JPH07179577A - Production of organic conductor and organic conductor produced by the process - Google Patents

Production of organic conductor and organic conductor produced by the process

Info

Publication number
JPH07179577A
JPH07179577A JP34647593A JP34647593A JPH07179577A JP H07179577 A JPH07179577 A JP H07179577A JP 34647593 A JP34647593 A JP 34647593A JP 34647593 A JP34647593 A JP 34647593A JP H07179577 A JPH07179577 A JP H07179577A
Authority
JP
Japan
Prior art keywords
magnetic field
organic conductor
monomer
electrode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34647593A
Other languages
Japanese (ja)
Inventor
Yoshihiko Iijima
喜彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34647593A priority Critical patent/JPH07179577A/en
Publication of JPH07179577A publication Critical patent/JPH07179577A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To easily obtain an organic conductor stable at high temperature and extremely useful as electrode, optical function element, cell, etc., by carrying out electrolytic polymerization in the presence of magnetic field having a specific magnetic field intensity. CONSTITUTION:This conductor is produced by carrying out the electrochemical polymerization of a monomer and/or oligomer (preferably thiophene and its derivative) on the surface of an electrode, in an electrolytic solution in the presence of magnetic field having a field intensity of >=1Oe, preferably >=1.3T. The reaction is preferably carried out by electrolytic oxidation. Concretely, an electrolyte solution is prepared by using thiophene as the monomer, tetrabutylammonium tetrafluoroborate as the electrolyte and propylene carbonate as the solvent, dipping a working electrode composed of platinum and a counter electrode composed of copper into the electrolyte solution and applying a potential of 5V to the electrode pair while applying a magnetic field of 1,500Oe with a permanent magnet perpendicular to the direction of the electric field.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機導電体の製造方法に
関し、詳しくは電極、光機能素子、電池、非線形光学材
料、各種センサー、電磁シールド、FET等に有用な高
強度有機導電体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an organic conductor, more specifically, a high-strength organic conductor useful for electrodes, optical functional devices, batteries, nonlinear optical materials, various sensors, electromagnetic shields, FETs and the like. Regarding the method.

【0002】[0002]

【従来の技術】有機導電体の合成は、モノマーを酸化剤
や触媒を用いて重合する化学的重合法、非共役系ポリマ
ーからなる中間体を熱処理する方法、及び電解重合法等
を用いて行なわれている。ここで電解重合法とは、モノ
マー(あるいはオリゴマー)及び支持電解質を含む電解
液に、作用電極及び対極、更に必要に応じて参照電極を
浸漬し、電圧を印加することによって、モノマーを電気
化学的に電極表面上で電解酸化あるいは電解還元し、カ
チオンラジカルやアニオンラジカルのような反応活性種
をin situに生成させ、これが重合してポリマー
となるものであり、その手法も簡単で且つ得られるポリ
マーも高い導電率を有しているので、実際の製造並びに
応用にも適している。
2. Description of the Related Art The synthesis of an organic conductor is carried out by a chemical polymerization method in which a monomer is polymerized using an oxidant or a catalyst, a method in which an intermediate made of a non-conjugated polymer is heat-treated, an electrolytic polymerization method and the like. Has been. Here, the electrolytic polymerization method means that the working electrode and the counter electrode, and if necessary, the reference electrode are immersed in an electrolytic solution containing a monomer (or an oligomer) and a supporting electrolyte, and a voltage is applied to the monomer so that the monomer is electrochemically reacted. A polymer that can be easily obtained by electrolytic oxidation or electrolytic reduction on the electrode surface to generate in situ reactive reactive species such as cation radicals and anion radicals, which are polymerized into a polymer. Since it also has a high conductivity, it is also suitable for actual manufacturing and application.

【0003】ただ、電解重合法により合成された有機導
電体は、電気伝導度、強度等の物性の面で不充分なもの
もあり、またその収率等の製造面でも満足されるもので
はなく、特に高温で安定とは言えないという欠点があ
り、使用できる範囲が限られていた。そこで、電気伝導
度を向上させるために、磁場を印加しながら電解重合を
行なう方法(特開昭64−79221号公報)や、収率
を向上させるために、電解液を流動させるような磁場の
存在下に電解重合を行なう方法(特開平3−19092
2号、特開平3−263424号公報)などが提案され
ている。
However, some of the organic conductors synthesized by the electrolytic polymerization method are insufficient in physical properties such as electric conductivity and strength, and are not satisfactory in production such as yield. However, there is a drawback that it cannot be said to be stable especially at high temperatures, and the usable range was limited. Therefore, in order to improve the electric conductivity, electrolytic polymerization is performed while applying a magnetic field (Japanese Patent Laid-Open No. 64-79221), and in order to improve the yield, a magnetic field for flowing an electrolytic solution is used. A method of carrying out electrolytic polymerization in the presence (Japanese Patent Laid-Open No. 3-19092).
No. 2, JP-A-3-263424) and the like have been proposed.

