JPH0718015B2 - Method for forming sulfide thin film - Google Patents

Method for forming sulfide thin film

Info

Publication number
JPH0718015B2
JPH0718015B2 JP60006441A JP644185A JPH0718015B2 JP H0718015 B2 JPH0718015 B2 JP H0718015B2 JP 60006441 A JP60006441 A JP 60006441A JP 644185 A JP644185 A JP 644185A JP H0718015 B2 JPH0718015 B2 JP H0718015B2
Authority
JP
Japan
Prior art keywords
thin film
metal
sulfide thin
glass plate
forming
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP60006441A
Other languages
Japanese (ja)
Other versions
JPS61166979A (en
Inventor
朗 中西
博 畑瀬
洋 長谷川
和之 岡野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP60006441A priority Critical patent/JPH0718015B2/en
Priority to PCT/JP1986/000015 priority patent/WO1986004362A1/en
Priority to DE8686900838T priority patent/DE3672285D1/en
Priority to EP86900838A priority patent/EP0211083B1/en
Priority to US07/910,215 priority patent/US4885188A/en
Publication of JPS61166979A publication Critical patent/JPS61166979A/en
Publication of JPH0718015B2 publication Critical patent/JPH0718015B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1204Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material inorganic material, e.g. non-oxide and non-metallic such as sulfides, nitrides based compounds
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/1229Composition of the substrate
    • C23C18/1245Inorganic substrates other than metallic
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C18/00Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating
    • C23C18/02Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition
    • C23C18/12Chemical coating by decomposition of either liquid compounds or solutions of the coating forming compounds, without leaving reaction products of surface material in the coating; Contact plating by thermal decomposition characterised by the deposition of inorganic material other than metallic material
    • C23C18/125Process of deposition of the inorganic material
    • C23C18/1275Process of deposition of the inorganic material performed under inert atmosphere

Description

【発明の詳細な説明】 産業上の利用分野 本発明は各種エレクトロニクスデバイスに使用される金
属硫化物薄膜の形成方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for forming a metal sulfide thin film used in various electronic devices.

従来の技術 従来より、硫化亜鉛、硫化カドミウム、硫化鉛、硫化銅
などの金属硫化物は薄膜あるいは結晶等の形でエレクト
ロニクス分野で広く使用されている。これら化合物の薄
膜は従来は主として真空蒸着あるいはスパッタ等の手法
で形成されてきた。
2. Description of the Related Art Conventionally, metal sulfides such as zinc sulfide, cadmium sulfide, lead sulfide, and copper sulfide have been widely used in the field of electronics in the form of thin films or crystals. Conventionally, thin films of these compounds have been formed mainly by a method such as vacuum deposition or sputtering.

発明が解決しようとする問題点 上記、従来の方法は真空容器中で行われるため、生産性
が悪く、連続操業が困難であるか、あるいは非常に高額
の生産設備を必要とする。また、真空容器の大きさで製
品の大きさを規定され、大面積の製造が困難である等の
問題点を有している。
Problems to be Solved by the Invention Since the above-mentioned conventional method is performed in a vacuum vessel, the productivity is poor and continuous operation is difficult, or very expensive production equipment is required. Further, the size of the product is regulated by the size of the vacuum container, and there is a problem that it is difficult to manufacture a large area.

本発明は以上のような従来の欠点を除去するものであ
り、簡単にかつ生産性良く生産できる金属硫化物薄膜の
形成方法を提供するものである。
The present invention eliminates the above-mentioned conventional drawbacks, and provides a method for forming a metal sulfide thin film that can be produced easily and with high productivity.

問題点を解決するための手段 本発明が上記問題点を解決するための手段は、金属−硫
黄結晶を少なくとも一つ内部に有する有機金属化合物層
を基板上に印刷その他の方法で形成してのち、上記有機
金属化合物層を、不活性ガス中で熱分解することにより
金属硫化物を形成することである。
Means for Solving the Problems The means for solving the above problems according to the present invention is to form an organometallic compound layer having at least one metal-sulfur crystal therein on a substrate by printing or other method. , To form a metal sulfide by thermally decomposing the organometallic compound layer in an inert gas.

