the sensor substrates 122 and 124 for example, flexible substrates are used.
- the sensor substrates 122 and 124 are attached to the strain body 110 with an adhesive.
- the sensor board 122 has a main body 122A, a connecting part 122B, and a connecting part 122C.
- the main body 122A is an annular portion in plan view.
- the main body portion 122A is arranged on the upper surface of the strain body 110 and outside the second fixing portion 112 so as to overlap with the above-described beam portion 113b of each of the plurality of connecting portions 113.
- a plurality of strain gauges 122D are provided side by side on the same circumference on the main body 122A.
- Each of the plurality of strain gauges 122D is arranged at a position overlapping with the above-described beam portion 113b of the connecting portion 113 in plan view.
- twelve connecting portions 113 that is, twelve beam portions 113 b
- 24 strain gauges 122D are provided in the main body 122A.
- connection portions 122B and 122C extend linearly outward from the outer peripheral edge of the main body 122A.
- the connecting portions 122B and 122C are provided at 180 ° intervals on the outer peripheral edge of the main body 122A.
- the connection portions 122B and 122C are provided with a plurality of wires connected to the plurality of strain gauges 122D. After extending along the lower surface of the circuit board 130, the connecting portions 122B and 122C are bent upward and inward at the end of the circuit board 130. After the connection portions 122B and 122C extend along the upper surface of the circuit board 130, their distal ends are connected to the connector 132 provided on the upper surface of the circuit board 130. Thereby, the connection parts 122B and 122C can supply the detection signals of the plurality of strain gauges 122D to the electric circuit formed on the circuit board 130.
- the sensor board 124 has a main body 124A, a connecting part 124B, and a connecting part 124C.
- the main body 124A is an annular portion in plan view.
- the main body portion 124A is disposed on the lower surface of the strain body 110 and outside the second fixing portion 112 so as to overlap with the above-described beam portion 113b of each of the plurality of connecting portions 113.
- a plurality of strain gauges 124D are provided side by side on the same circumference on the main body 124A.
- Each of the plurality of strain gauges 124D is arranged at a position overlapping with each of the above-described beam portions 113b of the connecting portion 113 in plan view.
- twelve connecting portions 113 that is, twelve beam portions 113 b
- 24 strain gauges 124D are provided in the main body 124A.
- connection portions 124B and 124C are provided to extend linearly outward from the outer peripheral edge of the main body portion 124A.
- the connection parts 124B and 124C are provided at 180 ° intervals on the outer peripheral edge of the main body part 124A.
- the connection portions 124B and 124C are provided with a plurality of wires connected to the plurality of strain gauges 124D.
- the connection portions 124B and 124C pass through the strain body 110 and are drawn from the lower surface side to the upper surface side of the strain body 110 (see FIG. 10). Then, the connecting portions 124B and 124C extend along the lower surface of the circuit board 130, and are bent upward and inward at an end of the circuit board 130.
- connection portions 124B and 124C extend along the upper surface of the circuit board 130, the distal ends thereof are connected to the connectors 132 provided on the upper surface of the circuit board 130. Thereby, the connection parts 124B and 124C can supply the detection signals of the plurality of strain gauges 124D to the electric circuit formed on the circuit board 130.
- the sensor substrates 122 and 124 have the same shape and the same configuration as each other. For this reason, according to the torque sensor 100A according to the present embodiment, since the sensor substrates 122 and 124 need only be manufactured without distinction, the manufacturing cost of the sensor substrates 122 and 124 can be reduced.
- the circuit board 130 is a flat member attached to the upper surface of the first fixing portion 111 of the strain body 110.
- a plurality of connectors 132 and ICs (Integrated Circuits) 134A and 134B are mounted on the upper surface of the circuit board 130.
- the IC 134A is electrically connected to a plurality of strain gauges 122D provided on the main body 122A via the connector 132 and the connecting portions 122B and 122C.
- the IC 134A performs various processes (for example, a process of determining the torque applied to the strain body 110, a process of outputting the detected values of the plurality of strain gauges 122D to the outside, etc.) based on the detected values of the plurality of strain gauges 122D. Do.
- the IC 134B is electrically connected to a plurality of strain gauges 124D provided on the main body 124A via the connector 132 and the connecting portions 124B and 124C.
- the IC 134B performs various arithmetic processing based on the detected values of the plurality of strain gauges 124D (for example, a process of determining the torque applied to the strain body 110, a process of outputting the detected values of the plurality of strain gauges 124D, and the like). I do.
- the processing based on the detected values of the plurality of strain gauges 122D and the processing based on the detected values of the plurality of strain gauges 124D are performed by the two ICs 134A and 134B provided on the circuit board 130.
- a process based on the detected values of the plurality of strain gauges 122D and a process based on the detected values of the plurality of strain gauges 124D may be performed by one IC provided on the circuit board 130.
- the torque sensor 100 ⁇ / b> A includes a plurality of strain gauges 122 ⁇ / b> D arranged on the upper surface side of the plurality of connecting portions 113 when each of the plurality of connecting portions 113 is distorted by rotation of the rotating body.
- Each of the plurality of strain gauges 124D arranged on the lower surface side of the plurality of connecting portions 113 is deformed, and the resistance value of each of the plurality of strain gauges 122D and 124D changes. Therefore, the torque sensor 100A can detect the torque based on the change in the resistance value of each of the plurality of strain gauges 122D and 124D.
- the torque sensor 100A has a configuration in which the plurality of strain gauges 122D and 124D are arranged on the upper surface side and the lower surface side of the strain body 110, respectively. Compared with a configuration in which only strain gauges are arranged, the number of strain gauges to be installed can be easily increased without changing the shape of the strain body 110. Therefore, according to the torque sensor 100A according to another embodiment, assembly is easy and torque can be accurately detected.
- the torque sensor 100A according to another embodiment can, for example, independently perform the detection of the torque based on the output of the plurality of strain gauges 122D and the detection of the torque based on the output of the plurality of strain gauges 124D. .
- the torque sensor 100A according to another embodiment can detect the torque by the other detection system, for example, even when a failure occurs in one of the detection systems.
- the strain on the upper surface of the plurality of connecting portions 113 of the strain body 110 is substantially the same as the distortion on the lower surface of the plurality of connecting portions 113 of the strain body 110.
- the detection value can be output.
- the torque sensor 100A includes, for example, an output value of a strain gauge 122D provided on an upper surface side and an output value of a strain gauge 124D provided on a lower surface side for each beam portion 113b of the connecting portion 113.
- the torque sensor 100A suppresses the detection value from being buried in noise even when a slight distortion occurs in the branch path of the connecting portion 113, for example. it can.
- the sensor substrate 122 and the sensor substrate 124 may be connected to each other, and may be integrally formed by one flexible substrate.
- strain body 2 insulating layer 3: strain gauge 11: first fixing part 12: second fixing part 13: connecting parts 14 to 17: opening 21: switch circuit 22: amplifier circuit 23: AD converter 24: judgment Circuit 100: Torque sensor R: Fixed resistance 100A: Torque sensor 110: Strain element 111: First fixing part 112: Second fixing part 113: Connecting part 122: Sensor board (first sensor board) 122A: body part 122B: connection part 122C: connection part 122D: strain gauge 124: sensor board (second sensor board) 124A: body part 124B: connecting part 124C: connecting part 124D: strain gauge 130: circuit board 132: connector 134A: IC 134B: IC
Landscapes
- Physics & Mathematics (AREA)
- General Physics & Mathematics (AREA)
- Force Measurement Appropriate To Specific Purposes (AREA)
- Pressure Sensors (AREA)
Abstract
A torque sensor according to an embodiment of the present invention is provided with: a strain body having an annular first affixation section, a second affixation section which shares the center with the first affixation section, and a plurality of linking sections which link the first affixation section and the second affixation section; and a plurality of strain gauges provided on the strain body. Each of the linking sections is arranged between the first affixation section and the second affixation section, has opposite ends connected to the inner periphery of the first affixation section, and has a center section connected to the outer periphery of the second affixation section.
Description
本発明は、トルクセンサに関する。
The present invention relates to a torque sensor.
近年、円盤状の起歪体と歪ゲージとを備えたトルクセンサが、ロボットの関節部分などで用いられている。起歪体として、環状の外側固定部と、外側固定部の内側に配置された内側固定部と、外側固定部及び内側固定部を連結する連結部と、を有するものが知られている。このようなトルクセンサでは、起歪体を回転軸と垂直に配置し、外側固定部及び内側固定部にそれぞれ回転体(回転軸やロボットアームなど)を固定し、回転体の回転により生じた連結部の歪みを歪ゲージにより検出することにより、起歪体に加わったトルクを検出する。
In recent years, a torque sensor having a disk-shaped strain body and a strain gauge has been used in a joint part of a robot or the like. There is known a strain body having an annular outer fixed portion, an inner fixed portion disposed inside the outer fixed portion, and a connecting portion connecting the outer fixed portion and the inner fixed portion. In such a torque sensor, the flexure element is arranged perpendicular to the rotation axis, and the rotation element (rotation axis, robot arm, etc.) is fixed to the outer fixed part and the inner fixed part, respectively, and the connection generated by the rotation of the rotation element The torque applied to the flexure element is detected by detecting the distortion of the portion using a strain gauge.
ところで、従来の起歪体の連結部は、起歪体の径方向に延びていた。このため、回転体の回転により生じる連結部の歪みは、連結部の側面で最大となった。この結果、トルクを精度よく検出するためには、連結部の側面に歪ゲージを配置しなければならず、トルクセンサの組み立てが困難になった。また、歪ゲージを連結部の表面に配置すれば、トルクセンサの組み立ては容易になるが、トルクの検出精度が低下するという問題があった。
By the way, the connecting portion of the conventional flexure element extends in the radial direction of the flexure element. For this reason, the distortion of the connecting portion caused by the rotation of the rotating body became maximum on the side surface of the connecting portion. As a result, in order to accurately detect the torque, it is necessary to dispose a strain gauge on the side surface of the connecting portion, and it becomes difficult to assemble the torque sensor. Further, if the strain gauge is arranged on the surface of the connecting portion, the assembly of the torque sensor becomes easy, but there is a problem that the accuracy of detecting the torque is reduced.
本発明は、上記の課題に鑑みてなされたものであり、組み立てが容易であり、かつ、トルクを精度よく検出できるトルクセンサを提供することを目的とする。
The present invention has been made in view of the above problems, and has as its object to provide a torque sensor that can be easily assembled and that can accurately detect torque.