【0004】[0004]

【発明が解決しようとする課題】たしかにこれらの方法
によると、電気伝導度や収率の点では向上がみられる
が、ただ得られる有機導電体は高温で安定とは言えず、
使用できる範囲が限られていた。
Certainly, according to these methods, the electric conductivity and the yield are improved, but the obtained organic conductor is not stable at high temperature.
The usable range was limited.

【0005】従って、本発明の目的は、上記課題が解決
された、すなわち、容易に高温で安定な有機導電体が得
られる製造方法、及び該方法によって製造された高温で
安定な有機導電体を提供することにある。
Therefore, an object of the present invention is to solve the above-mentioned problems, that is, to provide a method for producing an organic conductor which is stable at high temperature easily, and an organic conductor which is stable at high temperature produced by the method. To provide.

【0006】[0006]

【課題を解決するための手段】本発明によれば、モノマ
ー及び/又はオリゴマーを含む電解液中において、電極
表面上で電解液中のモノマー及び/又はオリゴマーに電
気化学的に重合反応を生じさせるに当たり、該反応を1
Oe以上の磁場の存在下に実施することを特徴とする高
温で安定な有機導電体の製造方法が提供され、また該方
法によって形成された高温で安定な有機導電体が提供さ
れる。
According to the present invention, in an electrolytic solution containing a monomer and / or an oligomer, an electrochemical polymerization reaction is caused to occur on the surface of an electrode on the monomer and / or oligomer in the electrolytic solution. The reaction is 1
Provided is a method for producing a high temperature stable organic conductor, which is characterized in that it is carried out in the presence of a magnetic field of Oe or higher, and a high temperature stable organic conductor formed by the method is provided.

【0007】以下、本発明の有機導電体の製造方法及び
該方法によって得られた有機導電体について、詳しく説
明する。本発明の方法は電解重合を磁場中で行なうこと
により高温で安定な有機導電体を形成することを特徴と
する。印加する磁場強度は1Oe(エルステッド)未満
では地磁気と同程度であり効果がみられないため、1O
e以上を必要とする。本発明者は鋭意検討した結果、磁
場中での電解重合によって得られた有機導電体は、磁場
を印加せずに電解重合して得られたものに比べ、ポリマ
ーの分解温度が高くなり、しかも磁場強度を大きくする
程、ポリマーの分解温度が高くなることを見出した。特
に磁場強度を1.3T(テスラ)以上の強磁場にした場
合は、分解温度が非常に高くなり、高温で安定なため、
従来の有機導電体の欠点を克服でき、実用上非常に重要
となる。これは磁場中で電解重合した場合、無磁場中で
電解重合した場合と比べ、ポリマーの分子量が大きくな
るためである。例えば、3−ドデシルチオフェンを無磁
場中で電解重合した場合は、ポリマーの分子量は約10
万まで分布しているのに対し、8Tの強磁場中で電解重
合した場合は、約70万まで分布している。このことか
ら、分解温度も高くなり、高温で安定な有機導電体とな
る。
The method for producing an organic conductor of the present invention and the organic conductor obtained by the method will be described in detail below. The method of the present invention is characterized by forming an organic conductor that is stable at high temperature by performing electrolytic polymerization in a magnetic field. If the applied magnetic field strength is less than 10 Oe (Oersted), it is almost the same as the geomagnetism and no effect is seen.
e or more is required. As a result of diligent studies by the present inventor, the organic conductor obtained by electrolytic polymerization in a magnetic field has a higher decomposition temperature of the polymer than that obtained by electrolytic polymerization without applying a magnetic field, and It was found that the higher the magnetic field strength, the higher the decomposition temperature of the polymer. In particular, when the magnetic field strength is set to a strong magnetic field of 1.3 T (tesla) or more, the decomposition temperature becomes very high and stable at high temperature,
It can overcome the drawbacks of conventional organic conductors and is very important for practical use. This is because the molecular weight of the polymer becomes larger when electrolytically polymerized in a magnetic field than when electrolytically polymerized in a non-magnetic field. For example, when 3-dodecylthiophene is electropolymerized in a magnetic field, the molecular weight of the polymer is about 10
In contrast, when electropolymerization is carried out in a strong magnetic field of 8T, it is distributed up to about 700,000. From this, the decomposition temperature becomes high, and the organic conductor becomes stable at high temperature.

