JPH07180003A - Fe-ni magnetic alloy excellent in hot workability and magnetic property - Google Patents

Fe-ni magnetic alloy excellent in hot workability and magnetic property

Info

Publication number
JPH07180003A
JPH07180003A JP32283493A JP32283493A JPH07180003A JP H07180003 A JPH07180003 A JP H07180003A JP 32283493 A JP32283493 A JP 32283493A JP 32283493 A JP32283493 A JP 32283493A JP H07180003 A JPH07180003 A JP H07180003A
Authority
JP
Japan
Prior art keywords
magnetic
hot workability
less
alloy
hot
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP32283493A
Other languages
Japanese (ja)
Inventor
Yasuhiro Shimizu
庸宏 清水
Hidehiko Sumitomo
秀彦 住友
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP32283493A priority Critical patent/JPH07180003A/en
Publication of JPH07180003A publication Critical patent/JPH07180003A/en
Withdrawn legal-status Critical Current

Links

Landscapes

  • Soft Magnetic Materials (AREA)

Abstract

PURPOSE:To obtain an Fe-Ni magnetic alloy excellent in hot workability and magnetic properties by adding specified trace amounts of Pb, Bi, Sn, Zn and S to an Fe-Ni alloy. CONSTITUTION:An Fe-Ni allay contg., by weight, 30 to 55% Ni, <0.03% C, 0.05 to 1.0% Si, <2.0% Mn, <0.05% Ti, <0.05% Mg, <0.O5% Al, <0.008% O and <0.008% N, and the balance Fe is furthermore mixed with <15ppm Pb, <15ppm Bi, <200ppm Sn, <200ppm Zn and <50ppm S in such a manner that componental regulation is executed so as to regulate the CV value as an index expressing the influence of impurity contents affecting the hot workability expressed by CV= Pb+Bi+0.03Sn+0.63Zn+0.21S to <=250ppm. The Fe-Ni magnetic alloy sheet free from the generation of ear cracking on the rolled sheet at the time of subjecting the slab of this Fe-Ni alloy to hot rolling and furthermore excellent in magnetic properties can be obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、熱間圧延時に発生する
耳割れ現象を実操業上問題にならない程度に低減改善
し、しかも磁気特性にも優れたFe−Ni系磁性合金に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a Fe-Ni-based magnetic alloy which has reduced and improved edge cracking phenomenon that occurs during hot rolling to the extent that it does not pose a problem in actual operation and has excellent magnetic properties. .

【0002】[0002]

【従来の技術】Fe−Ni系磁性合金は、いわゆるパー
マロイと呼ばれ、磁気ヘッドや磁気シールド等の軟質磁
性材料として広く使用されている。このような用途には
薄板或いは箔が使用され、スラブを熱間圧延し、次いで
冷間圧延して製造される。
2. Description of the Related Art Fe-Ni magnetic alloys are so-called permalloys and are widely used as soft magnetic materials for magnetic heads and magnetic shields. Sheets or foils are used for such applications and are manufactured by hot rolling and then cold rolling slabs.

【0003】しかしながら、Fe−Ni系磁性合金を熱
間圧延すると、熱間加工性が悪いので耳割れが発生する
ことがある。熱間圧延合金板及び帯に耳割れが存在する
と、後工程の冷間圧延時に板破断するので冷間圧延前に
トリミングを行う必要がある。このことは、歩留りを著
しく低下させる原因となっている。その対策として本出
願人は、熱間加工性低下の原因となるSの粒界偏析を防
止するために、Sの低減化及びBの適量添加が有効であ
ることを特開平2−111838号公報により提案して
いる。しかしながら、Bの添加はコストが高くなり、経
済性に劣るといった短所がある。
However, when the Fe-Ni magnetic alloy is hot-rolled, the hot workability is poor and ear cracking may occur. If the hot-rolled alloy sheet and the strip have edge cracks, the sheet is broken during cold rolling in the subsequent process, and therefore it is necessary to perform trimming before cold rolling. This causes a significant decrease in yield. As a countermeasure against this, the applicant of the present invention discloses that reduction of S and addition of an appropriate amount of B are effective in order to prevent segregation of S in grain boundaries, which causes deterioration of hot workability. Is proposed by. However, the addition of B has the disadvantages of high cost and poor economic efficiency.