本発明に使用できる金属−硫黄結合を少なくとも一つ内
部に有する有機金属化合物としては、各種金属メルカプ
チド、各種チオカルボン酸またはジチオカルボン酸の各
種金属塩などを挙げることができる。これら化合物の合
成方法は公知である。
Examples of the organometallic compound having at least one metal-sulfur bond inside it that can be used in the present invention include various metal mercaptides and various metal salts of various thiocarboxylic acids or dithiocarboxylic acids. Methods for synthesizing these compounds are known.

有機金属化合物を積層する基板としては、熱分解温度に
耐えるものであれば任意に選ぶことができる。通常熱分
解温度は350〜450℃程度であり、結晶化を促進させて六
方晶系の結晶等を得る時でも、500〜550℃程度の焼成で
可能であり、安価なガラス板を使用することができる。
The substrate on which the organometallic compound is laminated can be arbitrarily selected as long as it can withstand the thermal decomposition temperature. Usually the thermal decomposition temperature is about 350 ~ 450 ℃, even when crystallization is promoted to obtain hexagonal crystals etc., it is possible to fire at about 500 ~ 550 ℃, and use an inexpensive glass plate You can

作用 上記本発明の手段を用いることにより、従来の手法のネ
ックとなっている真空容器を使用せずに、金属硫化物薄
膜を形成できるため、薄膜の製造に際して、生産性の向
上が計られ、かつ大面積の製造を容易に行うことができ
る。
By using the above-mentioned means of the present invention, without using a vacuum container that is a bottleneck of the conventional method, it is possible to form a metal sulfide thin film, in the production of the thin film, the productivity is improved, In addition, it is possible to easily manufacture a large area.

実施例 以下実施例により説明する。Examples Hereinafter, examples will be described.

実施例1 ラウリルメルカプタンを水−アルコール溶媒中酢酸亜鉛
と反応させて得られる亜鉛ラウリルメルカプチド(J.A
m,Chem,Soc55 1090(1933)の手法による)を炭化水素
溶媒に溶かし、ガラス板上にスピナー方式により塗布す
る。
Example 1 Zinc lauryl mercaptan obtained by reacting lauryl mercaptan with zinc acetate in a water-alcohol solvent (JA
m, Chem, Soc 55 1090 (1933)) in a hydrocarbon solvent and applied on a glass plate by a spinner method.

塗布されたガラス板は、約150℃で予備乾燥して溶媒を
揮散させた後、焼成炉中、550℃1時間焼成する。焼成
炉内部は、窒素ガス気流とする。
The coated glass plate is pre-dried at about 150 ° C to volatilize the solvent, and then baked at 550 ° C for 1 hour in a baking furnace. A nitrogen gas stream is used inside the firing furnace.

焼成されたガラス板上には、ほぼ透明で膜厚1000〜5000
Åの薄膜が形成されており、X線回折測定より六方晶系
硫化亜鉛であることがまた、焼成した化合物の元素分折
も、Zn67.7%(計算値67.1%),S32.3%(計算値32.9
%)と計算値とよく合うことが確認された。
Almost transparent on the fired glass plate with a film thickness of 1000 to 5000
A thin film of Å was formed, and it was confirmed by X-ray diffraction that it was hexagonal zinc sulfide, and elemental analysis of the calcined compound was Zn67.7% (calculated value 67.1%), S32.3% ( Calculated value 32.9
%) And the calculated values are well matched.

実施例2 ラウリルメルカプタンを水−アルコール溶媒中酢酸鉛と
反応させて得られる鉛ラウリルメルカプチドを炭化水素
系溶媒に溶かし、ガラス板上にスピナー方式により塗布
する。
Example 2 Lead lauryl mercaptide obtained by reacting lauryl mercaptan with lead acetate in a water-alcohol solvent is dissolved in a hydrocarbon solvent and applied on a glass plate by a spinner method.