一実施形態に係るトルクセンサは、環状の第1固定部と、前記第1固定部と中心を共有する第2固定部と、前記第1固定部と前記第2固定部とを連結する複数の連結部と、を有する起歪体と、前記起歪体上に設けられた複数の歪ゲージと、を備え、前記連結部は、前記第1固定部と前記第2固定部との間に配置され、両端部が前記第1固定部の内周に接続され、中央部が前記第2固定部の外周に接続される。
The torque sensor according to one embodiment includes an annular first fixing part, a second fixing part sharing a center with the first fixing part, and a plurality of coupling parts connecting the first fixing part and the second fixing part. And a plurality of strain gauges provided on the strain body, wherein the connection portion is disposed between the first fixed portion and the second fixed portion. Both ends are connected to the inner periphery of the first fixed portion, and the center portion is connected to the outer periphery of the second fixed portion.
本発明の各実施形態によれば、組み立てが容易であり、かつ、トルクを精度よく検出できるトルクセンサを提供できる。
According to each embodiment of the present invention, it is possible to provide a torque sensor that can be easily assembled and that can accurately detect torque.
以下、本発明の各実施形態について、添付の図面を参照しながら説明する。なお、各実施形態に係る明細書及び図面の記載に関して、実質的に同一の機能構成を有する構成要素については、同一の符号を付することにより重畳した説明を省略する。
Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In the description of the specification and the drawings according to the embodiments, components having substantially the same function and configuration are denoted by the same reference numerals, and overlapping descriptions will be omitted.
一実施形態に係るトルクセンサ100について、図1~図7を参照して説明する。本実施形態に係るトルクセンサ100は、トルクを検出する円盤状のセンサである。トルクセンサ100は、ロボットの関節部分などに、回転軸と垂直に搭載される。
ト ル ク The torque sensor 100 according to one embodiment will be described with reference to FIGS. The torque sensor 100 according to the present embodiment is a disk-shaped sensor that detects torque. The torque sensor 100 is mounted on a joint part of the robot or the like perpendicular to the rotation axis.
図1は、トルクセンサ100の一例を示す平面図である。図2は、トルクセンサ100の分解斜視図である。図3は、起歪体1の平面図である。以下、図に示す方向(X1,X2,Y1,Y2,Z1,Z2方向)を基準としてトルクセンサ100について説明する。X1,X2方向をX方向、Y1,Y2方向をY方向、Z1,Z2方向をZ方向と総称する。また、Z1方向及びZ2方向を上方及び下方と称する場合がある。なお、X,Y,Z方向は互いに直交する。
FIG. 1 is a plan view showing an example of the torque sensor 100. FIG. FIG. 2 is an exploded perspective view of the torque sensor 100. FIG. 3 is a plan view of the flexure element 1. Hereinafter, the torque sensor 100 will be described with reference to the directions (X1, X2, Y1, Y2, Z1, Z2 directions) shown in the figure. The X1 and X2 directions are collectively referred to as an X direction, the Y1 and Y2 directions as a Y direction, and the Z1 and Z2 directions as a Z direction. Further, the Z1 direction and the Z2 direction may be referred to as upper and lower directions. Note that the X, Y, and Z directions are orthogonal to each other.
図1に示すように、トルクセンサ100は、起歪体1と、絶縁層2と、歪ゲージ3a~3hと、を備える。以下、歪ゲージ3a~3hを区別しない場合、歪ゲージ3と称する。他の構成についても同様である。
As shown in FIG. 1, the torque sensor 100 includes a strain body 1, an insulating layer 2, and strain gauges 3a to 3h. Hereinafter, when the strain gauges 3a to 3h are not distinguished, they are referred to as strain gauges 3. The same applies to other configurations.
起歪体1は、回転体の回転によりトルクを加えられる円盤状部材である。起歪体1は、例えば、金属により形成される。トルクセンサ100は、歪ゲージ3を利用して起歪体1の歪みを検出することにより、起歪体1に加えられたトルクを検出する。図3に示すように、起歪体1は、第1固定部11と、第2固定部12と、4つの連結部13a~13dと、を有する。なお、図3における破線は、第1固定部11、第2固定部12、及び連結部13の境界を便宜的に示したものである。
The strain body 1 is a disk-shaped member to which torque is applied by rotation of the rotating body. The strain body 1 is formed of, for example, a metal. The torque sensor 100 detects the strain applied to the flexure element 1 by detecting the distortion of the flexure element 1 using the strain gauge 3. As shown in FIG. 3, the strain body 1 has a first fixing part 11, a second fixing part 12, and four connecting parts 13a to 13d. In addition, the broken line in FIG. 3 shows the boundary of the 1st fixing part 11, the 2nd fixing part 12, and the connection part 13 for convenience.
第1固定部11は、起歪体1の外側に位置する略環状の部分である。ここでいう略環状は、環状、環状の一部を切り欠いた形状、及び環状の一部を突出させた形状を含む。第1固定部11は、駆動源からの駆動力を伝達する伝達部材(回転体)、又は起歪体1を介して駆動力を伝達される操作体(回転体)をボルトにより固定するための複数の開口部14を有する。以下、第1固定部11の中心を中心Cと称する。
The first fixing portion 11 is a substantially annular portion located outside the strain body 1. The term “substantially annular” used herein includes an annular shape, a shape in which a part of an annular shape is cut out, and a shape in which a part of an annular shape is protruded. The first fixing portion 11 is used to fix, by bolts, a transmission member (rotating body) that transmits a driving force from a driving source, or an operating body (rotating body) that receives a driving force through the strain body 1. It has a plurality of openings 14. Hereinafter, the center of the first fixing portion 11 is referred to as a center C.
第2固定部12は、起歪体1の内側に位置する略環状の部分である。第2固定部12は、第1固定部11と中心Cを共有し、第1固定部11の内半径(内周の半径)より小さい外半径(外周の半径)を有する。第2固定部12は、駆動源からの駆動力を伝達する伝達部材、又は起歪体1を介して駆動力を伝達される操作体をボルトにより固定するための複数の開口部15を有する。第2固定部12が伝達部材に固定された場合、第1固定部11は操作体に固定され、第2固定部12が操作体に固定された場合、第1固定部11は伝達部材に固定される。また、伝達部材と操作体はZ方向の異なる面に配置される。なお、第2固定部12は、略円形に形成されてもよい。ここでいう略円形は、円形、円形の一部を切り欠いた形状、及び円形の一部が突出した形状を含む。
The second fixing portion 12 is a substantially annular portion located inside the strain body 1. The second fixing portion 12 shares the center C with the first fixing portion 11, and has an outer radius (radius of the outer periphery) smaller than the inner radius (radius of the inner periphery) of the first fixing portion 11. The second fixing portion 12 has a plurality of openings 15 for fixing, by bolts, a transmission member for transmitting the driving force from the driving source or an operating body to which the driving force is transmitted via the strain body 1. When the second fixing part 12 is fixed to the transmission member, the first fixing part 11 is fixed to the operating body. When the second fixing part 12 is fixed to the operating body, the first fixing part 11 is fixed to the transmitting member. Is done. The transmission member and the operating body are arranged on different surfaces in the Z direction. Note that the second fixing portion 12 may be formed in a substantially circular shape. The substantially circular shape here includes a circular shape, a shape in which a part of a circle is cut out, and a shape in which a part of a circle is protruded.
連結部13は、第1固定部11と第2固定部12とを連結する、第2固定部12の外周から当該外周の接線方向に延びる略矩形の部分である。ここでいう略矩形は、矩形、矩形の一部を切り欠いた形状、及び矩形の一部が突出した形状を含む。連結部13は、第1固定部11の内周と第2固定部12の外周との間に配置され、両端部が第1固定部11の内周に接続され、中央部が第2固定部12の外周に接続される。言い換えると、連結部13は、両端部が第2固定部12の外周と接続されず、中央部が第1固定部11の内周と接続されない。このため、連結部13の両端部と第2固定部12の外周との間には開口部16が形成され、連結部13の中央部と第1固定部11の内周との間には開口部17が形成される。
The connecting portion 13 is a substantially rectangular portion that connects the first fixing portion 11 and the second fixing portion 12 and extends from the outer periphery of the second fixing portion 12 in a tangential direction of the outer periphery. The substantially rectangular shape here includes a rectangular shape, a shape in which a part of the rectangle is cut out, and a shape in which a part of the rectangle is protruded. The connecting portion 13 is disposed between the inner periphery of the first fixing portion 11 and the outer periphery of the second fixing portion 12, both ends are connected to the inner periphery of the first fixing portion 11, and the center portion is the second fixing portion. 12 is connected to the outer periphery. In other words, both ends of the connecting portion 13 are not connected to the outer periphery of the second fixing portion 12, and the center portion is not connected to the inner periphery of the first fixing portion 11. Therefore, an opening 16 is formed between both ends of the connecting portion 13 and the outer periphery of the second fixing portion 12, and an opening is formed between the central portion of the connecting portion 13 and the inner periphery of the first fixing portion 11. The part 17 is formed.
具体的には、連結部13aは、Y方向に延びる略矩形の部分であり、Y1側端部が第1固定部11の内周のX2Y1側部分に接続され、Y2側端部が第1固定部11の内周のX2Y2側部分に接続され、中央部が第2固定部12の外周のX2側部分に接続される。連結部13aのY1側端部と第2固定部12の外周との間には、開口部16aが形成され、連結部13aのY2側端部と第2固定部12の外周との間には、開口部16dが形成され、連結部13aの中央部と第1固定部11の内周との間には、開口部17aが形成される。
Specifically, the connecting portion 13a is a substantially rectangular portion extending in the Y direction, the Y1 side end is connected to the X2Y1 side portion of the inner periphery of the first fixing portion 11, and the Y2 side end is the first fixing portion. The inner portion of the portion 11 is connected to the X2Y2 side portion, and the central portion is connected to the outer portion of the second fixing portion 12 on the X2 side. An opening 16a is formed between the Y1 side end of the connecting portion 13a and the outer periphery of the second fixing portion 12, and between the Y2 side end of the connecting portion 13a and the outer periphery of the second fixing portion 12. An opening 17d is formed between the central portion of the connecting portion 13a and the inner periphery of the first fixing portion 11.