【0004】また、従来の製造法では、原料としてスク
ラップが使用されている。近年、製造コストの低減化を
目的に低価格のスクラップが大量に使われる傾向にあ
る。この場合、スクラップ中に存在する不純物元素の材
質特性に及ぼす影響を考慮する必要がある。これまで鋼
中のPb,Bi,Sn,Zn,S等の不純物元素濃度が
上昇すると、熱間加工時に割れが発生すると言われてき
た。
Further, in the conventional manufacturing method, scrap is used as a raw material. In recent years, a large amount of low-priced scrap tends to be used for the purpose of reducing the manufacturing cost. In this case, it is necessary to consider the influence of the impurity elements present in the scrap on the material properties. Up to now, it has been said that when the concentration of impurity elements such as Pb, Bi, Sn, Zn and S in steel increases, cracking occurs during hot working.

【0005】これまで本出願人は、特願平4−3495
28号において、Snを添加したオーステナイト系ステ
ンレス鋼において、不純物元素量を規制して材質特性の
劣化を抑え、さらにAl,Caにより脱硫を強化した熱
間加工性の優れたオーステナイト系ステンレス鋼を提案
してきた。しかしながら、Fe−Ni系磁性合金にAl
を添加することは、磁性焼鈍後にAl2 3 が製品表面
に濃化し白濁現象を起こしたり、またSnを添加するこ
とは、磁気特性を劣化させることになり有効ではない。
Up to now, the present applicant has filed Japanese Patent Application No. 4-3495.
No. 28 proposes an austenitic stainless steel with excellent hot workability in which austenitic stainless steel containing Sn is regulated by controlling the amount of impurity elements to suppress deterioration of material properties, and desulfurization is strengthened by Al and Ca. I've been However, the Fe--Ni magnetic alloy has Al
Addition of Al causes Al 2 O 3 to concentrate on the surface of the product after magnetic annealing to cause a clouding phenomenon, and addition of Sn deteriorates the magnetic properties and is not effective.

【0006】一方、本出願人は、特願平5−70202
号において、65〜85%Ni−Fe系合金にB及びM
oを添加し、さらに、不純物元素量を規制した熱間加工
性及び磁性特性の優れたFe−Ni系磁性合金を提案し
てきた。しかしながら、30〜55%程度のNiを含む
Ni−Fe系合金では、Bの添加による熱間加工性の改
善あるいは、Moの添加による磁気特性の改善はあまり
認められないことが知られている。
On the other hand, the present applicant has filed Japanese Patent Application No. 5-70202.
No. 65-85% Ni-Fe alloys with B and M
In addition, Fe-Ni-based magnetic alloys have been proposed, in which O is added and the amount of impurity elements is regulated and hot workability and magnetic properties are excellent. However, it is known that in a Ni—Fe based alloy containing about 30 to 55% Ni, improvement of hot workability by addition of B or improvement of magnetic properties by addition of Mo is not observed so much.

【0007】従来、耳割れ現象を防止し熱間加工性を向
上させるためには、Mn,Ti,Mg等の元素を添加さ
せる方法が知られている。しかしMn,Ti,Mg等の
過度の添加は磁気特性を低下させる一方、最終工程であ
る磁性焼鈍時に表面に白濁現象が発生し製品の意匠性を
損なうために問題がある。磁気特性の点からは、磁気ヘ
ッド、磁気シールド材等の使用周波数域の上昇に伴い、
ますます高い磁気特性が要求されている。
Conventionally, in order to prevent the ear cracking phenomenon and improve the hot workability, a method of adding elements such as Mn, Ti and Mg has been known. However, while excessive addition of Mn, Ti, Mg, etc. deteriorates the magnetic properties, a white turbid phenomenon occurs on the surface during the final step of magnetic annealing, which impairs the design of the product, which is a problem. From the viewpoint of magnetic characteristics, as the operating frequency range of magnetic heads and magnetic shield materials increases,
Increasingly high magnetic properties are required.