塗布されたガラス板は、約150℃で予備乾燥して溶媒を
揮散させた後、焼成炉中、550℃1時間焼成する。
The coated glass plate is pre-dried at about 150 ° C to volatilize the solvent, and then baked at 550 ° C for 1 hour in a baking furnace.

焼成炉内部は、窒素ガス気流とする。A nitrogen gas stream is used inside the firing furnace.

焼成されたガラス板上には、ほぼ透明で膜厚1000〜5000
Åの薄膜が形成されており、X線回折測定より硫化鉛で
あることが確認された。
Almost transparent on the fired glass plate with a film thickness of 1000 to 5000
A thin film of Å was formed, and it was confirmed by X-ray diffraction measurement that it was lead sulfide.

実施例3 ラウリルメルカプタンを水−エタノール溶媒中酢酸カド
ミウムと反応させて得られるカドミウムメルカプチドを
炭化水素溶媒に溶かし、ガラス板上にスピナー方式によ
り塗布する。
Example 3 Cadmium mercaptide obtained by reacting lauryl mercaptan with cadmium acetate in a water-ethanol solvent is dissolved in a hydrocarbon solvent and applied on a glass plate by a spinner method.

塗布されたガラス板は、約150℃で予備乾燥して溶媒を
揮散させた後、焼成炉中、550℃1時間焼成する。
The coated glass plate is pre-dried at about 150 ° C to volatilize the solvent, and then baked at 550 ° C for 1 hour in a baking furnace.

焼成炉内部は、窒素ガス気流とする。A nitrogen gas stream is used inside the firing furnace.

焼成されたガラス板上には、ほぼ透明で膜厚1000〜5000
Åの薄膜が形成されており、X線回折測定より硫化カド
ミウムであることが確認された。
Almost transparent on the fired glass plate with a film thickness of 1000 to 5000
A thin film of Å was formed, and it was confirmed by X-ray diffraction measurement that it was cadmium sulfide.

実施例4 水酸化カリウム−エタノール溶液に硫化水素を飽和さ
せ、塩化ベンゾイルと反応して得られるチオ安息香酸カ
リウム(Org,Synth.,IV924(1963))を酢酸亜鉛と作用
させてチオ安息香酸亜鉛を合成する。これを炭化水素系
溶媒に溶かしてガラス板上に、スピナー方式で塗布す
る。
Example 4 Potassium thiobenzoate (Org, Synth., IV924 (1963)) obtained by saturating hydrogen sulfide in a potassium hydroxide-ethanol solution and reacting with benzoyl chloride is reacted with zinc acetate to give zinc thiobenzoate. To synthesize. This is dissolved in a hydrocarbon solvent and applied on a glass plate by a spinner method.

塗布されたガラス板は、約150℃で予備乾燥して溶媒を
揮散させた後、焼成炉中で、550℃1時間焼成する。焼
成炉内部は、窒素ガス気流とする。
The coated glass plate is pre-dried at about 150 ° C to volatilize the solvent, and then baked at 550 ° C for 1 hour in a baking furnace. A nitrogen gas stream is used inside the firing furnace.

焼成されたガラス板上には、ほぼ透明な薄膜が形成され
ており、X線回折測定により硫化亜鉛であることが確認
された。
An almost transparent thin film was formed on the fired glass plate, and it was confirmed by X-ray diffraction measurement that it was zinc sulfide.

実施例5 2−ブロモ−P−シメンをグリニャール試薬化したもの
に二硫化炭素を反応させて得られるシミルカルビチオ酸
のナトリウム塩に塩化亜鉛を作用して合成されたシミル
カルビチオ酸亜鉛(J.Am,Chem,Soc,51 3106(1928))
を炭化水素系溶媒に溶かし、ガラス板上にスピナー方式
で塗布する。
Example 5 Zymylcarbithioate zinc (J. Am, Chem) synthesized by reacting 2-bromo-P-cymene with Grignard reagent with carbon disulfide to give sodium salt of cymilcarbithioic acid and zinc chloride. , Soc, 51 3106 (1928))
Is dissolved in a hydrocarbon solvent and applied on a glass plate by a spinner method.