連結部13bは、X方向に延びる略矩形の部分であり、X1側端部が第1固定部11の内周のX1Y1側部分に接続され、X2側端部が第1固定部11の内周のX2Y1側部分に接続され、中央部が第2固定部12の外周のY1側部分に接続される。連結部13bのX1側端部と第2固定部12の外周との間には、開口部16bが形成され、連結部13bのX2側端部と第2固定部12の外周との間には、開口部16aが形成され、連結部13bの中央部と第1固定部11の内周との間には、開口部17bが形成される。
The connecting portion 13b is a substantially rectangular portion extending in the X direction, the X1 side end is connected to the X1Y1 side portion of the inner periphery of the first fixing portion 11, and the X2 side end is the inner periphery of the first fixing portion 11. , And the central portion is connected to the Y1 side portion of the outer periphery of the second fixed portion 12. An opening 16b is formed between the X1 end of the connecting portion 13b and the outer periphery of the second fixing portion 12, and an opening 16b is formed between the X2 end of the connecting portion 13b and the outer periphery of the second fixing portion 12. , An opening 16a is formed, and an opening 17b is formed between the central portion of the connecting portion 13b and the inner periphery of the first fixing portion 11.
連結部13cは、Y方向に延びる略矩形の部分であり、Y1側端部が第1固定部11の内周のX1Y1側部分に接続され、Y2側端部が第1固定部11の内周のX1Y2側部分に接続され、中央部が第2固定部12の外周のX1側部分に接続される。連結部13cのY1側端部と第2固定部12の外周との間には、開口部16bが形成され、連結部13cのY2側端部と第2固定部12の外周との間には、開口部16cが形成され、連結部13cの中央部と第1固定部11の内周との間には、開口部17cが形成される。
The connecting portion 13c is a substantially rectangular portion extending in the Y direction. The Y1 side end is connected to the X1Y1 side portion of the inner periphery of the first fixed portion 11, and the Y2 side end is the inner periphery of the first fixed portion 11. , And a central portion thereof is connected to the X1 side portion of the outer periphery of the second fixing portion 12. An opening 16b is formed between the Y1 side end of the connecting portion 13c and the outer periphery of the second fixing portion 12, and between the Y2 side end of the connecting portion 13c and the outer periphery of the second fixing portion 12. , An opening 16c is formed, and an opening 17c is formed between the central portion of the connecting portion 13c and the inner periphery of the first fixing portion 11.
連結部13dは、X方向に延びる略矩形の部分であり、X1側端部が第1固定部11の内周のX1Y2側部分に接続され、X2側端部が第1固定部11の内周のX2Y2側部分に接続され、中央部が第2固定部12の外周のY2側部分に接続される。連結部13dのX1側端部と第2固定部12の外周との間には、開口部16cが形成され、連結部13dのX2側端部と第2固定部12の外周との間には、開口部16dが形成され、連結部13dの中央部と第1固定部11の内周との間には、開口部17dが形成される。
The connecting portion 13d is a substantially rectangular portion extending in the X direction, and the X1 side end is connected to the X1Y2 side portion of the inner periphery of the first fixing portion 11, and the X2 side end is the inner periphery of the first fixing portion 11. , And a central portion thereof is connected to the Y2 side portion of the outer periphery of the second fixing portion 12. An opening 16c is formed between the X1 end of the connecting portion 13d and the outer periphery of the second fixing portion 12, and an opening 16c is formed between the X2 end of the connecting portion 13d and the outer periphery of the second fixing portion 12. An opening 17d is formed between the center of the connecting portion 13d and the inner periphery of the first fixing portion 11.
第1固定部11又は第2固定部12に固定された伝達部材(回転体)が回転すると、当該回転により起歪体1を介して操作体(回転体)も回転し、回転体間に加わるトルクに応じて連結部13が歪む。本実施形態によれば、連結部13の歪みは、連結部13の側面(Z方向と平行な面)ではなく、連結部13の両端部の表面(Z方向と垂直な面)(第1面)で最大となる。ここでいう表面は、上面及び下面を含む。
When the transmission member (rotary body) fixed to the first fixed part 11 or the second fixed part 12 rotates, the rotation also rotates the operation body (rotary body) via the strain generating element 1 and is applied between the rotary bodies. The connecting portion 13 is distorted according to the torque. According to the present embodiment, the distortion of the connecting portion 13 is caused not by the side surface (the surface parallel to the Z direction) of the connecting portion 13 but by the surfaces at both ends of the connecting portion 13 (the surface perpendicular to the Z direction) (the first surface). ). The surface mentioned here includes an upper surface and a lower surface.
したがって、本実施形態によれば、連結部13の両端部の表面に歪ゲージ3を配置し、当該歪ゲージ3により連結部13の歪みを検出することにより、トルクセンサ100は、精度よくトルクを検出することができる。また、歪ゲージ3を連結部13の両端部の表面に配置することは容易であるため、トルクセンサ100を容易に組み立てることができる。
Therefore, according to the present embodiment, by disposing the strain gauges 3 on the surfaces of both ends of the connecting portion 13 and detecting the strain of the connecting portion 13 by the strain gauges 3, the torque sensor 100 can accurately output the torque. Can be detected. Further, since it is easy to dispose the strain gauges 3 on the surfaces of both ends of the connecting portion 13, the torque sensor 100 can be easily assembled.
また、本実施形態によれば、図3に示すように、4つの連結部13は、第2固定部12の周囲に正方形状に配置されている。言い換えると、4つの連結部13は、第2固定部12の周囲に等間隔に配置されている。このように、4つの連結部13を等間隔に配置することにより、各連結部13の歪みを均一化し、連結部13の歪みに基づくトルクの検出精度をさらに高めることができる。
According to the present embodiment, as shown in FIG. 3, the four connecting portions 13 are arranged in a square around the second fixing portion 12. In other words, the four connecting portions 13 are arranged at equal intervals around the second fixing portion 12. Thus, by arranging the four connecting portions 13 at equal intervals, the distortion of each connecting portion 13 can be made uniform, and the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased.
なお、連結部13の数、形状、及び配置は、図3の例に限られない。例えば、起歪体1は、2つ、3つ、又は4つ以上の連結部13を有してもよい。また、連結部13は、湾曲した形状を有してもよいし、非等間隔に配置されてもよい。また、連結部13が変形可能であれば、第1固定部11及び第2固定部12は変形しない材質でもよく、その場合には両者が一体的に挙動するように別の部材を一体化して起歪体1を形成する。
数 Note that the number, shape, and arrangement of the connecting portions 13 are not limited to the example of FIG. For example, the strain body 1 may have two, three, or four or more connecting portions 13. In addition, the connecting portions 13 may have a curved shape or may be arranged at unequal intervals. Further, if the connecting portion 13 is deformable, the first fixing portion 11 and the second fixing portion 12 may be made of a material that does not deform. In that case, another member is integrated so that both behave integrally. The strain body 1 is formed.
絶縁層2は、起歪体1上に設けられた絶縁性の層であり、表面にプリント配線を形成される。絶縁層2は、起歪体1上に、少なくとも連結部13を覆うように配置される。図1の例では、絶縁層2は、接着剤により起歪体1に固定されたプリント基板を想定しているが、起歪体1上に形成された酸化膜、窒化膜、又は樹脂製の絶縁膜であってもよい。プリント基板は、フレキシブル基板及びリジッド基板を含む。いずれの場合も、絶縁層2は、連結部13の歪みに応じて歪むように、連結部13に固定される。また、起歪体1は少なくとも、その表面が絶縁性であって歪ゲージ3がショーティングせずに配置できれば足りるので、起歪体1自体がプリント基板又は合成樹脂により形成されてもよい。この場合、起歪体1が絶縁層2の役割を果たす。なお、絶縁層2は、図1の例のように、第1固定部11と第2固定部12との間の全体を覆うように形成されるのが好ましい。これにより、絶縁層2の面積が大きくなるため、回路設計の自由度を向上させることができる。絶縁層2が配置される面の第2固定部12にボルトにより回転体が固定される。
The insulating layer 2 is an insulating layer provided on the strain body 1 and has a printed wiring formed on the surface. The insulating layer 2 is disposed on the flexure element 1 so as to cover at least the connecting portion 13. In the example of FIG. 1, the insulating layer 2 is assumed to be a printed circuit board fixed to the strain body 1 with an adhesive, but an oxide film, a nitride film, or a resin film formed on the strain body 1 is assumed. It may be an insulating film. Printed circuit boards include flexible boards and rigid boards. In any case, the insulating layer 2 is fixed to the connecting part 13 so as to be distorted in accordance with the distortion of the connecting part 13. Further, since it is sufficient that at least the surface of the strain body 1 is insulative and the strain gauge 3 can be arranged without shorting, the strain body 1 itself may be formed of a printed board or a synthetic resin. In this case, the strain body 1 plays the role of the insulating layer 2. Note that the insulating layer 2 is preferably formed so as to cover the entire area between the first fixing part 11 and the second fixing part 12, as in the example of FIG. As a result, the area of the insulating layer 2 increases, so that the degree of freedom in circuit design can be improved. The rotating body is fixed to the second fixing portion 12 on the surface on which the insulating layer 2 is arranged by a bolt.
歪ゲージ3は、変形に応じて抵抗値が変化する素子である。歪ゲージ3は、絶縁層2上に実装され、絶縁層2における連結部13の両端部に対応する位置に配置される。すなわち、歪ゲージ3は、連結部13の両端部に配置される。具体的には、歪ゲージ3aは連結部13aのY1側端部に配置され、歪ゲージ3bは連結部13bのX2側端部に配置され、歪ゲージ3cは連結部13bのX1側端部に配置され、歪ゲージ3dは連結部13cのY1側端部に配置され、歪ゲージ3eは連結部13cのY2側端部に配置され、歪ゲージ3fは連結部13dのX1側端部に配置され、歪ゲージ3gは連結部13dのX2側端部に配置され、歪ゲージ3hは連結部13aのY2側端部に配置される。
The strain gauge 3 is an element whose resistance value changes according to deformation. The strain gauges 3 are mounted on the insulating layer 2 and arranged at positions corresponding to both ends of the connecting portion 13 in the insulating layer 2. That is, the strain gauges 3 are arranged at both ends of the connecting portion 13. Specifically, the strain gauge 3a is disposed at the Y1 end of the connecting portion 13a, the strain gauge 3b is disposed at the X2 end of the connecting portion 13b, and the strain gauge 3c is disposed at the X1 end of the connecting portion 13b. The strain gauge 3d is arranged at the Y1 end of the connecting portion 13c, the strain gauge 3e is arranged at the Y2 end of the connecting portion 13c, and the strain gauge 3f is arranged at the X1 end of the connecting portion 13d. The strain gauge 3g is arranged at the X2 end of the connecting part 13d, and the strain gauge 3h is arranged at the Y2 end of the connecting part 13a.
