JPH07179367A - Production of cyclohexene - Google Patents

Production of cyclohexene

Info

Publication number
JPH07179367A
JPH07179367A JP5324279A JP32427993A JPH07179367A JP H07179367 A JPH07179367 A JP H07179367A JP 5324279 A JP5324279 A JP 5324279A JP 32427993 A JP32427993 A JP 32427993A JP H07179367 A JPH07179367 A JP H07179367A
Authority
JP
Japan
Prior art keywords
benzene
cyclohexene
oil phase
reaction
ruthenium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5324279A
Other languages
Japanese (ja)
Other versions
JP2606113B2 (en
Inventor
Takeshi Matsuoka
毅 松岡
Yoshihiro Komura
善博 甲村
Toshiyuki Suzuki
敏之 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP5324279A priority Critical patent/JP2606113B2/en
Publication of JPH07179367A publication Critical patent/JPH07179367A/en
Application granted granted Critical
Publication of JP2606113B2 publication Critical patent/JP2606113B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C5/00Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms
    • C07C5/02Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation
    • C07C5/10Preparation of hydrocarbons from hydrocarbons containing the same number of carbon atoms by hydrogenation of aromatic six-membered rings
    • C07C5/11Partial hydrogenation
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07CACYCLIC OR CARBOCYCLIC COMPOUNDS
    • C07C2601/00Systems containing only non-condensed rings
    • C07C2601/12Systems containing only non-condensed rings with a six-membered ring
    • C07C2601/16Systems containing only non-condensed rings with a six-membered ring the ring being unsaturated
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/50Improvements relating to the production of bulk chemicals
    • Y02P20/52Improvements relating to the production of bulk chemicals using catalysts, e.g. selective catalysts

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

PURPOSE:To provide a production method capable of preventing clogging of a filter for separation of a reaction solution, i.e., an obstruction in industrial production of cyclohexene by partial reduction of benzene and stably producing cyclohexene for a long period. CONSTITUTION:This production method is to partly reduce benzene with hydrogen in the presence of a ruthenium catalyst and water in a liquid phase at a high temperature and a high pressure, separate the oil phase composed of reactional products and unreacted raw materials from the aqueous phase composed of a catalyst slurry and continuously recover cyclohexene from the oil phase. The characteristic of this method for production of cyclohexene is that the concentration of methylvinylbenzene in benzene as the raw material is controlled to <=10ppm.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ベンゼンを部分還元し
てシクロヘキセンを製造する方法に関する。シクロヘキ
センは、ラクタム類、ジカルボン酸類などのポリアミド
原料、リジン原料、医薬、農薬などの重要な中間原料と
して有用な化合物である。
FIELD OF THE INVENTION The present invention relates to a method for producing cyclohexene by partially reducing benzene. Cyclohexene is a compound useful as an important intermediate raw material for polyamide raw materials such as lactams and dicarboxylic acids, lysine raw materials, pharmaceuticals and agricultural chemicals.

【0002】[0002]

【従来の技術】シクロヘキセンの製造方法は様々な方法
が知られており、その中でも、単環芳香族炭化水素をル
テニウム触媒と、アルカリ剤または金属塩等の添加剤を
含有させた水溶液の存在下、水素により部分還元する方
法が、対応するシクロオレフィンの選択率が高く、好ま
しい方法とされている(特公昭56−22850、特開
昭577−130926、特公昭57−7607、特開
昭61−40226、特開昭62−45544等)。
2. Description of the Related Art Various methods for producing cyclohexene are known. Among them, in the presence of an aqueous solution containing a ruthenium catalyst containing a monocyclic aromatic hydrocarbon and an additive such as an alkali agent or a metal salt. The method of partial reduction with hydrogen is a preferable method because of high selectivity of the corresponding cycloolefin (Japanese Patent Publication No. 56-22850, Japanese Patent Publication No. 577-130926, Japanese Patent Publication No. 57-7607, Japanese Patent Publication No. 61-607-). 40226, JP-A-62-45544 and the like).