塗布されたガラス板は、約150℃で予備乾燥して溶媒を
揮散させた後、焼成炉中で、550℃1時間焼成する。焼
成炉内部は、窒素ガス気流とする。
The coated glass plate is pre-dried at about 150 ° C to volatilize the solvent, and then baked at 550 ° C for 1 hour in a baking furnace. A nitrogen gas stream is used inside the firing furnace.

焼成されたガラス板上には、ほぼ透明な薄膜が形成され
ており、X線回折測定により硫化亜鉛であることが確認
された。
An almost transparent thin film was formed on the fired glass plate, and it was confirmed by X-ray diffraction measurement that it was zinc sulfide.

発明の効果 以上、実施例から判るごとく、本発明にかかる手法を採
用することにより、真空蒸着あるいはスパッタ等による
製造方法と比較して、生産性に優れ、非常な高額の生産
設備を必要とせず、また大面積の製造が容易であるとい
う産業上極めて有益な特徴をもつ。
EFFECTS OF THE INVENTION As described above, as can be seen from the examples, by adopting the method according to the present invention, as compared with a manufacturing method such as vacuum deposition or sputtering, the productivity is excellent, and an extremely expensive production facility is not required. In addition, it has an extremely useful characteristic in the industry that it is easy to manufacture a large area.

さらに、本発明にかかる手法は低温での結晶性、成膜性
も良好で、硫化亜鉛の場合、従来の手法では1000℃以上
で生成するα型六方晶系硫化亜鉛が、500℃程度の焼成
温度で得られるという点でも効果的な手法であるといえ
る。
Furthermore, the method according to the present invention has good crystallinity at low temperature and good film forming property. In the case of zinc sulfide, α-type hexagonal zinc sulfide produced at 1000 ° C. or higher in the conventional method is fired at about 500 ° C. It can be said that this method is also effective in that it can be obtained at temperature.

フロントページの続き (72)発明者 岡野 和之 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (56)参考文献 特開 昭61−166978(JP,A) 特開 昭61−166983(JP,A) 特公 昭42−9413(JP,B1) Inorganic Chemistr y Vol.20 No.8(1981)(米) P.2631〜4Front page continuation (72) Inventor Kazuyuki Okano 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (56) References JP 61-166978 (JP, A) JP 61-166693 (JP) , A) Japanese Patent Publication No. 42-9413 (JP, B1) Inorganic Chemistry Vol. 20 No. 8 (1981) (US) P. 2631-4

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】金属−硫黄結合を少なくとも一つ内部に有
する有機金属化合物層を基板上に形成してのち、不活性
ガス中で上記有機金属化合物層を熱分解して形成するこ
とを特長とする硫化物薄膜の形成方法。
1. An organic metal compound layer having at least one metal-sulfur bond inside is formed on a substrate, and then the organic metal compound layer is formed by thermal decomposition in an inert gas. Method for forming sulfide thin film.
【請求項2】金属−硫黄結合を有する有機金属化合物が
金属メルカプチドであることを特徴とする特許請求の範
囲第一項に記載の硫化物薄膜の形成方法。
2. The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-sulfur bond is a metal mercaptide.
【請求項3】金属−硫黄結合を有する有機金属化合物が
金属のチオカルボン酸塩であることを特徴とする特許請
求の範囲第一項に記載の硫化物薄膜の形成方法。
3. The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-sulfur bond is a thiocarboxylic acid salt of a metal.
【請求項4】金属−硫黄結合を有する有機金属化合物が
金属のジチオカルボン酸塩であることを特徴とする特許
請求の範囲第一項に記載の硫化物薄膜の形成方法。
4. The method for forming a sulfide thin film according to claim 1, wherein the organometallic compound having a metal-sulfur bond is a metal dithiocarboxylic acid salt.
JP60006441A 1985-01-17 1985-01-17 Method for forming sulfide thin film Expired - Lifetime JPH0718015B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP60006441A JPH0718015B2 (en) 1985-01-17 1985-01-17 Method for forming sulfide thin film
PCT/JP1986/000015 WO1986004362A1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film
DE8686900838T DE3672285D1 (en) 1985-01-17 1986-01-16 METHOD FOR FORMING THIN METAL SULFIDE FILMS.
EP86900838A EP0211083B1 (en) 1985-01-17 1986-01-16 Process for forming thin metal sulfide film
US07/910,215 US4885188A (en) 1985-01-17 1986-01-16 Process for forming thin film of metal sulfides