【0008】ここで、磁場の印加は、例えば永久磁石あ
るいは永久磁石を磁気回路に組み込んだもの、ヘルムホ
ルツコイル、ソレノイドコイル、電磁石、超伝導磁石等
の磁場を発生できるものならば、何を用いてもさしつか
えない。もちろん定常磁場、パルス磁場共に使用するこ
とができる。
The magnetic field may be applied by any means such as a permanent magnet or a permanent magnet incorporated in a magnetic circuit, a Helmholtz coil, a solenoid coil, an electromagnet, a superconducting magnet, or any other magnetic field. It doesn't matter. Of course, both the stationary magnetic field and the pulsed magnetic field can be used.

【0009】本発明において使用されるモノマーあるい
はオリゴマーとしては、例えばアミノ酸あるいは水酸基
を含む芳香族化合物、複素環式化合物、ベンゼン及び2
個あるいはそれ以上の縮合芳香族環をもつ多環式炭化水
素化合物、ビニル基を有する化合物、アセチレン及びそ
の誘導体など多くの物質を対象とすることができる。ま
た、ここでモノマーとしてチオフェン及びその誘導体を
用いた場合は、上述した効果が顕著に認められる。
Examples of the monomer or oligomer used in the present invention include aromatic compounds containing amino acids or hydroxyl groups, heterocyclic compounds, benzene and 2
Many substances such as polycyclic hydrocarbon compounds having one or more condensed aromatic rings, compounds having a vinyl group, acetylene and derivatives thereof can be used. Further, when thiophene and its derivative are used as the monomer here, the above-mentioned effects are remarkably observed.

【0010】これらのモノマーあるいはオリゴマーを溶
解する溶媒としては、例えば、アセトニトリル、ベンゾ
ニトリル、プロピレンカーボネイトをはじめとする非プ
ロトン性溶媒、例えばメタノールやエタノール等のプロ
トン性溶媒、水等多くのものを使用することができる。
また、電解質としては、例えばLiBF4、LiCl
4、LiPF6、LiAsF6、p−トルエンスルホン
酸塩、m−ニトロベンゼンスルホン酸塩をはじめとし
て、これも多くの物質を使用することができ、重合する
モノマーの種類及び重合の条件によって、これらの適切
な組み合わせが選定され電解液となる。
As the solvent for dissolving these monomers or oligomers, for example, aprotic solvents such as acetonitrile, benzonitrile, propylene carbonate, protic solvents such as methanol and ethanol, water and many others are used. can do.
Further, as the electrolyte, for example, LiBF 4 , LiCl
Many substances can be used, including O 4 , LiPF 6 , LiAsF 6 , p-toluenesulfonate, and m-nitrobenzenesulfonate, and depending on the type of monomer to be polymerized and the conditions of polymerization, these substances can be used. An appropriate combination of is selected as the electrolytic solution.

【0011】ここで、上述の電解重合を電解酸化によっ
て行なう場合は、例えばアミノ酸あるいは水酸基を含む
芳香族化合物、複素環式化合物、ベンゼン及び2個ある
いはそれ以上の縮合芳香族環をもつ多環式炭化水素化合
物、ビニル基を有する化合物等の非常に多くのモノマー
が重合できるため、例えば、ポリチオフェン、ポリピロ
ール、ポリアニリン、ポリパラフェニレン、ポリアズレ
ン、ポリピレンをはじめとする代表的な有機導電体のモ
ノマーが使用できる。
When the above-mentioned electrolytic polymerization is carried out by electrolytic oxidation, for example, aromatic compounds containing amino acids or hydroxyl groups, heterocyclic compounds, benzene and polycyclic compounds having two or more condensed aromatic rings. Since a large number of monomers such as hydrocarbon compounds and compounds having vinyl groups can be polymerized, typical organic conductor monomers such as polythiophene, polypyrrole, polyaniline, polyparaphenylene, polyazulene, and polypyrene are used. it can.