【0003】[0003]

【発明が解決しようとする課題】上記のような方法でベ
ンゼンよりシクロヘキセンを連続的に製造する場合、ル
テニウム触媒と水からなる水相から、反応生成物及び未
反応原料からなる油相をを取り出す。この場合、工業的
実施に際しては、該油相中に触媒等の反応液中に存在す
る固形分が油相中に混入することを確実に回避するため
には、フィルタ−を通すことが必要性である。しかしな
がら、本発明者等の検討によれば、長時間に渡って反応
を実施すると、前記フィルタ−が予想外に速く閉塞し、
シクロヘキセンを安定に製造することが困難であること
が明らかとなった。フィルターを頻繁に交換することは
現実的ではないので、かかる問題は予想以上に深刻であ
る。
When cyclohexene is continuously produced from benzene by the above method, an oil phase consisting of a reaction product and unreacted raw materials is taken out from an aqueous phase consisting of a ruthenium catalyst and water. . In this case, in industrial practice, it is necessary to pass a filter in order to reliably prevent the solid content present in the reaction liquid such as a catalyst in the oil phase from being mixed in the oil phase. Is. However, according to the study of the present inventors, when the reaction is carried out for a long time, the filter is blocked unexpectedly quickly,
It became clear that it was difficult to produce cyclohexene stably. This problem is more severe than expected, as frequent filter replacements are not practical.

【0004】[0004]

【課題を解決するための手段】本発明の目的は、上記の
課題を解決し、工業的に有利なシクロヘキセンの製造方
法を提供することにある。この目標達成のため、本発明
者等は鋭意検討を進めた結果、意外にもフィルタ−閉塞
とベンゼン中に含まれる微量不純物に密接な関係がある
ことを見出し、本発明に到達した。
SUMMARY OF THE INVENTION An object of the present invention is to solve the above problems and to provide an industrially advantageous method for producing cyclohexene. As a result of earnest studies to achieve this goal, the present inventors have unexpectedly found that there is a close relationship between the filter clogging and trace impurities contained in benzene, and arrived at the present invention.

【0005】すなわち、本発明の要旨は、ベンゼンをル
テニウム触媒と水の存在下、液相中で高温、高圧下で水
素により部分還元を行い、反応生成物及び未反応原料か
らなる油相を、触媒スラリ−からなる水相より相分離
し、該油相より連続的にシクロヘキセンを回収する方法
において、原料ベンゼン中のメチルビニルベンゼンの濃
度を10ppm以下とすることを特徴とするシクロヘキ
センの製造方法に存する。
That is, the gist of the present invention is to perform partial reduction of benzene with hydrogen in the presence of a ruthenium catalyst and water in a liquid phase at high temperature and high pressure to obtain an oil phase consisting of a reaction product and an unreacted raw material. A method for producing cyclohexene, which comprises phase-separating an aqueous phase comprising a catalyst slurry and continuously recovering cyclohexene from the oil phase, wherein the concentration of methylvinylbenzene in the raw material benzene is 10 ppm or less. Exist.

【0006】以下、本発明を詳細に説明する。本発明で
使用する原料のベンゼンとしては、ベンゼン中のメチル
ビニルベンゼンの濃度が10ppm以下、好ましくは5
ppm以下、特に好ましくは1ppm以下とすることが
必要である。メチルビニルベンゼンがかかる濃度以上含
むベンゼンを原料とすると、 早期にフィルタ−が閉塞
するので、安定にシクロヘキセンを製造することが困難
になる。
The present invention will be described in detail below. As the raw material benzene used in the present invention, the concentration of methylvinylbenzene in benzene is 10 ppm or less, preferably 5
It is necessary to set it to be ppm or less, particularly preferably 1 ppm or less. When benzene containing methylvinylbenzene at a concentration above this concentration is used as a raw material, the filter is clogged early, making it difficult to stably produce cyclohexene.