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP60006441A JPH0718015B2 (en) 1985-01-17 1985-01-17 Method for forming sulfide thin film

Publications (2)

Publication Number Publication Date
JPS61166979A JPS61166979A (en) 1986-07-28
JPH0718015B2 true JPH0718015B2 (en) 1995-03-01

Family

ID=11638487

Family Applications (1)

Application Number Title Priority Date Filing Date
JP60006441A Expired - Lifetime JPH0718015B2 (en) 1985-01-17 1985-01-17 Method for forming sulfide thin film

Country Status (1)

Country Link
JP (1) JPH0718015B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2615469B2 (en) * 1988-04-21 1997-05-28 松下電器産業株式会社 Method for producing metal sulfide thin film
JP3681870B2 (en) 1997-09-05 2005-08-10 松下電池工業株式会社 Method for producing compound semiconductor film and solar cell

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
InorganicChemistryVol.20No.8(1981)(米)P.2631〜4

Also Published As

Publication number Publication date
JPS61166979A (en) 1986-07-28

Similar Documents

Publication Publication Date Title
JP2615469B2 (en) Method for producing metal sulfide thin film
US10144648B2 (en) Process for pure carbon production
EP0212940B1 (en) A process for the preparation of a graphite intercalation compound
US5425966A (en) Process for coating with single source precursors
WO2018225668A1 (en) Raw material for chemical vapor deposition, and light-blocking container having raw material chemical vapor deposition contained therein and method for producing same
JP2018090855A (en) Raw material for chemical vapor deposition, production method thereof, and production method of oxide film containing indium formed by using raw material for chemical vapor deposition
Donahue et al. Sol-gel preparation of zinc sulfide using organic dithiols
JPH0718015B2 (en) Method for forming sulfide thin film
JPH06102831B2 (en) Method for forming metal sulfide thin film
EP0211083A1 (en) Process for forming thin metal sulfide film
JPH0699809B2 (en) Method for forming sulfide thin film
JPS61166983A (en) Formation of thin sulfide film
CA1336000C (en) Lewis base complexes of alkali metal salts
US4626296A (en) Synthesis of new amorphous metallic spin glasses
JP2827360B2 (en) Organic gold compounds
Wang et al. Long-chain tin (iv) alkanethiolates (Sn (SC n H 2n+ 1) 4, n≥ 12) with the coexistence of trans and gauche S–C bonds: a class of lamellar van der Waals molecular crystals
CA1162400A (en) Intercalation compound of a graphite with a thiazyl salt, a process for producing the same, and an electrically conductive material comprising the intercalation compound of a graphite with a thiazyl salt
JPH079065B2 (en) Method for forming zinc sulfide thin film
JPS6136292A (en) Tungstenoxy alkoxide compound, its preparation and preparation of electrochromic display element
JPH01282125A (en) Production of body covered by composite metal oxide having specified composition
Dinnage Molecular precursor routes to transition metal sulfides
Nakajima et al. Preparation of Graphite Intercalation Compounds of Thiazyl Salts
Macmullin et al. Some metallic derivatives of benzeneselenol
JPH0699808B2 (en) Method for forming cadmium sulfide thin film
JPH04254487A (en) Formation of gold film

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term