【0008】従って、熱間圧延時に発生する耳割れ現象
のない、熱間加工性及び磁気特性に優れたFe−Ni系
磁性合金が強く要望されている。
Therefore, there is a strong demand for an Fe-Ni-based magnetic alloy which is free from the edge cracking phenomenon that occurs during hot rolling and is excellent in hot workability and magnetic properties.

【0009】[0009]

【発明が解決しようとする課題】本発明は、以上のよう
な熱間圧延時に発生する耳割れ現象を、実操業上問題に
ならない程度に低減改善し、しかも磁気特性にも優れた
Fe−Ni系磁性合金を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention reduces and improves the edge cracking phenomenon that occurs during hot rolling as described above to the extent that it does not pose a problem in actual operation, and is also excellent in magnetic characteristics. An object of the present invention is to provide a magnetic alloy.

【0010】[0010]

【課題を解決するための手段、作用】本発明は、この目
的のために熱間加工性に及ぼすPb,Bi,Sn,Z
n,S等不純物元素の影響を詳細に調査し、その他の成
分も種々検討した結果、下記のように成分を限定するこ
とにより達成されたものである。すなわち本発明の要旨
は、重量%にて、Ni:30〜55%、C:0.03%
以下、Si:0.05〜1.0%、Mn:2.0%以
下、Ti:0.05%以下、Mg:0.05%以下、A
l:0.05%以下、O:0.008%以下、N:0.
008%以下とし、更にPb,Bi,Sn,Zn,Sの
含有量が、重量ppmで、Pb:15ppm以下、B
i:15ppm以下、Sn:200ppm以下、Zn:
20ppm以下、S:50ppm以下であり、かつ1式
で規定されるCVの値が25ppm以下であり、残部が
Feおよび不可避的不純物からなることを特徴とする熱
間加工性及び磁気特性に優れたFe−Ni系磁性合金に
ある。
For the purpose of the present invention, the present invention has an effect on the hot workability of Pb, Bi, Sn, Z.
As a result of detailed investigation of the influence of impurity elements such as n and S, and various investigations on other components, it was achieved by limiting the components as described below. That is, the gist of the present invention is, in% by weight, Ni: 30 to 55%, C: 0.03%.
Hereinafter, Si: 0.05 to 1.0%, Mn: 2.0% or less, Ti: 0.05% or less, Mg: 0.05% or less, A
1: 0.05% or less, O: 0.008% or less, N: 0.
008% or less, and the content of Pb, Bi, Sn, Zn, S is ppm by weight, Pb: 15 ppm or less, B
i: 15 ppm or less, Sn: 200 ppm or less, Zn:
20 ppm or less, S: 50 ppm or less, the CV value defined by the formula 1 was 25 ppm or less, and the balance being Fe and inevitable impurities, and was excellent in hot workability and magnetic properties. Fe-Ni magnetic alloy.

【0011】 CV=Pb+Bi+0.03Sn+0.63Zn+0.21S 1式 以下、本発明合金の化学成分の限定理由について詳細に
説明する。Niは、本合金の基本成分であり、Niが3
0%未満の場合、または55%を超える場合は合金の磁
気特性が低下して、軟質磁性材料としての特性を発揮で
きなくなる。従って、Niの範囲は30〜55%とし
た。
CV = Pb + Bi + 0.03Sn + 0.63Zn + 0.21S 1 Formula Hereinafter, the reasons for limiting the chemical components of the alloy of the present invention will be described in detail. Ni is a basic component of this alloy, and Ni is 3
If it is less than 0% or exceeds 55%, the magnetic properties of the alloy are deteriorated and the properties as a soft magnetic material cannot be exhibited. Therefore, the range of Ni is set to 30 to 55%.