【0007】本発明者等の詳細な検討によれば、工業的
に入手される種々のベンゼン中の不純物の組成は、各ベ
ンゼンによってかなり違いがあることを確認している。
これは、ベンゼンの製造法、あるいは、ベンゼンの原料
由来の違いによるものと考えられる。そして、通常のベ
ンゼンの規格では、かかるフィルタ−の閉塞発生の原因
物質であるメチルビニルベンゼンの濃度を規定していな
いため、安易に工業用ベンゼンを使用すると、存在する
メチルビニルベンゼンによって、フィルタ−の閉塞が発
生し、安定なシクロヘキセンの製造を困難にする。
According to a detailed study by the present inventors, it has been confirmed that the composition of impurities in various industrially available benzenes varies considerably depending on each benzene.
This is considered to be due to the difference in the benzene production method or the source of benzene. Since the standard of normal benzene does not specify the concentration of methylvinylbenzene, which is the causative agent of the clogging of the filter, if industrial benzene is used easily, the presence of methylvinylbenzene causes the filter- Blockage occurs, which makes stable production of cyclohexene difficult.

【0008】ベンゼン中のメチルビニルベンゼンの濃度
を10ppm以下にする方法は特に限定されないが、メ
チルビニルベンゼンの含有量が所定量以下の工業用原料
ベンゼンを選択して使用してもよいし、蒸留等の公知の
手段により精製をしてもよい。ベンゼン中に存在するメ
チルビニルベンゼンが、フィルタ−の閉塞の原因となる
機構は明確ではないが、次のような機構によるものと考
えられる。すなわち、メチルビニルベンゼンは反応系中
において、高分子化するなどして、フィルタ−上に蓄積
するものと推定される。
The method for reducing the concentration of methylvinylbenzene in benzene to 10 ppm or less is not particularly limited, but industrial raw material benzene having a methylvinylbenzene content of not more than a predetermined amount may be selected and used, or distilled. You may refine | purify by well-known means, such as. The mechanism by which methylvinylbenzene present in benzene causes blockage of the filter is not clear, but it is considered to be due to the following mechanism. That is, it is presumed that methylvinylbenzene is polymerized in the reaction system and accumulates on the filter.

【0009】本発明におけるルテニウム触媒としては、
種々のルテニウム化合物を還元して得られるもの、また
はその調製段階もしくは調製後において他の金属、例え
ば、亜鉛、クロム、モリブテン、コバルト、マンガン、
ニッケル、鉄、金、銅などを加えたルテニウムを主体と
する触媒である。これら金属成分を添加することにより
ルテニウム単独の場合よりも一般的に反応速度は多少小
さくなるものの、選択率を高めることができる。ルテニ
ウムと共に他の金属を用いる場合には、ルテニウムに対
する原子比で、通常0.1〜10の範囲で選択される。
As the ruthenium catalyst in the present invention,
Those obtained by reducing various ruthenium compounds, or other metals such as zinc, chromium, molybdenum, cobalt, manganese at or after the preparation stage thereof.
It is a catalyst mainly composed of ruthenium containing nickel, iron, gold and copper. By adding these metal components, the reaction rate is generally slightly lower than that of ruthenium alone, but the selectivity can be increased. When another metal is used together with ruthenium, the atomic ratio to ruthenium is usually selected in the range of 0.1 to 10.

