JPH07179576A - Production of organic conductor and organic conductor produced by the process - Google Patents

Production of organic conductor and organic conductor produced by the process

Info

Publication number
JPH07179576A
JPH07179576A JP34647093A JP34647093A JPH07179576A JP H07179576 A JPH07179576 A JP H07179576A JP 34647093 A JP34647093 A JP 34647093A JP 34647093 A JP34647093 A JP 34647093A JP H07179576 A JPH07179576 A JP H07179576A
Authority
JP
Japan
Prior art keywords
magnetic field
organic conductor
monomer
electrode
electrolytic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34647093A
Other languages
Japanese (ja)
Inventor
Yoshihiko Iijima
喜彦 飯島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP34647093A priority Critical patent/JPH07179576A/en
Publication of JPH07179576A publication Critical patent/JPH07179576A/en
Pending legal-status Critical Current

Links

Landscapes

  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)

Abstract

PURPOSE:To easily obtain an organic conductor having anisotropic electrical conductance and useful as electrode, optical function element, cell, etc., by carrying out electrolytic polymerization in the presence of magnetic field having a specific magnetic field intensity. CONSTITUTION:This conductor is produced by carrying out the electrochemical polymerization of a monomer and/or oligomer (preferably thiophene) in an electrolytic solution on the surface of an electrode in the presence of magnetic field having a field intensity of >=1Oe, preferably >=1.3T. Concretely, an electrolyte solution is prepared by using thiophene as the monomer, tetrabutylammonium tetrafluoroborate as the electrolyte and propylene carbonate as the solvent, dipping a working electrode composed of platinum and a counter electrode composed of copper into the electrolyte solution and applying a potential of 5V to the electrode pair while applying a magnetic field of 1,500Oe with a permanent magnet perpendicular to the direction of the electric field. A thin film of polythiophene is formed on the working electrode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は有機導電体の製造方法に
関し、詳しくは電極、光機能素子、電池、非線形光学材
料、各種センサー、電磁シールド、FET等に有用な高
強度有機導電体の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an organic conductor, more specifically, a high-strength organic conductor useful for electrodes, optical functional devices, batteries, nonlinear optical materials, various sensors, electromagnetic shields, FETs and the like. Regarding the method.

【0002】[0002]

【従来の技術】有機導電体の合成は、モノマーを酸化剤
や触媒を用いて重合する化学的重合法、非共役系ポリマ
ーからなる中間体を熱処理する方法、及び電解重合法等
を用いて行なわれている。ここで電解重合法とは、モノ
マー(あるいはオリゴマー)及び支持電解質を含む電解
液に、作用電極及び対極、更に必要に応じて参照電極を
浸漬し、電圧を印加することによって、モノマーを電気
化学的に電極表面上で電解酸化あるいは電解還元し、カ
チオンラジカルやアニオンラジカルのような反応活性種
をin situに生成させ、これが重合してポリマー
となるものであり、その手法も簡単で且つ得られるポリ
マーも高い導電率を有しているので、実際の製造並びに
応用にも適している。
2. Description of the Related Art The synthesis of an organic conductor is carried out by a chemical polymerization method in which a monomer is polymerized using an oxidant or a catalyst, a method in which an intermediate made of a non-conjugated polymer is heat-treated, an electrolytic polymerization method and the like. Has been. Here, the electrolytic polymerization method means that the working electrode and the counter electrode, and if necessary, the reference electrode are immersed in an electrolytic solution containing a monomer (or an oligomer) and a supporting electrolyte, and a voltage is applied to the monomer so that the monomer is electrochemically reacted. A polymer that can be easily obtained by electrolytic oxidation or electrolytic reduction on the electrode surface to generate in situ reactive reactive species such as cation radicals and anion radicals, which are polymerized into a polymer. Since it also has a high conductivity, it is also suitable for actual manufacturing and application.