【0012】Cは、含有量が多くなりすぎると合金中に
炭化物を形成し、熱間加工性や磁気特性を劣化させるた
め、その上限を0.03%とした。Siは、脱酸剤とし
て有効な成分であり、0.05%未満ではその効果が少
なく、また1.0%を超える場合は、SiO2 が顕著に
生成するために磁気特性が劣化する。従って、Siの範
囲は0.05〜1.0%とした。さらに好ましくは、
0.20〜0.50%が良い。
If the content of C is too large, it forms carbides in the alloy and deteriorates hot workability and magnetic properties, so the upper limit was made 0.03%. Si is an effective component as a deoxidizing agent, and if it is less than 0.05%, its effect is small, and if it exceeds 1.0%, SiO 2 is remarkably generated and the magnetic properties are deteriorated. Therefore, the range of Si is set to 0.05 to 1.0%. More preferably,
0.20 to 0.50% is good.

【0013】Mnは、2.0%を超えると熱間加工性を
飽和させるために、その上限を2.0%とした。Ti
は、熱間加工性を向上させ、また脱酸剤としても有効な
成分であるが、0.05%を超えると磁性焼鈍後にTi
2 が製品表面に偏析し白濁現象を起こすので、その上
限を0.05%とした。さらに好ましくは、0.03%
以下が良い。
When Mn exceeds 2.0%, the hot workability is saturated, so the upper limit was made 2.0%. Ti
Is a component that improves hot workability and is also effective as a deoxidizing agent. However, if it exceeds 0.05%, Ti after magnetic annealing is
O 2 segregates on the surface of the product and causes a white turbidity phenomenon, so the upper limit was made 0.05%. More preferably, 0.03%
The following is good.

【0014】Mgは、熱間加工性を向上させるために有
効な成分であるが、0.05%を超えると磁性焼鈍後に
MgOが製品表面に偏析し白濁現象を起こすので、その
上限を0.05%とした。さらに好ましくは、0.03
%以下が良い。Alは、脱酸剤として有効な成分である
が、0.05%を超えると磁性焼鈍後にAl2 3 が製
品表面に濃化し白濁現象を起こすので、その上限を0.
05%とした。さらに好ましくは、0.03%以下が良
い。
Mg is an effective component for improving hot workability, but if it exceeds 0.05%, MgO segregates on the product surface after magnetic annealing to cause a clouding phenomenon, so the upper limit is set to 0. It was set to 05%. More preferably, 0.03
% Or less is good. Al is an effective component as a deoxidizing agent, but if it exceeds 0.05%, Al 2 O 3 concentrates on the product surface after magnetic annealing and causes a clouding phenomenon, so the upper limit is set to 0.
It was set to 05%. More preferably, it is 0.03% or less.

【0015】Oは、含有量が多くなりすぎると酸化物が
析出し磁気特性を劣化させるので、その上限を0.00
8%とした。さらに好ましくは、0.003%以下が良
い。Nは、含有量が多くなりすぎると窒化物が析出し磁
気特性を劣化させるので、その上限を0.008%とし
た。さらに好ましくは、0.003%以下が良い。P
b,Zn,Biは凝固時の溶質濃化により偏析しやす
く、かつ粒界で低融点相を形成しやすいため、熱間加工
性を著しく低下させる。このため、Pb,Biの上限を
15ppm、Znの上限を20ppmとした。
If the content of O is too large, an oxide precipitates and deteriorates the magnetic properties, so the upper limit is 0.00.
8%. More preferably, it is 0.003% or less. If the content of N is too large, nitride precipitates and deteriorates the magnetic properties, so the upper limit was made 0.008%. More preferably, it is 0.003% or less. P
b, Zn, and Bi are likely to segregate due to solute concentration during solidification, and easily form a low melting point phase at grain boundaries, so that the hot workability is significantly reduced. Therefore, the upper limits of Pb and Bi are set to 15 ppm, and the upper limit of Zn is set to 20 ppm.