【0010】種々のルテニウム化合物としては特に制限
はされないが、例えば、塩化物、臭化物、ヨウ化物、硝
酸塩、塩酸塩、水酸化物、酸化物、あるいは各種のルテ
ニウムを含む錯体などを用いることができる。還元法と
しては、水素ガスによる還元、あるいはホルマリン、水
素化ホウ素ナトリウム、ヒドラジン等による化学還元法
によって行なうことができる。ルテニウム触媒は担体に
担持してもよく、担体として、シリカ、アルミナ、シリ
カ−アルミナ、ゼオライト、活性炭、あるいは一般的な
金属酸化物、複合酸化物、水酸化物、難水溶性金属塩等
が例示される。ルテニウムは、担体に各種のルテニウム
化合物を通常行なわれる方法、例えば、イオン交換法、
吸着法、共沈法、乾固法などによって担持される。担持
されるルテニウム化合物としては、ルテニウムの塩化
物、臭化物、ヨウ化物、硝酸塩、塩酸塩、水酸化物、酸
化物、あるいは各種のルテニウムを含む錯体、またはこ
れら化合物においてルテニウムを金属状態にまで還元し
たものである。また、これらの触媒調製後、他の金属を
共担持してもよい。ルテニウムの担持量は、通常0.0
1〜10重量%である。
The various ruthenium compounds are not particularly limited, but for example, chlorides, bromides, iodides, nitrates, hydrochlorides, hydroxides, oxides, or complexes containing various rutheniums can be used. . As the reduction method, reduction with hydrogen gas or a chemical reduction method with formalin, sodium borohydride, hydrazine or the like can be performed. The ruthenium catalyst may be supported on a carrier, and examples of the carrier include silica, alumina, silica-alumina, zeolite, activated carbon, or general metal oxides, complex oxides, hydroxides, sparingly water-soluble metal salts and the like. To be done. Ruthenium is a method in which various ruthenium compounds are usually used as a carrier, for example, an ion exchange method,
It is supported by an adsorption method, a coprecipitation method, a dry solidification method, or the like. As the supported ruthenium compound, a ruthenium chloride, bromide, iodide, nitrate, hydrochloride, hydroxide, oxide, or complex containing various ruthenium, or in these compounds, reduced ruthenium to a metal state. It is a thing. Further, other metals may be co-supported after the preparation of these catalysts. The amount of ruthenium supported is usually 0.0
It is 1 to 10% by weight.

【0011】本発明の反応系には、水の存在が必要であ
る。水の量としては、反応形式によって異なるが、通
常、ベンゼンの0.01〜20重量倍であり、好ましく
は、0.1〜5倍量である。水が少なすぎても、多すぎ
ても共存の効果が減少する。また、好ましい水の量にお
いては、反応系から取り出した反応液が有機相と水相に
分離し、有機相に含まれる目的シクロヘキセンの回収が
容易となる。
The reaction system of the present invention requires the presence of water. The amount of water varies depending on the reaction mode, but is usually 0.01 to 20 times by weight, preferably 0.1 to 5 times the amount of benzene. If there is too little water or too much water, the effect of coexistence decreases. Further, with a preferable amount of water, the reaction liquid taken out from the reaction system is separated into an organic phase and an aqueous phase, and the target cyclohexene contained in the organic phase is easily recovered.

【0012】また、本発明の反応系にいおては、金属塩
を水中に共存させてもよい。かかる金属塩としてはIU
PAC無機化合物命名法(1989年度版)の周期表の
1族元素、2族元素、亜鉛、鉄、マンガン、コバルトな
どの金属塩の添加が有効であり、特に、亜鉛の塩類の添
加によって好ましい反応成績が得られる。ここで各種金
属の塩類としては、例えば、炭酸塩、酢酸塩等の弱酸
塩、塩酸塩、硫酸塩、硝酸塩、等の強酸塩が使用され
る。金属塩の使用量は、共存する水に対し、通常1×1
-5〜1重量倍である。
Further, in the reaction system of the present invention, a metal salt may coexist in water. As such a metal salt, IU
It is effective to add a metal salt of Group 1 element, Group 2 element, zinc, iron, manganese, cobalt, etc. of the periodic table of PAC inorganic compound nomenclature (1989 version), and particularly preferable reaction by addition of zinc salt. You will get a grade. Here, as salts of various metals, for example, weak acid salts such as carbonates and acetates, and strong acid salts such as hydrochlorides, sulfates and nitrates are used. The amount of metal salt used is usually 1 × 1 with respect to coexisting water.
0 -5 to 1 times by weight.