【0003】ただ、電解重合法により合成された有機導
電体は、電気伝導度、強度等の物性の面で不充分なもの
もあり、またその収率等の製造面でも満足されるもので
はなく、使用できる範囲が限られていた。そこで、電気
伝導度を向上させるために、磁場を印加しながら電解重
合を行なう方法(特開昭64−79221号公報)や、
収率を向上させるために、電解液を流動させるような磁
場の存在下に電解重合を行なう方法(特開平3−190
922号、特開平3−263424号公報)などが提案
されている。
However, some of the organic conductors synthesized by the electrolytic polymerization method are insufficient in physical properties such as electric conductivity and strength, and are not satisfactory in production such as yield. , The usable range was limited. Therefore, in order to improve the electric conductivity, a method of performing electrolytic polymerization while applying a magnetic field (Japanese Patent Laid-Open No. 64-79221),
In order to improve the yield, a method of carrying out electrolytic polymerization in the presence of a magnetic field that causes an electrolytic solution to flow (JP-A-3-190).
No. 922 and Japanese Patent Laid-Open No. 3-263424) have been proposed.

【0004】また、電解重合法により合成された有機導
電体の物性について、例えばポリピロール薄膜及びポリ
チオフェン薄膜は、膜の面内方向と膜厚方向とでは電気
伝導度が大きく異なり異方性を示すこと〔K.Kaneto et
al. Jpn. J.Appl. Phys., 21,L567(1982)〕や、ポリチ
オフェン薄膜を延伸した場合、延伸方向とそれに垂直な
方向とで異方導電性を示すこと〔M.Satoh et al. Poly
m. Commun., 28,144(1987)〕などが報告されている。即
ち、電解重合で形成される薄膜において、面内方向で導
電率の異方性を得ようとすると、薄膜(フィルム)の延伸
等の操作が必要となる。
Regarding the physical properties of the organic conductor synthesized by the electrolytic polymerization method, for example, the polypyrrole thin film and the polythiophene thin film have a large difference in the electrical conductivity between the in-plane direction and the film thickness direction and exhibit anisotropy. (K. Kaneto et
al. Jpn. J. Appl. Phys., 21 , L567 (1982)] or when a polythiophene thin film is stretched, it exhibits anisotropic conductivity in the stretching direction and the direction perpendicular thereto (M. Satoh et al. Poly
m. Commun., 28 , 144 (1987)]. That is, in order to obtain anisotropy of conductivity in the in-plane direction in a thin film formed by electrolytic polymerization, an operation such as stretching of the thin film (film) is required.

【0005】[0005]

【発明が解決しようとする課題】ところが、このような
延伸可能なフィルムを形成するためには、延伸操作時に
フィルムの破断等が生じないよう、充分な強度を有する
ように電解条件を種々検討する必要があった。
However, in order to form such a stretchable film, various electrolytic conditions are examined so that the film has sufficient strength so that the film is not broken during the stretching operation. There was a need.

【0006】従って、本発明は上記課題を解決し、容易
に異方導電性を有する有機導電体が得られる製造方法、
及び該方法によって製造された異方導電性を有する有機
導電体を提供することを、その目的とする。
Therefore, the present invention solves the above-mentioned problems and provides a method for easily producing an organic conductor having anisotropic conductivity,
Another object of the present invention is to provide an organic conductor having anisotropic conductivity produced by the method.

【0007】[0007]

【課題を解決するための手段】本発明によれば、モノマ
ー及び/又はオリゴマーを含む電解液中において、電極
表面上で電解液中のモノマー及び/又はオリゴマーに電
気化学的に重合反応を生じさせるに当たり、該反応を1
Oe以上の磁場の存在下に実施することを特徴とする異
方導電性を有する有機導電体の製造方法が提供され、ま
た該方法によって形成された異方導電性を有する有機導
電体が提供される。
According to the present invention, in an electrolytic solution containing a monomer and / or an oligomer, an electrochemical polymerization reaction is caused to occur on the surface of an electrode on the monomer and / or oligomer in the electrolytic solution. The reaction is 1
Provided is a method for producing an organic conductor having anisotropic conductivity, which is performed in the presence of a magnetic field of Oe or more, and an organic conductor having anisotropic conductivity formed by the method. It