【0016】Sn,Sは、Pb,Zn,Biに比較して
影響は少ないものの、高濃度では熱間加工性を劣化させ
る傾向があるため、それぞれ上限を200、50ppm
とした。これらの不純物元素は先に述べたように特に凝
固時の溶質濃化により偏析しやすく、かつ粒界において
低融点相を形成しやすい。1式における各元素の係数は
偏析および低融点相の形成能の2つの要因により決定さ
れる。
Although Sn and S have less influence than Pb, Zn and Bi, they tend to deteriorate hot workability at high concentrations, so the upper limits are 200 and 50 ppm, respectively.
And As described above, these impurity elements are likely to segregate due to the solute concentration during solidification and to form a low melting point phase at grain boundaries. The coefficient of each element in Formula 1 is determined by two factors, segregation and the ability to form a low melting point phase.

【0017】CVの値は、熱間加工性に及ぼす不純物元
素含有量の影響を表す指標である。Pb,Bi,Sn,
Zn及びSはスクラップ及び合金原料より混入するもの
である。Pb,Bi,Znは高蒸気圧成分であり、精錬
時間のコントロールによる高温下での蒸発反応により除
去可能である。一方、Snは、Pb,Bi,Znに比較
して蒸気圧が低いため、蒸発反応によっても除去しにく
く、現状の大量生産工程においては原料を選択する以外
にない。一方、Sはスラグ精錬による除去が可能であ
り、例えば高塩基度スラグを用いた脱硫処理がなされ
る。
The value of CV is an index showing the influence of the content of the impurity element on the hot workability. Pb, Bi, Sn,
Zn and S are mixed from scrap and alloy raw materials. Pb, Bi, and Zn are high vapor pressure components and can be removed by an evaporation reaction under high temperature by controlling the refining time. On the other hand, since Sn has a lower vapor pressure than Pb, Bi, and Zn, it is difficult to remove Sn even by an evaporation reaction, and in the current mass production process, there is no choice but to select a raw material. On the other hand, S can be removed by slag refining, and for example, desulfurization treatment using high basicity slag is performed.

【0018】本発明では原料選択,蒸発反応,スラグ精
錬を利用して、CVの値が25ppm以下になるように
制御することにより、安定して熱間加工性の優れた材料
を得ることが可能となるものである。図1に熱間引張破
断時の絞り値、熱延板の表面疵発生ランクとCVの値の
関係を示す。CVの値が25ppmを超えた場合、熱間
加工性が著しく低下し、熱間圧延にて表面及び端部に疵
発生が観察された。そこで、CVの値を25ppm以下
と限定した。また、絞り値は高値ほど熱間加工性が良好
であり、本発明では約80%以上であれば割れ等の欠陥
を発生することなく熱間圧延が可能であった。
In the present invention, it is possible to stably obtain a material having excellent hot workability by controlling the CV value to 25 ppm or less by utilizing the raw material selection, the evaporation reaction and the slag refining. It will be. FIG. 1 shows the relationship between the drawing value at the time of hot tensile rupture, the surface flaw generation rank of the hot rolled sheet, and the CV value. When the value of CV exceeded 25 ppm, the hot workability was remarkably deteriorated, and flaws were observed on the surface and the edges during hot rolling. Therefore, the value of CV is limited to 25 ppm or less. Further, the higher the drawing value is, the better the hot workability is. In the present invention, if it is about 80% or more, hot rolling can be performed without generating defects such as cracks.

【0019】[0019]

【実施例】次に、本発明の優位性を実施例と比較例を用
いて、具体的に説明する。表1および表2(表1のつづ
き)に本発明例と比較例の化学成分及び熱間加工性、磁
気特性を示す。表1、表2に示すような本発明合金と比
較合金を、真空誘導溶解炉で溶製し、連続鋳造法により
スラブとした。その後1250℃×2時間加熱後熱間圧
延を行った。また、各特性の評価は下記の方法で行っ
た。
EXAMPLES Next, the superiority of the present invention will be specifically described with reference to Examples and Comparative Examples. Tables 1 and 2 (continued from Table 1) show the chemical components, hot workability and magnetic properties of the examples of the present invention and the comparative examples. The alloys of the present invention and the comparative alloys shown in Tables 1 and 2 were melted in a vacuum induction melting furnace and made into slabs by a continuous casting method. Then, after heating at 1250 ° C. for 2 hours, hot rolling was performed. Moreover, evaluation of each characteristic was performed by the following method.