このような構成により、回転体の回転により連結部13が歪むと、絶縁層2が歪み、歪ゲージ3が変形し、歪ゲージ3の抵抗値が変化する。トルクセンサ100は、当該抵抗値の変化に基づいて、トルクを検出することができる。
に よ り With such a configuration, when the connecting portion 13 is distorted by rotation of the rotating body, the insulating layer 2 is distorted, the strain gauge 3 is deformed, and the resistance value of the strain gauge 3 changes. The torque sensor 100 can detect the torque based on the change in the resistance value.
ここで、絶縁層2上に形成される歪ゲージ3の回路構成について、図4を参照して説明する。図4は、絶縁層2上の歪ゲージ3を回路部品(図示省略)に接続した回路構成の一例を示す図である。図4に示すように、該回路は、歪ゲージ3a~3hと、固定抵抗Ra~Rhと、スイッチ回路21と、増幅回路22と、ADコンバータ23と、判定回路24と、を備える。
Here, the circuit configuration of the strain gauge 3 formed on the insulating layer 2 will be described with reference to FIG. FIG. 4 is a diagram showing an example of a circuit configuration in which the strain gauge 3 on the insulating layer 2 is connected to a circuit component (not shown). As shown in FIG. 4, the circuit includes strain gauges 3a to 3h, fixed resistors Ra to Rh, a switch circuit 21, an amplifier circuit 22, an AD converter 23, and a determination circuit 24.
歪ゲージ3aと固定抵抗Raとは、電源とグラウンドとの間に直列に接続される。歪ゲージ3b~3h及び固定抵抗Rb~Rhについても同様である。図4に示すように、歪ゲージ3aは、可変抵抗として機能する。
The strain gauge 3a and the fixed resistor Ra are connected in series between the power supply and the ground. The same applies to the strain gauges 3b to 3h and the fixed resistors Rb to Rh. As shown in FIG. 4, the strain gauge 3a functions as a variable resistor.
スイッチ回路21は、歪ゲージ3と固定抵抗Rとの間の電圧をそれぞれ入力され、入力された電圧のいずれか1つを出力する。スイッチ回路21が出力する電圧は、ADコンバータ23から入力されるチャネル切替指示により制御される。スイッチ回路21が出力した電圧は、増幅回路22に入力される。
The switch circuit 21 receives a voltage between the strain gauge 3 and the fixed resistor R, and outputs any one of the input voltages. The voltage output from the switch circuit 21 is controlled by a channel switching instruction input from the AD converter 23. The voltage output from the switch circuit 21 is input to the amplifier circuit 22.
増幅回路22は、スイッチ回路21から入力された電圧を増幅して出力する。増幅回路22が出力した電圧は、ADコンバータ23に入力される。
(4) The amplifier circuit 22 amplifies and outputs the voltage input from the switch circuit 21. The voltage output from the amplifier circuit 22 is input to the AD converter 23.
ADコンバータ23は、増幅回路22から入力された電圧をAD変換し、得られた電圧値V(デジタル値)を出力する。また、ADコンバータ23は、スイッチ回路21に出力電圧の切り替えを支持するチャネル切替指示を出力する。ADコンバータ23が出力した電圧値Vは判定回路24に入力される。
The AD converter 23 AD-converts the voltage input from the amplifier circuit 22 and outputs the obtained voltage value V (digital value). Further, the AD converter 23 outputs to the switch circuit 21 a channel switching instruction for supporting the switching of the output voltage. The voltage value V output from the AD converter 23 is input to the determination circuit 24.
判定回路24は、ADコンバータ23から入力された電圧値Vに基づいて、起歪体1に加わったトルクを判定(検出)する。判定回路24には、ADコンバータ23から、歪ゲージ3a~3hの抵抗値にそれぞれ対応する電圧値Va~Vhが順次入力される。判定回路24は、電圧値Va~Vhに基づいて、トルクを算出することができる。例えば、トルクは、以下の式により算出される。
The determination circuit 24 determines (detects) the torque applied to the flexure element 1 based on the voltage value V input from the AD converter 23. The voltage values Va to Vh corresponding to the resistance values of the strain gauges 3a to 3h are sequentially input from the AD converter 23 to the determination circuit 24. The determination circuit 24 can calculate the torque based on the voltage values Va to Vh. For example, the torque is calculated by the following equation.
T=k×{(Va-Vh)+(Vc-Vb)+(Ve-Vd)+(Vg-Vf)}・・・(1)
{T = k × {(Va−Vh) + (Vc−Vb) + (Ve−Vd) + (Vg−Vf)} (1)
式(1)において、Tはトルク、kは予め設定された係数である。式(1)では、各連結部13における、回転方向の一方側に配置された歪ゲージ3a,3c,3e,3gに対応する電圧値Va,Vc,Ve,Vgと、回転方向の他方側に配置された歪ゲージ3b,3d,3f,3hに対応する電圧値Vb,Vd,Vf,Vhと、の差を合計している。理由は、以下の通りである。
In equation (1), T is a torque, and k is a preset coefficient. In the equation (1), the voltage values Va, Vc, Ve, and Vg corresponding to the strain gauges 3a, 3c, 3e, and 3g disposed on one side in the rotation direction of each connecting portion 13 and the voltage values Va, Vc, Ve, and Vg on the other side in the rotation direction. The differences between the voltage values Vb, Vd, Vf and Vh corresponding to the arranged strain gauges 3b, 3d, 3f and 3h are totaled. The reason is as follows.
本実施形態では、起歪体1にトルクが加わると、連結部13の両端部が逆向きに歪む。すなわち、連結部13は、一方の端部が縮むと同時に、他方の端部が伸びる。このため、起歪体1にトルクが加わると、同じ連結部13の両端部に配置された2つの歪ゲージ3に対応する電圧値Vは、一方が大きくなり、他方が小さくなる。したがって、同じ連結部13に配置された2つの歪ゲージ3に対応する電圧値Vを合計すると、トルクに応じた電圧値Vの変化が相殺されてしまう。そこで、式(1)では、トルクに応じた電圧値Vの変化が相殺されないように、各連結部13における、回転方向の一方側に配置された歪ゲージ3a,3c,3e,3gに対応する電圧値Va,Vc,Ve,Vgと、回転方向の他方側に配置された歪ゲージ3b,3d,3f,3hに対応する電圧値Vb,Vd,Vf,Vhと、の差を合計している。これにより、トルクに応じた電圧値Va~Vhの変化量を合計し、当該変化量を合計に応じたトルクを算出することができる。
In the present embodiment, when torque is applied to the flexure element 1, both ends of the connecting portion 13 are distorted in the opposite direction. That is, one end of the connecting portion 13 contracts, and at the same time, the other end extends. For this reason, when torque is applied to the flexure element 1, one of the voltage values V corresponding to the two strain gauges 3 arranged at both ends of the same connecting portion 13 increases, and the other decreases. Therefore, when the voltage values V corresponding to the two strain gauges 3 arranged on the same connecting portion 13 are summed, a change in the voltage value V according to the torque is canceled. Therefore, in the equation (1), the strain gauges 3a, 3c, 3e, and 3g disposed on one side in the rotation direction in each connecting portion 13 so that the change in the voltage value V according to the torque is not offset. The differences between the voltage values Va, Vc, Ve, Vg and the voltage values Vb, Vd, Vf, Vh corresponding to the strain gauges 3b, 3d, 3f, 3h arranged on the other side in the rotation direction are totaled. . Thus, the amounts of change in the voltage values Va to Vh according to the torque are summed, and the torque according to the sum of the changes can be calculated.
また、判定回路24は、電圧値Va~Vhに基づいて、起歪体1に加わった力がトルクであるか、それ以外の力(ねじれ荷重や回転軸方向の荷重)であるか、を判定してもよい。例えば、判定回路24は、回転方向に1つおきに配置された4つの歪ゲージ3a,3c,3e,3gに対応する電圧値Va,Vc,Ve,Vgの差が所定範囲内である場合、起歪体1に加わった力がトルクであると判定し、当該差異が所定範囲外である場合、起歪体1に加わった力がトルクでないと判定すればよい。このような判定を行うことにより、判定回路24は、起歪体1に加わった力がトルクであると判定した場合のみ、トルクを算出し、出力することができる。
Further, the determination circuit 24 determines whether the force applied to the flexure element 1 is a torque or any other force (a torsional load or a load in the rotation axis direction) based on the voltage values Va to Vh. May be. For example, when the difference between the voltage values Va, Vc, Ve, and Vg corresponding to the four strain gauges 3a, 3c, 3e, and 3g arranged in every other direction in the rotation direction is within a predetermined range, It is determined that the force applied to the flexure element 1 is torque, and if the difference is out of the predetermined range, it may be determined that the force applied to the flexure element 1 is not torque. By making such a determination, the determination circuit 24 can calculate and output the torque only when it is determined that the force applied to the flexure element 1 is a torque.
なお、絶縁層2上に、歪ゲージ3、固定抵抗R、スイッチ回路21、増幅回路22、ADコンバータ23、及び判定回路24が実装されても良い。
The strain gauge 3, the fixed resistor R, the switch circuit 21, the amplifier circuit 22, the AD converter 23, and the determination circuit 24 may be mounted on the insulating layer 2.
以上説明した通り、本実施形態によれば、連結部13は、両端部が第1固定部11の内周に接続され、中央部が第2固定部12の外周に接続される。このような構成により、起歪体1にトルクが加わった際に、連結部13の両端部の表面で歪みが最大となるようにすることができる。したがって、連結部13の両端部の表面に歪ゲージ3を配置することにより、トルクを精度よく検出可能なトルクセンサ100を実現できる。また、歪ゲージ3を連結部13の両端部の表面に配置することは容易であるため、組み立てが容易なトルクセンサ100を実現できる。結果として、組み立てが容易であり、かつ、トルクを精度よく検出できるトルクセンサ100を実現できる。
As described above, according to the present embodiment, both ends of the connecting portion 13 are connected to the inner periphery of the first fixing portion 11, and the center portion is connected to the outer periphery of the second fixing portion 12. With such a configuration, when a torque is applied to the flexure element 1, it is possible to maximize the distortion on the surfaces of both ends of the connecting portion 13. Therefore, by arranging the strain gauges 3 on the surfaces of both ends of the connecting portion 13, it is possible to realize the torque sensor 100 capable of accurately detecting torque. Further, since it is easy to dispose the strain gauges 3 on the surfaces of both ends of the connecting portion 13, the torque sensor 100 that can be easily assembled can be realized. As a result, the torque sensor 100 that is easy to assemble and that can accurately detect the torque can be realized.