【0008】本発明は、電解液中にモノマー及び/又は
オリゴマーを1Oe以上の磁場の存在下で電気化学的に
重合反応させるという構成にしたことから、異方導電性
を有する有機導電体が容易に得られるものとなる。な
お、前記特開昭64−79221号、特開平3−190
922号、特開平3−263424号各公報には、磁場
を印加しながら電解重合を行なうことが述べられている
が、得られる有機導電体の電導度の異方性に関しては、
全く触れられていない。
In the present invention, since the monomer and / or oligomer is electrochemically polymerized in the electrolytic solution in the presence of a magnetic field of 1 Oe or more, an organic conductor having anisotropic conductivity can be easily prepared. Will be obtained. Incidentally, the above-mentioned JP-A-64-79221 and JP-A-3-190.
No. 922 and JP-A-3-263424 describe that electrolytic polymerization is carried out while applying a magnetic field. Regarding the anisotropy of electric conductivity of the obtained organic conductor,
Not touched at all.

【0009】以下、本発明の有機導電体の製造方法及び
該方法によって得られた有機導電体について、詳しく説
明する。本発明の方法は電解重合を磁場中で行なうこと
により異方導電性を有する有機導電体を形成することを
特徴とする。印加する磁場強度は1Oe(エルステッ
ド)未満では地磁気と同程度であり効果がみられないた
め、1Oe以上を必要とする。ここで、磁場の印加は、
例えば永久磁石あるいは永久磁石を磁気回路に組み込ん
だもの、ヘルムホルツコイル、ソレノイドコイル、電磁
石、超伝導磁石等の磁場を発生できるものならば、何を
用いてもさしつかえない。もちろん定常磁場、パルス磁
場共に使用することができる。
Hereinafter, the method for producing an organic conductor of the present invention and the organic conductor obtained by the method will be described in detail. The method of the present invention is characterized in that an organic conductor having anisotropic conductivity is formed by carrying out electrolytic polymerization in a magnetic field. When the applied magnetic field strength is less than 1 Oe (Oersted), the magnetic field strength is almost the same as that of the earth's magnetism, and the effect is not observed. Here, the application of the magnetic field is
For example, any permanent magnet or a permanent magnet incorporated in a magnetic circuit, a Helmholtz coil, a solenoid coil, an electromagnet, a superconducting magnet, or any other magnetic field that can generate a magnetic field may be used. Of course, both the stationary magnetic field and the pulsed magnetic field can be used.

【0010】一般に、電荷eを持つ荷電粒子が磁束密度
Bの磁場の中を速度Vで動くとき、ローレンツ力Fが磁
場の方向と荷電粒子が移動する方向の両方に垂直な方向
に働き、その大きさはF=eV×Bで表わせる。即ち、
ローレンツ力の大きさは磁場強度に比例する。磁場中で
電解重合により有機導電体を形成する場合、電圧の印加
と同時に、電解液中の荷電粒子はローレンツ力を受け始
める。本発明者は鋭意検討した結果、磁場中で電解重合
により形成した有機導電体は、形成時にローレンツ力の
働いている方向と他の方向では電気伝導度に違いが生
じ、磁場強度を大きくする程電気伝導度の違いが顕著に
なることを見出した。特に、磁場強度を1.3T以上の
強磁場にした場合、ローレンツ力も非常に大きくなるた
め、異方導電性が顕著に現われ、従来行なわれていた延
伸等の操作を必要とせずに、容易に異方導電性を有する
有機導電体を形成することが可能になる。
Generally, when a charged particle having an electric charge e moves in a magnetic field having a magnetic flux density B at a velocity V, a Lorentz force F acts in a direction perpendicular to both the magnetic field direction and the charged particle moving direction. The size can be expressed by F = eV × B. That is,
The magnitude of Lorentz force is proportional to the magnetic field strength. When an organic conductor is formed by electrolytic polymerization in a magnetic field, the charged particles in the electrolytic solution start to receive the Lorentz force at the same time as the voltage is applied. As a result of intensive studies by the present inventor, the organic conductor formed by electrolytic polymerization in a magnetic field has a difference in electric conductivity between the direction in which the Lorentz force acts and other directions during formation, and the magnetic field strength is increased. It was found that the difference in electrical conductivity becomes remarkable. In particular, when the magnetic field strength is set to a strong magnetic field of 1.3 T or more, the Lorentz force also becomes very large, so that the anisotropic conductivity remarkably appears, and it is possible to easily perform the conventional operations such as stretching and the like. It becomes possible to form an organic conductor having anisotropic conductivity.