【0020】(1)熱間加工性 1250℃加熱後冷却過程において高速引張試験を実施
した。熱間加工性の評価は冷却過程の1100℃におけ
る引張破断部の熱間絞り値(%)で評価した。また、熱
延を行いその時の熱延板の表面疵及び耳割れ発生を以下
のようにランク評価した。
(1) Hot workability A high-speed tensile test was carried out in the cooling process after heating at 1250 ° C. The hot workability was evaluated by the hot drawing value (%) of the tensile fracture portion at 1100 ° C in the cooling process. Further, hot rolling was performed, and the surface flaws and the occurrence of edge cracks of the hot rolled sheet at that time were ranked as follows.

【0021】○ 表面疵及び耳割れ発生なし △ 一部表面疵及び耳割れ発生 × 全面表面疵及び耳割れ発生 (2)磁気特性 熱延板端部をスリットし表面の疵取りを行い、冷間圧
延、中間焼鈍を繰り返し板厚0.5mmの冷延薄板を得
た後、外径45mm×内径33mmのJIS規格に基づ
いたリング片を採取した。その後、磁性焼鈍(1100
℃×3時間、水素雰囲気中、露点:55℃)を行い、最
大比透磁率を測定した。
○ No surface flaws and edge cracks occurred △ Partial surface flaws and edge cracks occurred × Whole surface surface flaws and edge cracks occurred (2) Magnetic characteristics The edges of the hot-rolled sheet were slit to remove surface flaws, and then cold After rolling and intermediate annealing were repeated to obtain a cold-rolled thin plate having a plate thickness of 0.5 mm, a ring piece having an outer diameter of 45 mm and an inner diameter of 33 mm based on the JIS standard was sampled. Then, magnetic annealing (1100
The maximum relative magnetic permeability was measured by performing dew point: 55 ° C. in a hydrogen atmosphere at 3 ° C. for 3 hours.

【0022】No.1〜8は本発明例、No.9〜27
は比較例である。各元素の量もしくはCV値が本発明範
囲を外れている場合、熱間加工性及び磁気特性は本発明
例に比べて劣っている。比較例No.9、10はNi量
が本発明範囲を超えるものであり、この場合において
は、磁気特性が著しく低下している。比較例No.11
はC量が本発明範囲を超えるものであり、熱間加工性及
び磁気特性が劣っている。比較例No.12はSi量が
本発明範囲未満であり、脱酸効果が少なく、磁気特性が
劣っている。比較例No.13はSi量が本発明範囲を
超えるものであり、磁気特性が劣っている。比較例N
o.14はMn量が本発明範囲を超えるものであり、熱
間加工性への効果が飽和する傾向にあり、コスト面から
好ましくない。比較例No.15はTi量が、No.1
6はMg量が、No.17はAl量が高く、本発明範囲
を超えているために磁性焼鈍後に製品表面に白濁現象が
発生した。比較例No.18はO量が、No.19はN
量が高く、本発明範囲を超えているために磁気特性が劣
っている。比較例No.20はPb量が、No.21は
Bi量が、No.22はSn量が、No.23はZn量
が、No.24はS量が高く、CV値の本発明範囲を単
一で超えるものであり、熱間加工性が劣り、熱延時にお
いて割れが発生している。また、比較例No.25はP
b,Biが、No.26はSn,Znが高く、CV値が
本発明範囲を超えるものであり、この場合においても熱
間加工性が著しく劣り、熱延時において割れが多発して
いる。
No. Nos. 1 to 8 are examples of the present invention. 9-27
Is a comparative example. When the amount of each element or the CV value is outside the range of the present invention, the hot workability and magnetic properties are inferior to those of the examples of the present invention. Comparative Example No. In Nos. 9 and 10, the amount of Ni exceeds the range of the present invention, and in this case, the magnetic properties are remarkably deteriorated. Comparative Example No. 11
Has an amount of C exceeding the range of the present invention and is inferior in hot workability and magnetic properties. Comparative Example No. In No. 12, the amount of Si is less than the range of the present invention, the deoxidizing effect is small, and the magnetic properties are poor. Comparative Example No. In No. 13, the Si content exceeds the range of the present invention, and the magnetic properties are inferior. Comparative Example N
o. No. 14 has an Mn content exceeding the range of the present invention, and the effect on hot workability tends to be saturated, which is not preferable in terms of cost. Comparative Example No. No. 15 has a Ti content of No. 1
No. 6 has a Mg content of No. 6 Sample No. 17 has a high Al content, which exceeds the range of the present invention, and thus the white turbidity phenomenon occurred on the product surface after magnetic annealing. Comparative Example No. No. 18 has the O amount. 19 is N
The amount is high and the magnetic properties are inferior because it exceeds the range of the present invention. Comparative Example No. No. 20 has a Pb amount of No. 20. No. 21 has a Bi content of No. 21. No. 22 has a Sn content of No. 22. No. 23 has a Zn content of No. 23. No. 24, which has a high S content and exceeds the CV value of the present invention range alone, is inferior in hot workability and cracks are generated during hot rolling. In addition, Comparative Example No. 25 is P
b and Bi are No. No. 26 has a high Sn and Zn and a CV value exceeding the range of the present invention, and also in this case, the hot workability is remarkably inferior and cracks frequently occur during hot rolling.