また、本実施形態によれば、開口部16,17によって、回転力が加わる周方向に長さが長い略棒状の連結部13が形成されて、その形成方向に伸ばす力と圧縮するの力とが加わり、当該力を歪ゲージ3で測定することとなる。よって、径方向に延びて形成されて、その方向の側面に力が加わる従来の連結部に比べて、連結部13の変形量を少なくし、大きなトルクを測定することができる。これにより、起歪体1を小型化、軽量化、及び薄型化することができる。なお、歪ゲージ3が設けられる連結部13が周方向に形成されるので、径方向に形成される従来例に比べて、径寸法を抑えることもできる。
Further, according to the present embodiment, the opening portions 16 and 17 form the substantially rod-shaped connecting portion 13 having a long length in the circumferential direction to which the rotational force is applied. Is added, and the force is measured by the strain gauge 3. Therefore, compared to a conventional connecting portion formed so as to extend in the radial direction and apply a force to the side surface in that direction, the amount of deformation of the connecting portion 13 can be reduced, and a large torque can be measured. Thus, the strain body 1 can be reduced in size, weight, and thickness. In addition, since the connecting portion 13 provided with the strain gauge 3 is formed in the circumferential direction, the diameter can be reduced as compared with the conventional example formed in the radial direction.
ここで、図5は、起歪体1の第1の変形例を示す平面図である。第1の変形例では、連結部13の両端部が中央部より細く形成されている。具体的には、Y方向に延びる連結部13a,13cは、両端部のX方向の寸法が、中央部のX方向の寸法より小さく形成されている。また、X方向に延びる連結部13b,13dは、両端部のY方向の寸法が、中央部のY方向の寸法より小さく形成されている。このような構成により、連結部13の歪みが、より両端部に集中するため、トルクに応じた連結部13の両端部の歪みが大きくなる。したがって、連結部13の歪みに基づくトルクの検出精度をさらに高めることができる。
Here, FIG. 5 is a plan view showing a first modification of the flexure element 1. In the first modification, both end portions of the connecting portion 13 are formed thinner than the central portion. Specifically, the connecting portions 13a and 13c extending in the Y direction are formed such that the X-direction dimensions at both ends are smaller than the X-direction dimensions at the central portion. The connecting portions 13b and 13d extending in the X direction are formed such that the dimension in the Y direction at both ends is smaller than the dimension in the Y direction at the central portion. With such a configuration, since the distortion of the connecting portion 13 is more concentrated on both ends, the distortion of both ends of the connecting portion 13 according to the torque increases. Therefore, the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased.
図6は、起歪体1の第2の変形例を示す斜視図である。第2の変形例では、連結部13は、第1固定部11及び第2固定部12より薄く形成されている。すなわち、連結部13は、Z方向の寸法が、第1固定部11及び第2固定部12のZ方向の寸法より小さく形成されている。このような構成により、トルクに応じた連結部13の歪みがより大きくなる。したがって、連結部13の歪みに基づくトルクの検出精度をさらに高めることができる。なお、図6の例では、連結部13のZ1側の面を低くすることにより連結部13を薄くする場合を想定しているが、連結部13のZ2側の面を高くすることにより連結部13を薄くしてもよい。また、連結部13のZ1側の面を低くし、連結部13のZ2側の面を高くすることにより、連結部13を薄くしてもよい。
FIG. 6 is a perspective view showing a second modification of the flexure element 1. In the second modification, the connecting portion 13 is formed thinner than the first fixing portion 11 and the second fixing portion 12. That is, the connecting portion 13 is formed such that the dimension in the Z direction is smaller than the dimension of the first fixing portion 11 and the second fixing portion 12 in the Z direction. With such a configuration, the distortion of the connecting portion 13 according to the torque is further increased. Therefore, the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased. In the example of FIG. 6, it is assumed that the connecting portion 13 is made thinner by lowering the surface of the connecting portion 13 on the Z1 side, but the connecting portion 13 is made higher by increasing the surface of the connecting portion 13 on the Z2 side. 13 may be made thinner. Alternatively, the connecting portion 13 may be thinned by lowering the surface of the connecting portion 13 on the Z1 side and increasing the height of the connecting portion 13 on the Z2 side.
図7は、起歪体1の第3の変形例を示す平面図である。第3の変形例では、起歪体1に8つの連結部13a~13hが設けられている。8つの連結部13は、第2固定部12の周囲に正八角形状に配置されている。言い換えると、8つの連結部13は、第2固定部12の周囲に等間隔に配置されている。このように、8つの連結部13を等間隔に配置することにより、各連結部13の歪みを均一化し、連結部13の歪みに基づくトルクの検出精度をさらに高めることができる。なお、起歪体1がN個(N≧3)の連結部13を有する場合、N個の連結部13が正N角形状(正多角形状)となるように、N個の連結部13を等間隔に配置すればよい。また、起歪体1が2つの連結部13を有する場合、2つの連結部13が対向した位置で平行になるように、2つの連結部13を等間隔に配置すればよい。いずれの場合も、各連結部13の歪みを均一化し、連結部13の歪みに基づくトルクの検出精度をさらに高めることができる。
FIG. 7 is a plan view showing a third modification of the flexure element 1. In the third modification, eight connecting portions 13a to 13h are provided on the strain body 1. The eight connecting portions 13 are arranged in a regular octagon around the second fixing portion 12. In other words, the eight connecting portions 13 are arranged at equal intervals around the second fixing portion 12. By arranging the eight connecting portions 13 at equal intervals in this manner, the distortion of each connecting portion 13 can be made uniform, and the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased. When the flexure element 1 has N (N ≧ 3) connecting portions 13, the N connecting portions 13 are formed such that the N connecting portions 13 have a regular N-gon shape (regular polygonal shape). What is necessary is just to arrange | position at equal intervals. In addition, when the strain body 1 has two connecting portions 13, the two connecting portions 13 may be arranged at equal intervals so that the two connecting portions 13 are parallel at opposing positions. In any case, the distortion of each connecting portion 13 can be made uniform, and the accuracy of torque detection based on the distortion of the connecting portion 13 can be further increased.
また、上記実施形態に挙げた構成等に、その他の要素との組み合わせなど、ここで示した構成に本発明が限定されるものではない。これらの点に関しては、本発明の趣旨を逸脱しない範囲で変更可能であり、その応用形態に応じて適切に定めることができる。
The present invention is not limited to the configuration shown here, such as a combination of the configuration described in the above embodiment with other elements. These points can be changed without departing from the spirit of the present invention, and can be appropriately determined according to the application form.
(他の実施形態)
他の実施形態に係るトルクセンサ100Aは、起歪体110の上面側に設けられた複数の歪ゲージ122Dと、起歪体110の下面側に設けられた複数の歪ゲージ124Dとを備える。すなわち、他の実施形態に係るトルクセンサ100Aは、複数の歪ゲージが、起歪体110の上面側と下面側とに二重に設けられている。トルクセンサ100Aは、複数の歪ゲージ122D,124Dを利用して起歪体110の歪みを検出することにより、起歪体110に加えられたトルクを検出することができる。 (Other embodiments)
Atorque sensor 100 </ b> A according to another embodiment includes a plurality of strain gauges 122 </ b> D provided on the upper surface side of the strain body 110 and a plurality of strain gauges 124 </ b> D provided on the lower surface side of the strain body 110. That is, in the torque sensor 100 </ b> A according to another embodiment, a plurality of strain gauges are provided double on the upper surface side and the lower surface side of the strain body 110. The torque sensor 100A can detect the torque applied to the flexure element 110 by detecting the strain of the flexure element 110 using the plurality of strain gauges 122D and 124D.
他の実施形態に係るトルクセンサ100Aは、起歪体110の上面側に設けられた複数の歪ゲージ122Dと、起歪体110の下面側に設けられた複数の歪ゲージ124Dとを備える。すなわち、他の実施形態に係るトルクセンサ100Aは、複数の歪ゲージが、起歪体110の上面側と下面側とに二重に設けられている。トルクセンサ100Aは、複数の歪ゲージ122D,124Dを利用して起歪体110の歪みを検出することにより、起歪体110に加えられたトルクを検出することができる。 (Other embodiments)
A
図8は、他の実施形態に係るトルクセンサ100Aの外観斜視図である。図9は、他の実施形態に係るトルクセンサ100Aの分解斜視図である。図10は、他の実施形態に係るトルクセンサ100A(回路基板130が取り外された状態)の外観斜視図である。図11は、他の実施形態に係るトルクセンサ100Aが備える起歪体110の平面図である。図11では、起歪体110の上面に対して、複数の歪ゲージ122Dを重ねて示すことで、起歪体110の上面における複数の歪ゲージ122Dの配置位置を表している。図12は、他の実施形態に係るトルクセンサ100Aの底面図である。図12では、起歪体110の下面に対して、複数の歪ゲージ124Dを重ねて示すことで、起歪体110の下面における複数の歪ゲージ124Dの配置位置を表している。
FIG. 8 is an external perspective view of a torque sensor 100A according to another embodiment. FIG. 9 is an exploded perspective view of a torque sensor 100A according to another embodiment. FIG. 10 is an external perspective view of a torque sensor 100A (in a state where the circuit board 130 is removed) according to another embodiment. FIG. 11 is a plan view of a strain body 110 provided in a torque sensor 100A according to another embodiment. In FIG. 11, the plurality of strain gauges 122 </ b> D are superimposed on the upper surface of the flexure element 110 to indicate the arrangement positions of the plurality of strain gauges 122 </ b> D on the upper face of the flexure element 110. FIG. 12 is a bottom view of a torque sensor 100A according to another embodiment. In FIG. 12, a plurality of strain gauges 124D are superimposed on the lower surface of the flexure element 110 to indicate the arrangement positions of the plurality of strain gauges 124D on the lower face of the flexure element 110.
図9に示すように、トルクセンサ100Aは、上方から順に、回路基板130、センサ基板122、起歪体110、およびセンサ基板124を備えて構成されている。
As shown in FIG. 9, the torque sensor 100A includes a circuit board 130, a sensor board 122, a strain body 110, and a sensor board 124 in this order from the top.
起歪体110は、回転体の回転によりトルクが加えられる円盤状の部材である。起歪体110は、例えば、アルミなどの金属により形成される。図11に示すように、起歪体110は、第1固定部111、第2固定部112、および複数の連結部113を有する。
The strain body 110 is a disk-shaped member to which torque is applied by rotation of the rotating body. The strain body 110 is formed of, for example, a metal such as aluminum. As shown in FIG. 11, the flexure element 110 has a first fixing part 111, a second fixing part 112, and a plurality of connecting parts 113.