【0011】本発明において使用されるモノマーあるい
はオリゴマーとしては、例えばアミノ酸あるいは水酸基
を含む芳香族化合物、複素環式化合物、ベンゼン及び2
個あるいはそれ以上の縮合芳香族環をもつ多環式炭化水
素化合物、ビニル基を有する化合物、アセチレン及びそ
の誘導体など多くの物質を対象とすることができる。ま
た、ここでモノマーとしてチオフェン及びその誘導体を
用いた場合は、上述した効果が顕著に認められる。
Examples of the monomer or oligomer used in the present invention include aromatic compounds containing amino acids or hydroxyl groups, heterocyclic compounds, benzene and 2
Many substances such as polycyclic hydrocarbon compounds having one or more condensed aromatic rings, compounds having a vinyl group, acetylene and derivatives thereof can be used. Further, when thiophene and its derivative are used as the monomer here, the above-mentioned effects are remarkably observed.

【0012】これらのモノマーあるいはオリゴマーを溶
解する溶媒としては、例えば、アセトニトリル、ベンゾ
ニトリル、プロピレンカーボネイトをはじめとする非プ
ロトン性溶媒、例えばメタノールやエタノール等のプロ
トン性溶媒、水等多くのものを使用することができる。
また、電解質としては、例えばLiBF4、LiCl
4、LiPF6、LiAsF6、p−トルエンスルホン
酸塩、m−ニトロベンゼンスルホン酸塩をはじめとし
て、これも多くの物質を使用することができ、重合する
モノマーの種類及び重合の条件によって、これらの適切
な組み合わせが選定され電解液となる。
As the solvent for dissolving these monomers or oligomers, for example, aprotic solvents such as acetonitrile, benzonitrile, propylene carbonate, protic solvents such as methanol and ethanol, water and many others are used. can do.
Further, as the electrolyte, for example, LiBF 4 , LiCl
Many substances can be used, including O 4 , LiPF 6 , LiAsF 6 , p-toluenesulfonate, and m-nitrobenzenesulfonate, and depending on the type of monomer to be polymerized and the conditions of polymerization, these substances can be used. An appropriate combination of is selected as the electrolytic solution.

【0013】ここで、上述の電解重合を電解酸化によっ
て行なう場合は、例えばアミノ酸あるいは水酸基を含む
芳香族化合物、複素環式化合物、ベンゼン及び2個ある
いはそれ以上の縮合芳香族環をもつ多環式炭化水素化合
物、ビニル基を有する化合物等の非常に多くのモノマー
が重合できるため、例えば、ポリチオフェン、ポリピロ
ール、ポリアニリン、ポリパラフェニレン、ポリアズレ
ン、ポリピレンをはじめとする代表的な有機導電体のモ
ノマーが使用できる。
When the above electropolymerization is carried out by electrolytic oxidation, for example, an aromatic compound containing an amino acid or a hydroxyl group, a heterocyclic compound, benzene and a polycyclic system having two or more condensed aromatic rings. Since a large number of monomers such as hydrocarbon compounds and compounds having vinyl groups can be polymerized, typical organic conductor monomers such as polythiophene, polypyrrole, polyaniline, polyparaphenylene, polyazulene, and polypyrene are used. it can.

【0014】また、上述の製造方法にて形成される有機
導電体の形状は、様々な電解条件、使用する電極の材質
及び形状、並びに電極間距離、電極(あるいは電極対)
に対する印加磁場の方向等により、種々のものが得られ
る。特に、この形状が膜状あるいは薄膜状の場合(通常
電極対を平行平板にした場合に得られる)には、それ自
体機能性材料となり得るばかりでなく、他の材料との組
み合わせあるいは接合等も容易になるため、異方導電性
を有するという利点を活かして、電気関連分野、光関連
分野、エネルギー関連分野、化学関連分野等の様々な分
野への応用が可能となる。
The shape of the organic conductor formed by the above-described manufacturing method is various electrolysis conditions, the material and shape of the electrodes to be used, the distance between electrodes, the electrode (or electrode pair).
Various things can be obtained according to the direction of the applied magnetic field with respect to. In particular, when this shape is a film or a thin film (usually obtained when the electrode pair is a parallel plate), not only can it itself be a functional material, but it can also be combined with other materials or bonded. Since it becomes easy, it can be applied to various fields such as electric fields, optical fields, energy fields, and chemical fields by utilizing the advantage of having anisotropic conductivity.