【0013】本発明の反応は、反応温度が通常50〜2
50℃、好ましくは100〜220℃、反応圧力が通常
0.1〜20MPaという高温、高圧下で行なわれる。
反応は回分式でも連続的でも実施できるが、工業的には
通常、連続的に行なわれる。反応は原料であるベンゼ
ン、水、触媒などが懸濁された液状反応混合物に水素ガ
スを供給することにより実施され、水素ガスは、かかる
液状反応混合物中にノズル開口部を介して供給される。
In the reaction of the present invention, the reaction temperature is usually 50 to 2
The reaction is carried out at a high temperature and a high pressure of 50 ° C., preferably 100 to 220 ° C. and a reaction pressure of usually 0.1 to 20 MPa.
The reaction can be carried out batchwise or continuously, but industrially it is usually carried out continuously. The reaction is carried out by supplying hydrogen gas to a liquid reaction mixture in which the raw materials benzene, water, a catalyst and the like are suspended, and hydrogen gas is supplied into the liquid reaction mixture through a nozzle opening.

【0014】[0014]

【実施例】以下に実施例を記すが、本発明はこれらの実
施例によって限定されるものではない。
EXAMPLES Examples will be described below, but the present invention is not limited to these examples.

【0015】実施例1 精密蒸留を施し、メチルビニルベンゼンの含有量が0.
1ppm以下であるベンゼンを使用して、ベンゼン3
3.9重量%、シリカを担持したルテニウム触媒1.4
重量%、及び6重量%硫酸亜鉛水溶液を64.7重量%
のスラリ−に、ノズル開口部より水素ガスを供給し、反
応圧力5.0MPa、温度150℃にて、高速攪拌を行
いながら、ベンゼンを連続的に供給し、ベンゼンの部分
水素化反応を行った(油相の平均滞留時間35分)。更
に、反応器内には静置槽を設置し、静置槽内にて油相と
水相を分離させ、更に、油相を口径5μmのフィルタ−
を通過させた後、採取した。反応開始500時間後、フ
ィルタ−を取り出して観察したところ、蓄積物は認めら
れなかった。
Example 1 Precise distillation was carried out to obtain a methyl vinylbenzene content of 0.
Using benzene that is 1 ppm or less, benzene 3
3.9% by weight, silica-supported ruthenium catalyst 1.4
Wt% and 64.7 wt% zinc sulfate aqueous solution 64.7 wt%
Hydrogen gas was supplied to the slurry from the nozzle opening, and benzene was continuously supplied at a reaction pressure of 5.0 MPa and a temperature of 150 ° C. while performing high-speed stirring to carry out a partial hydrogenation reaction of benzene. (Average residence time of oil phase 35 minutes). Furthermore, a stationary tank is installed in the reactor, an oil phase and an aqueous phase are separated in the stationary tank, and the oil phase is filtered with a filter having a diameter of 5 μm.
And then collected. 500 hours after the start of the reaction, the filter was taken out and observed, and no accumulation was observed.

【0016】比較例1 メチルビニルベンゼンが20ppm存在するベンゼンを
用いる以外は実施例1と同様にベンゼンの部分水素化反
応を実施した。反応開始後500時間後、フィルタ−は
閉塞し、油相の抜き出しが行えなくなった。フィルタ−
を取り出して観察したところ堆積物が蓄積していた。
Comparative Example 1 A partial hydrogenation reaction of benzene was carried out in the same manner as in Example 1 except that benzene containing 20 ppm of methylvinylbenzene was used. 500 hours after the start of the reaction, the filter was clogged and the oil phase could not be extracted. Filter-
When taken out and observed, deposits had accumulated.