【0012】また、上述の製造方法にて形成される有機
導電体の形状は、様々な電解条件、使用する電極の材質
及び形状、並びに電極間距離、電極(あるいは電極対)
に対する印加磁場の方向等により、種々のものが得られ
る。特に、この形状が膜状あるいは薄膜状の場合(通常
電極対を平行平板にした場合に得られる)には、それ自
体機能性材料となり得るばかりでなく、他の材料との組
み合わせあるいは接合等も容易になるため、高温で安定
という利点を活かして、電気関連分野、光関連分野、エ
ネルギー関連分野、化学関連分野等の様々な分野への応
用が可能となる。
The shape of the organic conductor formed by the above-mentioned manufacturing method is various electrolysis conditions, the material and shape of the electrodes to be used, the distance between electrodes, the electrode (or electrode pair)
Various things can be obtained according to the direction of the applied magnetic field with respect to. In particular, when this shape is a film or a thin film (usually obtained when the electrode pair is a parallel plate), not only can it itself be a functional material, but it can also be combined with other materials or bonded. Since it becomes easy, it can be applied to various fields such as electric fields, optical fields, energy fields, and chemical fields by utilizing the advantage of being stable at high temperature.

【0013】[0013]

【実施例】以下本発明を実施例により説明するが、これ
により本発明の態様が限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the embodiments of the present invention are not limited thereby.

【0014】実施例1 モノマーとしてチオフェン(5.0M)、電解質として
テトラブチルアンモニウムテトラフルオロボレイト
(0.4M)、溶媒としてプロピレンカーボネイトを用
いて電解液とした。この電解液を電解槽に満たし、白金
からなる作用電極(陽極)と、銅からなる対極(陰極)
の電極対を浸漬した。この電極対に5Vの電圧を印加
し、作用電極上にチオフェンを重合させることにより、
ポリチオフェンを形成した。このとき、磁場は永久磁石
を用いて印加し、磁場強度を1,500Oeとした。な
お、ポリチオフェンの形成は、比較のために、磁場を印
加しない場合についても行なった。
Example 1 An electrolyte solution was prepared by using thiophene (5.0M) as a monomer, tetrabutylammonium tetrafluoroborate (0.4M) as an electrolyte, and propylene carbonate as a solvent. The electrolytic cell is filled with this electrolytic solution, and a working electrode (anode) made of platinum and a counter electrode (cathode) made of copper
The electrode pair of was immersed. By applying a voltage of 5 V to this electrode pair and polymerizing thiophene on the working electrode,
Formed polythiophene. At this time, the magnetic field was applied using a permanent magnet, and the magnetic field strength was set to 1,500 Oe. For comparison, the formation of polythiophene was carried out also when no magnetic field was applied.

【0015】図1に、磁場を印加しない場合と1,50
0 Oeの磁場を印加した場合の形成ポリチオフェンの
TG(thermogravimeter)曲線を示
す。図1から、1,500 Oeの磁場を印加した場合
には、重量の減少する温度が高温側にシフトしているこ
とが分かる。これはポリチオフェンの分解温度が上昇し
たことを示しており、磁場中で電解重合したポリチオフ
ェンは、磁場を印加しない場合と比べて、より高温まで
安定であることが分かる。
FIG. 1 shows a case where no magnetic field is applied and a case of 1,50
The TG (thermogravimeter) curve of the formed polythiophene when a magnetic field of 0 Oe is applied is shown. It can be seen from FIG. 1 that when a magnetic field of 1,500 Oe is applied, the temperature at which the weight decreases decreases to the high temperature side. This indicates that the decomposition temperature of polythiophene increased, and it can be seen that polythiophene electrolytically polymerized in a magnetic field is stable up to a higher temperature than in the case where no magnetic field is applied.

【0016】実施例2 磁場を超伝導磁石を用いて印加し、磁場強度を1.3T
及び8Tとしたこと以外は、実施例1と同様の条件でポ
リチオフェンを形成した。図2に、それぞれの場合のT
G曲線を示す(無磁場の場合も併せ示す)。図2から、
磁場強度が1.3T以上ではTG曲線は同様なものが得
られ、しかも無磁場の場合や実施例1の1,500 O
eの場合と比べると、更に高温にかけてなだらかに重量
減少が生じており、磁場が1.3T以上では、より高温
まで安定であることが分かる。
Example 2 A magnetic field was applied using a superconducting magnet and the magnetic field strength was 1.3 T.
And polythiophene were formed under the same conditions as in Example 1, except that 8T was used. Fig. 2 shows T in each case.
A G curve is shown (also shown in the case of no magnetic field). From FIG.
A similar TG curve is obtained when the magnetic field strength is 1.3 T or more, and there is no magnetic field or 1,500 O of Example 1.
As compared with the case of e, it is found that the weight is gently reduced with increasing temperature, and that the magnetic field is stable up to a higher temperature when the magnetic field is 1.3 T or more.