【0015】[0015]

【実施例】以下本発明を実施例により説明するが、これ
により本発明の態様が限定されるものではない。
EXAMPLES The present invention will be described below with reference to examples, but the embodiments of the present invention are not limited thereby.

【0016】実施例1 モノマーとしてチオフェン(0.1M)、電解質として
テトラブチルアンモニウムテトラフルオロボレイト
(0.1M)、溶媒としてプロピレンカーボネイトを用
いて電解液とした。この電解液を電解槽に満たし、白金
からなる作用電極(陽極)と、銅からなる対極(陰極)
の電極対を浸漬した。この電極対に5Vの電圧を印加
し、作用電極上にチオフェンを重合させることにより、
ポリチオフェン薄膜を形成した。このとき、磁場は永久
磁石を用いて、電界の方向と垂直になるように印加し、
磁場強度を1,500 Oeとした。なお、ポリチオフ
ェン薄膜の形成は、比較のために、磁場を印加しない場
合についても行なった。
Example 1 An electrolyte solution was prepared by using thiophene (0.1M) as a monomer, tetrabutylammonium tetrafluoroborate (0.1M) as an electrolyte, and propylene carbonate as a solvent. The electrolytic cell is filled with this electrolytic solution, and a working electrode (anode) made of platinum and a counter electrode (cathode) made of copper
The electrode pair of was immersed. By applying a voltage of 5 V to this electrode pair and polymerizing thiophene on the working electrode,
A polythiophene thin film was formed. At this time, the magnetic field is applied so as to be perpendicular to the direction of the electric field using a permanent magnet,
The magnetic field strength was 1,500 Oe. For comparison, the polythiophene thin film was formed also in the case where no magnetic field was applied.

【0017】電解重合終了後、ポリチオフェン薄膜を作
用電極から剥離し、I2にてドーピングを行なって4端
子法を用いて測定した電導度を表1に示した。F‖はロ
ーレンツ力の働く方向、F⊥はそれに垂直な方向の電導
度を示している(いずれも膜面内)。また、磁場を印加
しない場合は、ローレンツ力は働かないが、磁場を印加
した場合のF‖及びF⊥に対応する方向の電導度を測定
したものである。
After the completion of electrolytic polymerization, the polythiophene thin film was peeled from the working electrode, doped with I 2 , and the conductivity measured by the 4-terminal method is shown in Table 1. F‖ indicates the direction in which the Lorentz force acts, and F⊥ indicates the electric conductivity in the direction perpendicular to it (both in the film plane). When the magnetic field is not applied, the Lorentz force does not work, but when the magnetic field is applied, the electric conductivity in the directions corresponding to F / and F / is measured.

【0018】[0018]

【表1】 [Table 1]

【0019】表1から、磁場を印加しない場合は、方向
による電導度の差がないのに対し、1,500 Oeの磁
場を印加した場合は、ローレンツ力の働く方向の電導度
がそれに垂直方向のものより大きくなることが分かる。
From Table 1, there is no difference in conductivity depending on the direction when no magnetic field is applied, whereas when a magnetic field of 1,500 Oe is applied, the conductivity in the direction in which the Lorentz force acts is perpendicular to it. It turns out that it is bigger than the one.

【0020】実施例2 磁場を超伝導磁石を用いて印加し、磁場強度を1.3T
及び8Tとしたこと以外は、実施例1と同様の条件でポ
リチオフェン薄膜を形成した。表2に、それぞれの場合
の電導度の測定結果を示す(無磁場の場合も併せ示
す)。
Example 2 A magnetic field was applied using a superconducting magnet and the magnetic field strength was 1.3 T.
A polythiophene thin film was formed under the same conditions as in Example 1, except that the thickness was 8T. Table 2 shows the measurement results of the electric conductivity in each case (also shown in the case of no magnetic field).