【0017】[0017]

【発明の効果】本発明の方法により、ベンゼンを部分還
元してシクロヘキセンを工業的に製造する場合において
障害となる、反応液の分離フィルターの閉塞を抑制する
ことができるので、シクロヘキセンを長期に安定して製
造することができる。
Industrial Applicability According to the method of the present invention, it is possible to suppress clogging of the reaction solution separation filter, which is an obstacle when industrially producing cyclohexene by partially reducing benzene. Can be manufactured.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 ベンゼンをルテニウム触媒と水の存在
下、液相中で高温、高圧下で水素により部分還元を行
い、反応生成物及び未反応原料からなる油相を、触媒ス
ラリ−からなる水相より相分離し、該油相より連続的に
シクロヘキセンを回収する方法において、原料ベンゼン
中のメチルビニルベンゼンの濃度を10ppm以下とす
ることを特徴とするシクロヘキセンの製造方法。
1. Benzene is partially reduced with hydrogen at high temperature and high pressure in a liquid phase in the presence of a ruthenium catalyst and water, and an oil phase composed of a reaction product and unreacted raw material is converted into a water composed of a catalyst slurry. A method for producing cyclohexene, which comprises phase-separating phases and continuously recovering cyclohexene from the oil phase, wherein the concentration of methylvinylbenzene in the raw material benzene is 10 ppm or less.
JP5324279A 1993-12-22 1993-12-22 Method for producing cyclohexene Expired - Lifetime JP2606113B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5324279A JP2606113B2 (en) 1993-12-22 1993-12-22 Method for producing cyclohexene

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5324279A JP2606113B2 (en) 1993-12-22 1993-12-22 Method for producing cyclohexene

Publications (2)

Publication Number Publication Date
JPH07179367A true JPH07179367A (en) 1995-07-18
JP2606113B2 JP2606113B2 (en) 1997-04-30

Family

ID=18164037

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5324279A Expired - Lifetime JP2606113B2 (en) 1993-12-22 1993-12-22 Method for producing cyclohexene

Country Status (1)

Country Link
JP (1) JP2606113B2 (en)

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238047A (en) * 1990-02-14 1991-10-23 Asahi Chem Ind Co Ltd Pretreatment of catalyst slurry

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03238047A (en) * 1990-02-14 1991-10-23 Asahi Chem Ind Co Ltd Pretreatment of catalyst slurry

Also Published As

Publication number Publication date
JP2606113B2 (en) 1997-04-30

Similar Documents

Publication Publication Date Title
EP2513025B1 (en) Catalysed phenol hydrogenation
KR100966947B1 (en) Process for production of cycloolefin
JPH10279508A (en) Production of cycloolefin and cycloalkane
JPS6021126B2 (en) Manufacturing method of cyclohexene
US5656761A (en) Method for pretreating a catalyst slurry and a method for the continuous partial hydrogenation of a monocyclic aromatic hydrocarbon by using the pretreated catalyst slurry
JP2606113B2 (en) Method for producing cyclohexene
JP2780652B2 (en) Ruthenium-based regenerated catalyst
SK89498A3 (en) Method for producing cycloolefin
JP2007105604A (en) Catalyst for manufacturing cycloolefin and its method
JPS6267033A (en) Method of preventing deterioration of catalyst
JPH07179368A (en) Production of cyclohexene
US5639927A (en) Process of producing cycloolefin
JPH0899912A (en) Production of cycloolefin
JP2646986B2 (en) Method for producing cycloolefin
JP2979991B2 (en) Method for producing cycloolefin
JPH0129174B2 (en)
JPH07179370A (en) Production of cycloolefin
CA2055444C (en) A method for pretreating a catalyst slurry and a method for the continuous partial hydrogenation of a monocyclic aromatic hydrocarbons by using the pretreated catalyst slurry
JP4033976B2 (en) Method for producing cycloolefin
JPH0776530A (en) Production of cycloolefin
JPH07267882A (en) Production of cycloolefin
JPH08193037A (en) Production of cycloolefin
JP2925129B2 (en) Method for producing cycloolefin
JPH092998A (en) Production of aqueous solution of glycolic acid
JP3125913B2 (en) Method for producing cycloolefin