【0023】また、比較例No.27は、不純物元素P
b,Bi,Sn,Zn,S量は本発明範囲内ではある
が、CV値が本発明範囲を超えるものであり、この場合
においても熱間加工性が著しく劣り、熱延時において割
れが多発している。
Further, in Comparative Example No. 27 is an impurity element P
The amounts of b, Bi, Sn, Zn, and S are within the range of the present invention, but the CV value exceeds the range of the present invention. Also in this case, hot workability is remarkably inferior and cracks frequently occur during hot rolling. ing.

【0024】[0024]

【表1】 [Table 1]

【0025】[0025]

【表2】 [Table 2]

【0026】[0026]

【発明の効果】以上のことから明らかなように、本発明
によるFe−Ni系磁性合金は、熱間圧延時に発生する
耳割れ現象を実操業上問題にならない程度に低減改善
し、しかも磁気特性にも優れたものである。
As is apparent from the above, the Fe-Ni-based magnetic alloy according to the present invention reduces and improves the ear cracking phenomenon that occurs during hot rolling to such an extent that it does not pose a problem in actual operation, and has magnetic characteristics. It is also excellent.

【図面の簡単な説明】[Brief description of drawings]

【図1】熱間引張破断時の絞り値、熱延板の表面疵及び
耳割れ発生ランクとCV値の関係を示す図である。
FIG. 1 is a diagram showing a relationship between a drawing value at the time of hot tensile rupture, a surface flaw of a hot-rolled sheet, and a crack generation rank of an edge crack, and a CV value.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 重量%にて、Ni:30〜55%、C:
0.03%以下、Si:0.05〜1.0%、Mn:
2.0%以下、Ti:0.05%以下、Mg:0.05
%以下、Al:0.05%以下、O:0.008%以
下、N:0.008%以下とし、さらにPb,Bi,S
n,Zn,Sの含有量が、重量ppmで、Pb:15p
pm以下、Bi:15ppm以下、Sn:200ppm
以下、Zn:20ppm以下、S:50ppm以下であ
り、かつ1式で規定されるCVの値が25ppm以下で
あり、残部がFeおよび不可避的不純物からなることを
特徴とする熱間加工性及び磁気特性に優れたFe−Ni
系磁性合金。 CV=Pb+Bi+0.03Sn+0.63Zn+0.21S・・・1式
1. Ni: 30-55%, C:% by weight
0.03% or less, Si: 0.05 to 1.0%, Mn:
2.0% or less, Ti: 0.05% or less, Mg: 0.05
% Or less, Al: 0.05% or less, O: 0.008% or less, N: 0.008% or less, and further Pb, Bi, S
The content of n, Zn, S is ppm by weight, and Pb: 15p
pm or less, Bi: 15 ppm or less, Sn: 200 ppm
Hereinafter, Zn: 20 ppm or less, S: 50 ppm or less, the value of CV defined by the formula 1 is 25 ppm or less, and the balance is Fe and unavoidable impurities. Fe-Ni with excellent characteristics
Series magnetic alloy. CV = Pb + Bi + 0.03Sn + 0.63Zn + 0.21S ... 1 formula
JP32283493A 1993-12-21 1993-12-21 Fe-ni magnetic alloy excellent in hot workability and magnetic property Withdrawn JPH07180003A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32283493A JPH07180003A (en) 1993-12-21 1993-12-21 Fe-ni magnetic alloy excellent in hot workability and magnetic property