【0021】[0021]

【表2】 [Table 2]

【0022】表2から、磁場強度が1.3T以上では、
F‖方向の電導度はF⊥方向と比較して非常に大きい値
となり、顕著な異方導電性を示すことが分かる。
From Table 2, when the magnetic field strength is 1.3 T or more,
It can be seen that the electric conductivity in the F‖ direction has a very large value as compared with that in the F⊥ direction, and shows remarkable anisotropic conductivity.

【0023】[0023]

【発明の効果】請求項1の有機導電体の製造方法は、電
極表面上で電解液中のモノマー及び/又はオリゴマーに
電気化学的に重合反応を生じさせるに当たり、該反応を
1Oe以上の磁場の存在下に実施するという構成とした
ことから、異方導電性を有する有機導電体の製造が可能
になる。
In the method for producing an organic conductor according to the first aspect of the present invention, when the monomer and / or oligomer in the electrolytic solution undergoes an electrochemical polymerization reaction on the surface of the electrode, the reaction is performed in a magnetic field of 1 Oe or more. Since the structure is implemented in the presence, it is possible to manufacture an organic conductor having anisotropic conductivity.

【0024】請求項2の有機導電体の製造方法は、電気
化学的に電解酸化を行なうことにより重合反応を生じさ
せるという構成を付加したことから、代表的な有機導電
体のモノマーの使用が可能になるという効果が付加され
る。
In the method for producing an organic conductor according to the second aspect, since a constitution in which a polymerization reaction is caused by electrochemically performing electrolytic oxidation is added, a typical organic conductor monomer can be used. Is added.

【0025】請求項3の有機導電体の製造方法は、磁場
の強度を1.3T以上という構成としたことから、顕著
な異方導電性を有する有機導電体の製造が可能になる。
In the method for producing an organic conductor according to the third aspect, since the strength of the magnetic field is 1.3 T or more, it is possible to produce an organic conductor having remarkable anisotropic conductivity.

【0026】請求項4の有機導電体の製造方法は、前記
モノマー及び/又はオリゴマーが少なくともチオフェン
又は/及びその誘導体を含有するものとしたことから、
更により顕著な異方導電性を有する有機導電体の製造が
可能になる。
In the method for producing an organic conductor according to claim 4, since the monomer and / or oligomer contains at least thiophene and / or its derivative,
Further, it becomes possible to manufacture an organic conductor having more remarkable anisotropic conductivity.

【0027】請求項5の有機導電体は、異方導電性を有
するため、電極、光機能素子、電池等に極めて有用であ
る。
The organic conductor according to claim 5 has anisotropic conductivity, and is therefore extremely useful for electrodes, optical functional elements, batteries and the like.

【0028】請求項6の有機導電体は、形状が膜状又は
薄膜状であるものとしたことから、応用範囲がより広い
ものとなるという効果が加わる。
The organic conductor according to claim 6 has a film shape or a thin film shape, and therefore has an effect of broadening the range of application.

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 モノマー及び/又はオリゴマーを含む電
解液中において、電極表面上で電解液中のモノマー及び
/又はオリゴマーに電気化学的に重合反応を生じさせる
に当たり、該反応を1Oe以上の磁場の存在下に実施す
ることを特徴とする異方導電性を有する有機導電体の製
造方法。
1. In an electrolytic solution containing a monomer and / or an oligomer, in causing an electrochemical polymerization reaction of the monomer and / or the oligomer in the electrolytic solution on the electrode surface, the reaction is performed in a magnetic field of 1 Oe or more. A method for producing an organic conductor having anisotropic conductivity, which is carried out in the presence.
【請求項2】 請求項1において、電気化学的に電解酸
化を行なうことにより重合反応を生じさせることを特徴
とする有機導電体の製造方法。
2. The method for producing an organic conductor according to claim 1, wherein a polymerization reaction is caused by electrochemically performing electrolytic oxidation.
【請求項3】 印加する磁場の強度が1.3T以上であ
ることを特徴とする請求項1又は2に記載の有機導電体
の製造方法。
3. The method for producing an organic conductor according to claim 1, wherein the strength of the applied magnetic field is 1.3 T or more.
【請求項4】 前記モノマー及び/又はオリゴマーが少
なくともチオフェン又は/及びその誘導体を含有するも
のである請求項1〜3のいずれか1項に記載の有機導電
体の製造方法。
4. The method for producing an organic conductor according to claim 1, wherein the monomer and / or oligomer contains at least thiophene and / or a derivative thereof.
【請求項5】 請求項1〜4に記載の製造方法によって
形成された異方導電性を有する有機導電体。
5. An organic conductor having anisotropic conductivity formed by the manufacturing method according to any one of claims 1 to 4.
【請求項6】 形状が膜状又は薄膜状である請求項5に
記載の有機導電体。
6. The organic conductor according to claim 5, which has a film shape or a thin film shape.
JP34647093A 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process Pending JPH07179576A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34647093A JPH07179576A (en) 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34647093A JPH07179576A (en) 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process