第1固定部111は、起歪体110の最も外側に位置する環状の部分である。第2固定部112は、第1固定部111の内側に位置する円形状の部分である。第2固定部112は、第1固定部111と中心Cを共有し、第1固定部111の内径よりも小さい外径を有する。
The first fixing portion 111 is an annular portion located on the outermost side of the strain body 110. The second fixing part 112 is a circular part located inside the first fixing part 111. The second fixing part 112 shares the center C with the first fixing part 111 and has an outer diameter smaller than the inner diameter of the first fixing part 111.
第1固定部111および第2固定部112の一方には、駆動源からの駆動力を伝達する伝達部材がボルトによって固定される。第1固定部111および第2固定部112の他方には、起歪体110を介して駆動力が伝達される操作体がボルトによって固定される。
伝 達 A transmission member for transmitting a driving force from a driving source is fixed to one of the first fixing portion 111 and the second fixing portion 112 by a bolt. An operating body to which the driving force is transmitted via the strain body 110 is fixed to the other of the first fixing portion 111 and the second fixing portion 112 by a bolt.
複数の連結部113は、第1固定部111と第2固定部112との間において、同一円周上に並べて設けられており、第1固定部111と第2固定部112とを連結する。複数の連結部113の各々は、張出し部113aおよび梁部113bを有して構成されている。
The plurality of connecting portions 113 are provided side by side on the same circumference between the first fixing portion 111 and the second fixing portion 112, and connect the first fixing portion 111 and the second fixing portion 112. Each of the plurality of connecting portions 113 includes an overhang portion 113a and a beam portion 113b.
張出し部113aは、第1固定部111から第2固定部112側に半径方向に延びる部分である。張出し部113aは、両端部から中間部分に向って徐々に幅が狭まる形状を有している。
The overhang portion 113a is a portion extending in the radial direction from the first fixing portion 111 to the second fixing portion 112 side. The overhang portion 113a has a shape whose width gradually decreases from both end portions toward the middle portion.
梁部113bは、張出し部113の第2固定部112側の端部から、周方向に延びる部分である。梁部113bは、その中間の第2固定部112に対向する部分において、第2固定部112の外周と繋がっている。梁部113bの中間部における第1固定部111側には、前述した一実施形態の開口部17に相当する開口部117が形成される。
The beam 113b is a portion extending in the circumferential direction from the end of the overhang 113 on the second fixing portion 112 side. The beam portion 113b is connected to the outer periphery of the second fixing portion 112 at a portion facing the second fixing portion 112 in the middle. An opening 117 corresponding to the opening 17 of the above-described embodiment is formed on the first fixing portion 111 side in the middle of the beam 113b.
また、隣り合う2つの梁部113bと第2固定部112との間には、前述した一実施形態の開口部16に相当する開口部116が形成される。すなわち、他の実施形態における連結部113は、張出し部113aが設けられていて、第1固定部111の一部として機能する点が、前述した一の実施形態と異なる。
開口 Also, an opening 116 corresponding to the opening 16 of the above-described embodiment is formed between two adjacent beam portions 113b and the second fixing portion 112. That is, the connecting portion 113 in the other embodiment is different from the first embodiment in that the overhang portion 113a is provided and functions as a part of the first fixing portion 111.
なお、隣り合う2つの連結部113の端部を一体化して張出し部113aが形成されていると見る事もできる。そして、連結部113は張出し部113aから第2固定部112側の端部で、2つの分岐路に分岐して、略Y字形状を有している。
In addition, it can be seen that the overhang portion 113a is formed by integrating the ends of the two adjacent connection portions 113. The connecting portion 113 is branched from the overhang portion 113a into two branch paths at the end on the second fixing portion 112 side, and has a substantially Y-shape.
そして、図11に示すように、梁部113bの両端部の各々の上面には、センサ基板122に設けられた歪ゲージ122Dが配置される。また、図12に示すように、梁部113bの両端部の各々の下面には、センサ基板124に設けられた歪ゲージ124Dが配置される。連結部113において、梁部113bは、その他の部分よりも幅が狭くなっているため、その他の部分よりも歪みが生じ易くなっている。このため、他の実施形態に係るトルクセンサ100Aは、歪ゲージ122D,124Dによって梁部113bの歪みを検出することで、起歪体110に加わったトルクをより高精度に検出することができる。なお、起歪体110に対して一の回転方向にトルクが加わったとき、梁部113bのうちの一方は、伸びる方向に歪みが生じ、他方は、縮む方向に歪みが生じる。したがって、梁部113b一方の端部に設けられた歪みゲージと、他方の端部に設けられた歪みゲージとでは、検出値の極性が異なるものとなる。連結部113は、厚さ方向(Z軸方向)では同じ形状であり、歪ゲージ122D,124Dは、上下面の対向する位置に配置されているので、トルクをトルクセンサ100Aに加えると、対向する位置の歪ゲージ122D,124Dには同じ歪みが加わる。
Then, as shown in FIG. 11, strain gauges 122D provided on the sensor substrate 122 are disposed on the upper surfaces of both ends of the beam 113b. As shown in FIG. 12, strain gauges 124D provided on the sensor substrate 124 are disposed on the lower surfaces of both ends of the beam 113b. In the connecting portion 113, since the width of the beam portion 113b is smaller than that of the other portion, the beam portion 113b is more likely to be distorted than the other portion. For this reason, the torque sensor 100A according to another embodiment can more accurately detect the torque applied to the strain body 110 by detecting the strain of the beam 113b by the strain gauges 122D and 124D. When a torque is applied to the flexure element 110 in one rotation direction, one of the beam portions 113b is distorted in the direction of extension, and the other is distorted in the direction of contraction. Therefore, the polarity of the detected value is different between the strain gauge provided at one end of the beam 113b and the strain gauge provided at the other end. The connecting portion 113 has the same shape in the thickness direction (Z-axis direction), and since the strain gauges 122D and 124D are arranged at opposing positions on the upper and lower surfaces, when the torque is applied to the torque sensor 100A, they oppose each other. The same strain is applied to the strain gauges 122D and 124D at the positions.
センサ基板122,124は、複数の歪ゲージ122D,124Dが実装されるフィルム状の部材である。センサ基板122は、「第1のセンサ基板」の一例であり、起歪体110の上面(「一方の面」の一例)に重ねて設けられる。センサ基板124は、「第2のセンサ基板」の一例であり、起歪体110の下面(「他方の面」の一例)に重ねて設けられる。センサ基板122,124としては、例えば、フレキシブル基板が用いられる。センサ基板122,124は、接着剤により、起歪体110に貼り付けられる。
The sensor boards 122 and 124 are film-like members on which the plurality of strain gauges 122D and 124D are mounted. The sensor substrate 122 is an example of a “first sensor substrate”, and is provided so as to overlap the upper surface of the strain body 110 (an example of “one surface”). The sensor substrate 124 is an example of a “second sensor substrate”, and is provided on the lower surface of the strain body 110 (an example of the “other surface”). As the sensor substrates 122 and 124, for example, flexible substrates are used. The sensor substrates 122 and 124 are attached to the strain body 110 with an adhesive.
センサ基板122は、本体部122A、接続部122B、および接続部122Cを有する。本体部122Aは、平面視において円環状の部分である。本体部122Aは、起歪体110の上面、且つ、第2固定部112の外側において、複数の連結部113の各々の上記した梁部113bと重なるように配置される。本体部122Aには、複数の歪ゲージ122Dが同一円周上に並べて設けられている。複数の歪ゲージ122Dの各々は、平面視において連結部113の上記した梁部113bと重なる位置に配置されている。図11および図12に示すように、本実施形態では、12本の連結部113(すなわち、12本の梁部113b)が、起歪体110に形成されている。このため、本実施形態では、24個の歪ゲージ122Dが、本体部122Aに設けられている。
The sensor board 122 has a main body 122A, a connecting part 122B, and a connecting part 122C. The main body 122A is an annular portion in plan view. The main body portion 122A is arranged on the upper surface of the strain body 110 and outside the second fixing portion 112 so as to overlap with the above-described beam portion 113b of each of the plurality of connecting portions 113. A plurality of strain gauges 122D are provided side by side on the same circumference on the main body 122A. Each of the plurality of strain gauges 122D is arranged at a position overlapping with the above-described beam portion 113b of the connecting portion 113 in plan view. As shown in FIGS. 11 and 12, in the present embodiment, twelve connecting portions 113 (that is, twelve beam portions 113 b) are formed in the strain body 110. For this reason, in this embodiment, 24 strain gauges 122D are provided in the main body 122A.
接続部122B,122Cは、本体部122Aの外周縁部から外側に直線状に延在して設けられている。接続部122B,122Cは、本体部122Aの外周縁部において、180°間隔で設けられている。接続部122B,122Cには、複数の歪ゲージ122Dに繋がる複数の配線が設けられている。接続部122B,122Cは、回路基板130の下面に沿って延在した後、回路基板130の端部において上方且つ内側に折り曲げられる。そして、接続部122B,122Cは、回路基板130の上面に沿って延在した後、その先端部分が、回路基板130上面に設けられたコネクタ132に接続される。これにより、接続部122B,122Cは、複数の歪ゲージ122Dの検出信号を、回路基板130上に形成される電気回路に供給することができる。
The connection portions 122B and 122C extend linearly outward from the outer peripheral edge of the main body 122A. The connecting portions 122B and 122C are provided at 180 ° intervals on the outer peripheral edge of the main body 122A. The connection portions 122B and 122C are provided with a plurality of wires connected to the plurality of strain gauges 122D. After extending along the lower surface of the circuit board 130, the connecting portions 122B and 122C are bent upward and inward at the end of the circuit board 130. After the connection portions 122B and 122C extend along the upper surface of the circuit board 130, their distal ends are connected to the connector 132 provided on the upper surface of the circuit board 130. Thereby, the connection parts 122B and 122C can supply the detection signals of the plurality of strain gauges 122D to the electric circuit formed on the circuit board 130.