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32283493A JPH07180003A (en) 1993-12-21 1993-12-21 Fe-ni magnetic alloy excellent in hot workability and magnetic property

Publications (1)

Publication Number Publication Date
JPH07180003A true JPH07180003A (en) 1995-07-18

Family

ID=18148130

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32283493A Withdrawn JPH07180003A (en) 1993-12-21 1993-12-21 Fe-ni magnetic alloy excellent in hot workability and magnetic property

Country Status (1)

Country Link
JP (1) JPH07180003A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938030A (en) * 2014-04-29 2014-07-23 王杨 Method for preparing nickel-based soft magnetic material

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103938030A (en) * 2014-04-29 2014-07-23 王杨 Method for preparing nickel-based soft magnetic material

Similar Documents

Publication Publication Date Title
JP2536685B2 (en) Fe-Ni alloy for lead frame material having excellent Ag plating property and method for producing the same
JP6194956B2 (en) Ferritic stainless steel with excellent oxidation resistance, good high-temperature strength, and good workability
JP2803522B2 (en) Ni-Fe-based magnetic alloy excellent in magnetic properties and manufacturability and method for producing the same
JPS5915979B2 (en) Stainless steel alloy with fewer rolling defects during hot rolling
JP7223210B2 (en) Precipitation hardening martensitic stainless steel sheet with excellent fatigue resistance
JPH1088285A (en) Molybdenum-containing ferritic stainless steel excellent in oxide scale peeling resistance
JPH06158234A (en) Austenitic stainless steel excellent in workability
JPH07180003A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JPH06279901A (en) Fe-ni magnetic alloy excellent in hot workability and magnetic property
JP3266247B2 (en) Duplex stainless steel with excellent hot workability
JPH06200353A (en) Austenitic stainless steel excellent in hot workability
JP3297698B2 (en) Method for producing B-containing stainless steel and B-containing stainless steel
JPH07252607A (en) Production of stainless steel material for ultrahigh vacuum equipment, excellent in vacuum characteristic and hot workability, and ultrahigh vacuum vessel
JP2864964B2 (en) Fe-Ni-based alloy cold rolled sheet excellent in plating property and solderability and method for producing the same
WO2022138194A1 (en) Precipitation-hardened martensitic stainless steel having excellent fatigue-resistance characteristics
JP2939118B2 (en) Fe-Ni alloy for electronic and electromagnetic applications
JP3558745B2 (en) Hot-rolled steel sheet for press forming excellent in secondary workability and surface quality and method for producing the same
JP2759678B2 (en) Stainless steel with excellent hot workability
JPH07316747A (en) Stock for shadow mask excellent in hot workability and etching property
JP2663777B2 (en) Fe-Ni alloy excellent in plating property and method for producing the same
JP2000129399A (en) Iron-nickel alloy for shadow mask, and its manufacture
JP2003129186A (en) Low thermal-expansion alloy thin-sheet superior in manufacturing property
JPH0137469B2 (en)
JPH07242938A (en) Production of hot rolled steel sheet excellent in workability
JPH10265910A (en) Austenitic stainless steel excellent in hot workability

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306