【0017】[0017]

【発明の効果】請求項1の有機導電体の製造方法は、電
極表面上で電解液中のモノマー及び/又はオリゴマーに
電気化学的に重合反応を生じさせるに当たり、該反応を
1Oe以上の磁場の存在下に実施するという構成とした
ことから、高温で安定な有機導電体の製造が可能にな
る。
In the method for producing an organic conductor according to the first aspect of the present invention, when the monomer and / or oligomer in the electrolytic solution undergoes an electrochemical polymerization reaction on the surface of the electrode, the reaction is performed in a magnetic field of 1 Oe or more. Since it is configured to be carried out in the presence, it is possible to manufacture a stable organic conductor at high temperature.

【0018】請求項2の有機導電体の製造方法は、電気
化学的に電解酸化を行なうことにより重合反応を生じさ
せるという構成を付加したことから、代表的な有機導電
体のモノマーの使用が可能になるという効果が付加され
る。
In the method for producing an organic conductor according to the second aspect, since a constitution in which a polymerization reaction is caused by electrochemically performing electrolytic oxidation is added, a typical organic conductor monomer can be used. Is added.

【0019】請求項3の有機導電体の製造方法は、磁場
の強度を1.3T以上という構成としたことから、より
高温で安定な有機導電体の製造が可能になる。
In the method for producing an organic conductor according to the third aspect of the present invention, since the strength of the magnetic field is 1.3 T or more, it is possible to produce a stable organic conductor at a higher temperature.

【0020】請求項4の有機導電体の製造方法は、前記
モノマー及び/又はオリゴマーが少なくともチオフェン
又は/及びその誘導体を含有するものとしたことから、
更により高温で安定な有機導電体の製造が可能になる。
In the method for producing an organic conductor according to claim 4, since the monomer and / or oligomer contains at least thiophene and / or its derivative,
Furthermore, it becomes possible to manufacture a stable organic conductor at a higher temperature.

【0021】請求項5の有機導電体は、高温で安定であ
るため、電極、光機能素子、電池等に極めて有用であ
る。
Since the organic conductor according to claim 5 is stable at high temperatures, it is extremely useful for electrodes, optical functional devices, batteries and the like.

【0022】請求項6の有機導電体は、形状が膜状又は
薄膜状であるものとしたことから、応用範囲がより広い
ものとなるという効果が加わる。
The organic conductor according to claim 6 has a film shape or a thin film shape, and therefore has an effect of broadening the range of application.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1において、1,500Oeの磁場を印
加した場合に得られたポリチオフェンと、磁場を印加し
ない場合に得られたポリチオフェンのTG(therm
ogravimeter)曲線を示す。
FIG. 1 shows a TG (therm of a polythiophene obtained when a magnetic field of 1,500 Oe is applied and a polythiophene obtained when a magnetic field is not applied in Example 1.
The gravimeter curve is shown.