センサ基板124は、本体部124A、接続部124B、および接続部124Cを有する。本体部124Aは、平面視において円環状の部分である。本体部124Aは、起歪体110の下面、且つ、第2固定部112の外側において、複数の連結部113の各々の上記した梁部113bと重なるように配置される。本体部124Aには、複数の歪ゲージ124Dが同一円周上に並べて設けられている。複数の歪ゲージ124Dの各々は、平面視において連結部113の上記した各梁部113bと重なる位置に配置されている。図11および図12に示すように、本実施形態では、12本の連結部113(すなわち、12本の梁部113b)が、起歪体110に形成されている。このため、本実施形態では、24個の歪ゲージ124Dが、本体部124Aに設けられている。
The sensor board 124 has a main body 124A, a connecting part 124B, and a connecting part 124C. The main body 124A is an annular portion in plan view. The main body portion 124A is disposed on the lower surface of the strain body 110 and outside the second fixing portion 112 so as to overlap with the above-described beam portion 113b of each of the plurality of connecting portions 113. A plurality of strain gauges 124D are provided side by side on the same circumference on the main body 124A. Each of the plurality of strain gauges 124D is arranged at a position overlapping with each of the above-described beam portions 113b of the connecting portion 113 in plan view. As shown in FIGS. 11 and 12, in the present embodiment, twelve connecting portions 113 (that is, twelve beam portions 113 b) are formed in the strain body 110. For this reason, in this embodiment, 24 strain gauges 124D are provided in the main body 124A.
接続部124B,124Cは、本体部124Aの外周縁部から外側に直線状に延在して設けられている。接続部124B,124Cは、本体部124Aの外周縁部において、180°間隔で設けられている。接続部124B,124Cには、複数の歪ゲージ124Dに繋がる複数の配線が設けられている。接続部124B,124Cは、起歪体110を貫通して、起歪体110の下面側から上面側へと引き出される(図10参照)。そして、接続部124B,124Cは、回路基板130の下面に沿って延在した後、回路基板130の端部において上方且つ内側に折り曲げられる。さらに、接続部124B,124Cは、回路基板130の上面に沿って延在した後、その先端部分が、回路基板130上面に設けられたコネクタ132に接続される。これにより、接続部124B,124Cは、複数の歪ゲージ124Dの検出信号を、回路基板130上に形成される電気回路に供給することができる。
The connection portions 124B and 124C are provided to extend linearly outward from the outer peripheral edge of the main body portion 124A. The connection parts 124B and 124C are provided at 180 ° intervals on the outer peripheral edge of the main body part 124A. The connection portions 124B and 124C are provided with a plurality of wires connected to the plurality of strain gauges 124D. The connection portions 124B and 124C pass through the strain body 110 and are drawn from the lower surface side to the upper surface side of the strain body 110 (see FIG. 10). Then, the connecting portions 124B and 124C extend along the lower surface of the circuit board 130, and are bent upward and inward at an end of the circuit board 130. Further, after the connection portions 124B and 124C extend along the upper surface of the circuit board 130, the distal ends thereof are connected to the connectors 132 provided on the upper surface of the circuit board 130. Thereby, the connection parts 124B and 124C can supply the detection signals of the plurality of strain gauges 124D to the electric circuit formed on the circuit board 130.
なお、本実施形態では、センサ基板122と、センサ基板124とで、互いに同一形状および同一構成のセンサ基板を用いている。このため、本実施形態に係るトルクセンサ100Aによれば、センサ基板122,124を区別なく製造すればよいため、センサ基板122,124の製造コストを削減することができる。
In the present embodiment, the sensor substrates 122 and 124 have the same shape and the same configuration as each other. For this reason, according to the torque sensor 100A according to the present embodiment, since the sensor substrates 122 and 124 need only be manufactured without distinction, the manufacturing cost of the sensor substrates 122 and 124 can be reduced.
回路基板130は、起歪体110の第1固定部111の上面に取り付けられる平板状の部材である。回路基板130の上面には、複数のコネクタ132と、IC(Integrated Circuit)134A,134Bとが実装される。IC134Aは、コネクタ132、接続部122B,122Cを介して、本体部122Aに設けられている複数の歪ゲージ122Dと電気的に接続されている。IC134Aは、複数の歪ゲージ122Dの検出値に基づいて、各種処理(例えば、起歪体110に加わったトルクを判定する処理、複数の歪ゲージ122Dの検出値を外部へ出力する処理等)を行う。IC134Bは、コネクタ132、接続部124B,124Cを介して、本体部124Aに設けられている複数の歪ゲージ124Dと電気的に接続されている。IC134Bは、複数の歪ゲージ124Dの検出値に基づいて、各種演算処理(例えば、起歪体110に加わったトルクを判定する処理、複数の歪ゲージ124Dの検出値を外部へ出力する処理等)を行う。
The circuit board 130 is a flat member attached to the upper surface of the first fixing portion 111 of the strain body 110. On the upper surface of the circuit board 130, a plurality of connectors 132 and ICs (Integrated Circuits) 134A and 134B are mounted. The IC 134A is electrically connected to a plurality of strain gauges 122D provided on the main body 122A via the connector 132 and the connecting portions 122B and 122C. The IC 134A performs various processes (for example, a process of determining the torque applied to the strain body 110, a process of outputting the detected values of the plurality of strain gauges 122D to the outside, etc.) based on the detected values of the plurality of strain gauges 122D. Do. The IC 134B is electrically connected to a plurality of strain gauges 124D provided on the main body 124A via the connector 132 and the connecting portions 124B and 124C. The IC 134B performs various arithmetic processing based on the detected values of the plurality of strain gauges 124D (for example, a process of determining the torque applied to the strain body 110, a process of outputting the detected values of the plurality of strain gauges 124D, and the like). I do.
なお、本実施形態では、回路基板130に設けられた2つのIC134A,134Bによって、複数の歪ゲージ122Dの検出値に基づく処理と、複数の歪ゲージ124Dの検出値に基づく処理とを行っているが、これに限らない。例えば、回路基板130に設けられた1つのICによって、複数の歪ゲージ122Dの検出値に基づく処理と、複数の歪ゲージ124Dの検出値に基づく処理とを行うようにしてもよい。
In the present embodiment, the processing based on the detected values of the plurality of strain gauges 122D and the processing based on the detected values of the plurality of strain gauges 124D are performed by the two ICs 134A and 134B provided on the circuit board 130. However, it is not limited to this. For example, a process based on the detected values of the plurality of strain gauges 122D and a process based on the detected values of the plurality of strain gauges 124D may be performed by one IC provided on the circuit board 130.
他の実施形態に係るトルクセンサ100Aは、回転体の回転により複数の連結部113の各々に歪みが生じると、複数の連結部113の上面側に配置された複数の歪ゲージ122Dの各々と、複数の連結部113の下面側に配置された複数の歪ゲージ124Dの各々とが変形し、これら複数の歪ゲージ122D,124Dの各々の抵抗値が変化する。このため、トルクセンサ100Aは、これら複数の歪ゲージ122D,124Dの各々の抵抗値の変化に基づいて、トルクを検出することができる。
The torque sensor 100 </ b> A according to another embodiment includes a plurality of strain gauges 122 </ b> D arranged on the upper surface side of the plurality of connecting portions 113 when each of the plurality of connecting portions 113 is distorted by rotation of the rotating body. Each of the plurality of strain gauges 124D arranged on the lower surface side of the plurality of connecting portions 113 is deformed, and the resistance value of each of the plurality of strain gauges 122D and 124D changes. Therefore, the torque sensor 100A can detect the torque based on the change in the resistance value of each of the plurality of strain gauges 122D and 124D.
特に、他の実施形態に係るトルクセンサ100Aは、起歪体110の上面側と下面側との各々に複数の歪ゲージ122D,124Dを配置する構成としたため、起歪体110の一方の面にのみ歪ゲージを配置する構成と比較して、起歪体110の形状を変更することなく、歪ゲージの設置数を容易に増やすことができる。したがって、他の実施形態に係るトルクセンサ100Aによれば、組み立てが容易であり、かつ、トルクを精度よく検出できる。
In particular, the torque sensor 100A according to another embodiment has a configuration in which the plurality of strain gauges 122D and 124D are arranged on the upper surface side and the lower surface side of the strain body 110, respectively. Compared with a configuration in which only strain gauges are arranged, the number of strain gauges to be installed can be easily increased without changing the shape of the strain body 110. Therefore, according to the torque sensor 100A according to another embodiment, assembly is easy and torque can be accurately detected.
また、他の実施形態に係るトルクセンサ100Aは、例えば、複数の歪ゲージ122Dの出力によるトルクの検出と、複数の歪ゲージ124Dの出力によるトルクの検出とを、互いに独立して行うことができる。このため、他の実施形態に係るトルクセンサ100Aは、例えば、一方の検出系統に不具合が生じた場合であっても、他方の検出系統によってトルクを検出することができる。この場合、起歪体110の複数の連結部113の上面における歪みと、起歪体110の複数の連結部113の下面における歪みとは略同じであるから、不具合が生じる前後で、略同一の検出値を出力することができる。
Further, the torque sensor 100A according to another embodiment can, for example, independently perform the detection of the torque based on the output of the plurality of strain gauges 122D and the detection of the torque based on the output of the plurality of strain gauges 124D. . For this reason, the torque sensor 100A according to another embodiment can detect the torque by the other detection system, for example, even when a failure occurs in one of the detection systems. In this case, the strain on the upper surface of the plurality of connecting portions 113 of the strain body 110 is substantially the same as the distortion on the lower surface of the plurality of connecting portions 113 of the strain body 110. The detection value can be output.
また、他の実施形態に係るトルクセンサ100Aは、例えば、連結部113の梁部113b毎に、上面側に設けられた歪ゲージ122Dの出力値と、下面側に設けられた歪ゲージ124Dの出力値とを足し合わせることにより、当該分岐路における歪みの検出値の値を大きくすることができる。これにより、他の実施形態に係るトルクセンサ100Aは、例えば、連結部113の分岐路に僅かな歪が生じた場合であっても、その検出値がノイズに埋もれてしまうことを抑制することができる。
Further, the torque sensor 100A according to another embodiment includes, for example, an output value of a strain gauge 122D provided on an upper surface side and an output value of a strain gauge 124D provided on a lower surface side for each beam portion 113b of the connecting portion 113. By adding the values, the value of the detected value of the distortion in the branch road can be increased. Thereby, the torque sensor 100A according to another embodiment suppresses the detection value from being buried in noise even when a slight distortion occurs in the branch path of the connecting portion 113, for example. it can.
なお、他の実施形態に係るトルクセンサ100Aにおいて、センサ基板122およびのセンサ基板124は、互いに連結されており、且つ、1枚のフレキシブル基板によって一体的に形成されてもよい。
In the torque sensor 100A according to another embodiment, the sensor substrate 122 and the sensor substrate 124 may be connected to each other, and may be integrally formed by one flexible substrate.