Publications (1)

Publication Number Publication Date
JPH07179576A true JPH07179576A (en) 1995-07-18

Family

ID=18383647

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34647093A Pending JPH07179576A (en) 1993-12-23 1993-12-23 Production of organic conductor and organic conductor produced by the process

Country Status (1)

Country Link
JP (1) JPH07179576A (en)

Similar Documents

Publication Publication Date Title
Rudge et al. A study of the electrochemical properties of conducting polymers for application in electrochemical capacitors
Chilton et al. Special polymers for electronics and optoelectronics
Patra et al. Supercapacitor studies of electrochemically deposited PEDOT on stainless steel substrate
Prasad et al. Potentiodynamically deposited polyaniline on stainless steel: inexpensive, high-performance electrodes for electrochemical supercapacitors
Heinze et al. Cyclic voltammetry as a tool for characterizing conducting polymers
JPS63249323A (en) Solid electrolytic capacitor
Rabek et al. Polymerization of pyrrole on polyether, polyester and polyetherester-iron (III) chloride coordination complexes
JP2005281410A (en) Conductive polymer and solid electrolitic capacitor using the same
Zhou et al. Template-free perpendicular growth of a poly (3, 4-ethylenedioxythiophene) fiber array by bipolar electrolysis under an iterative potential application
Alesary et al. A comparative study of the effect of organic dopant ions on the electrochemical and chemical synthesis of the conducting polymers polyaniline, poly (o-toluidine) and poly (o-methoxyaniline)
Cho et al. Effect of magnetic field on electrochemical polymerization of EDOT
Sarac et al. Characterization of micrometer-sized thin films of electrocoated carbazole with p-tolylsulfonyl pyrrole on carbon fiber microelectrodes
Ponomarenko et al. Synthesis of polymers and modification of polymeric materials in electromagnetic fields
Eftekhari Enhanced stability and conductivity of polypyrrole film prepared electrochemically in the presence of centrifugal forces
Goldberg et al. Resistive effects in thin electrochemical cells. Digital simulations of electrochemistry in electron spin resonance cells
Joseph et al. Synthesis, characterization and theoretical studies on novel organic–inorganic hybrid ion–gel polymer thin films from a γ-Fe 2 O 3 doped polyvinylpyrrolidone–N-butylpyridinium tetrafluoroborate composite via intramolecular thermal polymerization
Qian et al. Electrochemical aspects of polypyrrole
Xu et al. Electrosyntheses of high quality poly (5-cyanoindole) films in boron trifluoride diethyl etherate containing additional diethyl ether
JPH07179576A (en) Production of organic conductor and organic conductor produced by the process
Abalyaeva et al. Synthesis and electrochemical properties of nanocomposites containing poly (3, 6-bis (phenylamino)-2, 5-dichlorobenzoquinone and multiwalled carbon nanotubes
Takashima et al. Solvation effect on the ion exchange in polypyrrole film doped with sulfonated polyaniline
JPH07179577A (en) Production of organic conductor and organic conductor produced by the process
US7097757B1 (en) Polymers having an ordered structural state
JP3351950B2 (en) Manufacturing method of organic conductor
Abalyaeva et al. Electrochemical polymerization of diphenylamine-2-carboxylic acid on glassy carbon and activated graphite foil