【図2】実施例2において、1.3T及び8Tの磁場を
印加した場合に得られたポリチオフェンと、磁場を印加
しない場合に得られたポリチオフェンのTG曲線を示
す。
FIG. 2 shows TG curves of polythiophene obtained when a magnetic field of 1.3 T and 8 T was applied and polythiophene obtained when a magnetic field was not applied in Example 2.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 モノマー及び/又はオリゴマーを含む電
解液中において、電極表面上で電解液中のモノマー及び
/又はオリゴマーに電気化学的に重合反応を生じさせる
に当たり、該反応を1Oe以上の磁場の存在下に実施す
ることを特徴とする高温で安定な有機導電体の製造方
法。
1. In an electrolytic solution containing a monomer and / or an oligomer, in causing an electrochemical polymerization reaction of the monomer and / or the oligomer in the electrolytic solution on the electrode surface, the reaction is performed in a magnetic field of 1 Oe or more. A method for producing an organic conductor that is stable at high temperature, characterized in that it is carried out in the presence.
【請求項2】 請求項1において、電気化学的に電解酸
化を行なうことにより重合反応を生じさせることを特徴
とする有機導電体の製造方法。
2. The method for producing an organic conductor according to claim 1, wherein a polymerization reaction is caused by electrochemically performing electrolytic oxidation.
【請求項3】 印加する磁場の強度が1.3T以上であ
ることを特徴とする請求項1又は2に記載の有機導電体
の製造方法。
3. The method for producing an organic conductor according to claim 1, wherein the strength of the applied magnetic field is 1.3 T or more.
【請求項4】 前記モノマー及び/又はオリゴマーが少
なくともチオフェン又は/及びその誘導体を含有するも
のである請求項1〜3のいずれか1項に記載の有機導電
体の製造方法。
4. The method for producing an organic conductor according to claim 1, wherein the monomer and / or oligomer contains at least thiophene and / or a derivative thereof.
【請求項5】 請求項1〜4に記載の製造方法によって
形成された高温で安定な有機導電体。
5. A high-temperature-stable organic conductor formed by the manufacturing method according to claim 1.
【請求項6】 形状が膜状又は薄膜状である請求項5に
記載の有機導電体。
6. The organic conductor according to claim 5, which has a film shape or a thin film shape.
JP34647593A 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process Pending JPH07179577A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34647593A JPH07179577A (en) 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34647593A JPH07179577A (en) 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process

Publications (1)

Publication Number Publication Date
JPH07179577A true JPH07179577A (en) 1995-07-18

Family

ID=18383680

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34647593A Pending JPH07179577A (en) 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process

Country Status (1)

Country Link
JP (1) JPH07179577A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100999A2 (en) * 2006-02-28 2007-09-07 Medtronic, Inc. Electrochemical cells having an electrolyte with swelling reducing additives

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007100999A2 (en) * 2006-02-28 2007-09-07 Medtronic, Inc. Electrochemical cells having an electrolyte with swelling reducing additives
WO2007100999A3 (en) * 2006-02-28 2007-11-15 Medtronic Inc Electrochemical cells having an electrolyte with swelling reducing additives

Similar Documents

Publication Publication Date Title
Patil et al. Optical properties of conducting polymers
Buey et al. Three‐strand conducting ladder polymers: two‐step electropolymerization of metallorotaxanes
Heinze et al. Experimental and theoretical studies on the redox properties of conducting polymers
Negi et al. Development in polyaniline conducting polymers
Heinze et al. Cyclic voltammetry as a tool for characterizing conducting polymers
Rabek et al. Polymerization of pyrrole on polyether, polyester and polyetherester-iron (III) chloride coordination complexes
Murugesan et al. Effect of organic dopants on electrodeposition and characteristics of polyaniline under the varying influence of H2SO4 and HClO4 electrolyte media
Randriamahazaka et al. Interpenetrating organic conducting polymer composites based on polyaniline and poly (3, 4-ethylenedioxythiophene) from sequential electropolymerization
JP2005281410A (en) Conductive polymer and solid electrolitic capacitor using the same
Zhou et al. Template-free perpendicular growth of a poly (3, 4-ethylenedioxythiophene) fiber array by bipolar electrolysis under an iterative potential application
Salinas et al. Recent advances in bipolar electrochemistry with conducting polymers
Cho et al. Effect of magnetic field on electrochemical polymerization of EDOT
Ponomarenko et al. Synthesis of polymers and modification of polymeric materials in electromagnetic fields
Eftekhari Enhanced stability and conductivity of polypyrrole film prepared electrochemically in the presence of centrifugal forces
Karri et al. Synthesis of novel fluorescent molecule and its polymeric form with aniline as fluorescent and supercapacitor electrode materials
Cihaner et al. Electrochemical behaviour and electrochemical polymerization of fluoro‐substituted anilines
JPH07179577A (en) Production of organic conductor and organic conductor produced by the process
Choi et al. A study of polyindole perchlorate (PIP) prepared by electropolymerization
JP3351950B2 (en) Manufacturing method of organic conductor
Crayston et al. Polyradicals: synthesis, spectroscopy, and catalysis
Heinze Electrochemistry of conducting polymers
US7097757B1 (en) Polymers having an ordered structural state
Roncali et al. Recent developments in the synthesis and functionalization of conducting poly (thiophenes)
JPH07179576A (en) Production of organic conductor and organic conductor produced by the process
JP3368406B2 (en) Manufacturing method of organic conductor