本国際出願は、2018年8月10日に出願した日本国特許出願第2018-152024号に基づく優先権を主張するものであり、当該出願の全内容を本国際出願に援用する。
This international application claims priority based on Japanese Patent Application No. 2018-152024 filed on August 10, 2018, the entire contents of which are incorporated herein by reference.
1:起歪体
2:絶縁層
3:歪ゲージ
11:第1固定部
12:第2固定部
13:連結部
14~17:開口部
21:スイッチ回路
22:増幅回路
23:ADコンバータ
24:判定回路
100:トルクセンサ
R:固定抵抗
100A:トルクセンサ
110:起歪体
111:第1固定部
112:第2固定部
113:連結部
122:センサ基板(第1のセンサ基板)
122A:本体部
122B:接続部
122C:接続部
122D:歪ゲージ
124:センサ基板(第2のセンサ基板)
124A:本体部
124B:接続部
124C:接続部
124D:歪ゲージ
130:回路基板
132:コネクタ
134A:IC
134B:IC 1: strain body 2: insulating layer 3: strain gauge 11: first fixing part 12: second fixing part 13: connectingparts 14 to 17: opening 21: switch circuit 22: amplifier circuit 23: AD converter 24: judgment Circuit 100: Torque sensor R: Fixed resistance 100A: Torque sensor 110: Strain element 111: First fixing part 112: Second fixing part 113: Connecting part 122: Sensor board (first sensor board)
122A:body part 122B: connection part 122C: connection part 122D: strain gauge 124: sensor board (second sensor board)
124A:body part 124B: connecting part 124C: connecting part 124D: strain gauge 130: circuit board 132: connector 134A: IC
134B: IC
2:絶縁層
3:歪ゲージ
11:第1固定部
12:第2固定部
13:連結部
14~17:開口部
21:スイッチ回路
22:増幅回路
23:ADコンバータ
24:判定回路
100:トルクセンサ
R:固定抵抗
100A:トルクセンサ
110:起歪体
111:第1固定部
112:第2固定部
113:連結部
122:センサ基板(第1のセンサ基板)
122A:本体部
122B:接続部
122C:接続部
122D:歪ゲージ
124:センサ基板(第2のセンサ基板)
124A:本体部
124B:接続部
124C:接続部
124D:歪ゲージ
130:回路基板
132:コネクタ
134A:IC
134B:IC 1: strain body 2: insulating layer 3: strain gauge 11: first fixing part 12: second fixing part 13: connecting
122A:
124A:
134B: IC
Claims (11)
- 環状の第1固定部と、前記第1固定部と中心を共有する第2固定部と、前記第1固定部と前記第2固定部とを連結する複数の連結部と、を有する起歪体と、
前記起歪体上に設けられた複数の歪ゲージと、
を備え、
前記連結部は、前記第1固定部と前記第2固定部との間に配置され、両端部が前記第1固定部の内周に接続され、中央部が前記第2固定部の外周に接続される
トルクセンサ。 A strain body having an annular first fixing portion, a second fixing portion sharing a center with the first fixing portion, and a plurality of connecting portions connecting the first fixing portion and the second fixing portion. When,
A plurality of strain gauges provided on the strain body,
With
The connecting portion is disposed between the first fixing portion and the second fixing portion, and both ends are connected to an inner periphery of the first fixing portion, and a center portion is connected to an outer periphery of the second fixing portion. Torque sensor. - 前記連結部は、前記両端部が前記中央部より細い
請求項1に記載のトルクセンサ。 The torque sensor according to claim 1, wherein the connecting portion has the both end portions thinner than the central portion. - 前記連結部は、前記第1固定部及び前記第2固定部より薄い
請求項1又は請求項2に記載のトルクセンサ。 The torque sensor according to claim 1, wherein the connection portion is thinner than the first fixed portion and the second fixed portion. - 前記連結部は、前記第2固定部の接線方向に延びる
請求項1から請求項3までのいずれか1項に記載のトルクセンサ。 4. The torque sensor according to claim 1, wherein the connecting portion extends in a tangential direction of the second fixing portion. 5. - 前記複数の連結部は、前記第2固定部の周囲に正多角形状に配置される
請求項1から請求項4までのいずれか1項に記載のトルクセンサ。 5. The torque sensor according to claim 1, wherein the plurality of connecting portions are arranged in a regular polygon around the second fixing portion. 6. - 前記起歪体は、4つの前記連結部を有する
請求項1から請求項5までのいずれか1項に記載のトルクセンサ。 The torque sensor according to any one of claims 1 to 5, wherein the strain body has four of the connection portions. - 前記歪ゲージは、前記連結部の前記両端部の第1面に配置される
請求項1から請求項6までのいずれか1項に記載のトルクセンサ。 The torque sensor according to any one of claims 1 to 6, wherein the strain gauge is disposed on a first surface of each of the both ends of the connection portion. - 前記起歪体の一方の面および他方の面の各々に、複数の前記歪ゲージを有する
請求項1から請求項7までのいずれか1項に記載のトルクセンサ。 The torque sensor according to any one of claims 1 to 7, wherein a plurality of the strain gauges are provided on each of one surface and the other surface of the strain body. - 複数の前記歪ゲージを有し、前記起歪体の前記一方の面に配置される第1のセンサ基板と、
複数の前記歪ゲージを有し、前記起歪体の前記他方の面に配置される第2のセンサ基板と
を有する
請求項8に記載のトルクセンサ。 A first sensor substrate having a plurality of the strain gauges and disposed on the one surface of the strain body;
The torque sensor according to claim 8, further comprising: a second sensor substrate having a plurality of the strain gauges and disposed on the other surface of the strain body. - 前記第1のセンサ基板および前記第2のセンサ基板は、互いに連結されており、且つ、1枚のフレキシブル基板によって一体的に形成されている
請求項9に記載のトルクセンサ。 The torque sensor according to claim 9, wherein the first sensor substrate and the second sensor substrate are connected to each other, and are integrally formed by one flexible substrate. - 前記第1のセンサ基板および前記第2のセンサ基板は、互いに同一形状および同一構成を有する
請求項9に記載のトルクセンサ。 The torque sensor according to claim 9, wherein the first sensor substrate and the second sensor substrate have the same shape and the same configuration as each other.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2018-152024 | 2018-08-10 | ||
JP2018152024A JP2021179309A (en) | 2018-08-10 | 2018-08-10 | Torque sensor |
Publications (1)
Publication Number | Publication Date |
---|---|
WO2020031540A1 true WO2020031540A1 (en) | 2020-02-13 |
Family
ID=69414638
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
PCT/JP2019/025563 WO2020031540A1 (en) | 2018-08-10 | 2019-06-27 | Torque sensor |
Country Status (2)
Country | Link |
---|---|
JP (1) | JP2021179309A (en) |
WO (1) | WO2020031540A1 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112129440A (en) * | 2020-09-22 | 2020-12-25 | 陈会良 | Bob torque sensor |
EP4235128A1 (en) * | 2022-02-28 | 2023-08-30 | Nagano Keiki Co., Ltd. | Torque sensor |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010088922A1 (en) * | 2009-02-06 | 2010-08-12 | Abb Ag | Set of multiaxial force and torque sensor and assembling method |
JP2013096735A (en) * | 2011-10-28 | 2013-05-20 | Toyota Motor Corp | Strain element and torque sensor |
JP2016094967A (en) * | 2014-11-12 | 2016-05-26 | 本田技研工業株式会社 | Annular spring, and torque detection device and robot articulation mechanism having the same |
WO2018073188A1 (en) * | 2016-10-17 | 2018-04-26 | Franka Emika Gmbh | Torque sensor device and method for detecting torques |
-
2018
- 2018-08-10 JP JP2018152024A patent/JP2021179309A/en active Pending
-
2019
- 2019-06-27 WO PCT/JP2019/025563 patent/WO2020031540A1/en active Application Filing
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2010088922A1 (en) * | 2009-02-06 | 2010-08-12 | Abb Ag | Set of multiaxial force and torque sensor and assembling method |
JP2013096735A (en) * | 2011-10-28 | 2013-05-20 | Toyota Motor Corp | Strain element and torque sensor |
JP2016094967A (en) * | 2014-11-12 | 2016-05-26 | 本田技研工業株式会社 | Annular spring, and torque detection device and robot articulation mechanism having the same |
WO2018073188A1 (en) * | 2016-10-17 | 2018-04-26 | Franka Emika Gmbh | Torque sensor device and method for detecting torques |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN112129440A (en) * | 2020-09-22 | 2020-12-25 | 陈会良 | Bob torque sensor |
CN112129440B (en) * | 2020-09-22 | 2022-04-29 | 陈会良 | Bob torque sensor |
EP4235128A1 (en) * | 2022-02-28 | 2023-08-30 | Nagano Keiki Co., Ltd. | Torque sensor |
Also Published As
Publication number | Publication date |
---|---|
JP2021179309A (en) | 2021-11-18 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP6092326B2 (en) | Torque sensor | |
JP6214072B1 (en) | Force sensor | |
CN108139288B (en) | Force sensor | |
JP7114804B2 (en) | STRAIN WAVE GEAR AND ELASTIC TRANSMISSION ELEMENT FOR THE SAME, ROBOT ARM AND Strain GAUGE ARRANGEMENT METHOD | |
JP5007083B2 (en) | Force sensor chip | |
JP5507306B2 (en) | Force sensor chip and acceleration sensor chip | |
JP4948630B2 (en) | Torque sensor | |
JP6108584B1 (en) | Force sensor | |
JP6460972B2 (en) | Crank arm assembly | |
US11788906B2 (en) | Force sensor | |
WO2020031540A1 (en) | Torque sensor | |
CN111742205B (en) | Torque sensor | |
US11105693B2 (en) | Torque sensor | |
JP2004354049A (en) | Force detection device | |
JP7396731B2 (en) | Multi-axis tactile sensor | |
US20220412819A1 (en) | Sensor and power transmission device | |
JP6835475B2 (en) | Surface pressure sensor | |
CN114761774B (en) | Torque sensor | |
CN107850502B (en) | Torque sensor | |
JP2023013371A (en) | Outer tooth gear, wave motion reduction gear and robot | |
JP7396588B2 (en) | Strain detection sensor and power transmission device | |
JP2021004819A (en) | Torque detection sensor and motive power transmission device |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
121 | Ep: the epo has been informed by wipo that ep was designated in this application |
Ref document number: 19848419 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: DE |
|
122 | Ep: pct application non-entry in european phase |
Ref document number: 19848419 Country of ref document: EP Kind code of ref document: A1 |
|
NENP | Non-entry into the national phase |
Ref country code: JP |