JPH0717933B2 - Hot metal pretreatment method - Google Patents

Hot metal pretreatment method

Info

Publication number
JPH0717933B2
JPH0717933B2 JP22852388A JP22852388A JPH0717933B2 JP H0717933 B2 JPH0717933 B2 JP H0717933B2 JP 22852388 A JP22852388 A JP 22852388A JP 22852388 A JP22852388 A JP 22852388A JP H0717933 B2 JPH0717933 B2 JP H0717933B2
Authority
JP
Japan
Prior art keywords
hot metal
oxygen
concentration
exhaust gas
gas
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP22852388A
Other languages
Japanese (ja)
Other versions
JPH0277513A (en
Inventor
祐樹 鍋島
純夫 山田
望 田村
Original Assignee
川崎製鉄株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 川崎製鉄株式会社 filed Critical 川崎製鉄株式会社
Priority to JP22852388A priority Critical patent/JPH0717933B2/en
Publication of JPH0277513A publication Critical patent/JPH0277513A/en
Publication of JPH0717933B2 publication Critical patent/JPH0717933B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Refinement Of Pig-Iron, Manufacture Of Cast Iron, And Steel Manufacture Other Than In Revolving Furnaces (AREA)

Description

【発明の詳細な説明】 〈産業上の利用分野〉 本発明は溶銑の予備処理方法に係り、特に予備処理後の
溶銑中の〔P〕濃度、さらに溶銑温度の目標よりのバラ
ツキを少くした溶銑の予備処理方法に関するものであ
る。
Description: TECHNICAL FIELD The present invention relates to a hot metal pretreatment method, and particularly to a hot metal having a lesser variation of the [P] concentration in the hot metal after the pretreatment and the hot metal temperature from the target. The present invention relates to the pretreatment method of.

〈従来の技術〉 製銑工程で必然的に溶銑中に含有されるPの除去、従来
転炉にその機能がゆだねられていた。しかしながら近
年、製鋼コストの低減を目的として熱力学的により有利
な溶銑段階での脱P技術が開発され、転炉はその機能が
脱Cと昇温のみとなるに至っている。
<Prior Art> Removal of P inevitably contained in the hot metal in the pig iron making process, and its function were left to the conventional converter. However, in recent years, a thermodynamically more advantageous technique for removing P from the hot metal stage has been developed for the purpose of reducing the cost of steelmaking, and the function of the converter has been only to remove C and raise the temperature.

溶銑段階での脱P処理は熱力学的に有利な低温域で反応
を進行させる事を目的として、酸素源としては鉄鉱石
粉,ミルスケール及び鉄鋼業における集塵ダスト等の酸
化鉄含有物を使用する為、酸化鉄の分解反応熱による処
理中の温度降下は大きく、特に低P域までの処理を行な
うに際しては、溶銑温度が著しく低下し、次工程である
転炉での熱余裕度が少なくなるという問題点があった。
In the de-P treatment at the hot metal stage, iron ore powder, mill scale, and iron oxide-containing substances such as dust collected in the iron and steel industry are used as oxygen sources in order to promote the reaction in a low temperature region that is thermodynamically advantageous. Therefore, the temperature drop during the treatment due to the heat of decomposition reaction of iron oxide is large, especially when performing the treatment to the low P range, the hot metal temperature is significantly lowered, and the thermal margin in the converter, which is the next step, is small. There was a problem that

ところで、溶銑温度低下の問題点に関しては、気体酸素
の上吹き及びインジェクションにより熱補償を行なう方
法が提案され実用化されている。しかしながら、処理中
の成分,温度の推定に関しては、いまだに処理前条件と
処理剤及び酸素ガスの使用量より経験的に第7〜9図の
ようなグラフと回帰式を用いて実施しているのが現状で
あり、混銑車等収容容器の形状及び前工程及び前処理よ
りもたらされたスラグの成分・量のバラツキによって、
処理後の成分・温度がバラツキ、目標範囲に適中させる
ことが困難であった。
By the way, with respect to the problem of the decrease in the hot metal temperature, a method of performing thermal compensation by top-blowing and injection of gaseous oxygen has been proposed and put into practical use. However, the estimation of the components and temperature during the treatment is still conducted empirically using the graphs and regression equations shown in FIGS. 7 to 9 rather than the pretreatment conditions and the amounts of the treatment agent and the oxygen gas used. Is the current situation, and due to the shape of the container such as the hot metal truck and the variation in the component and amount of slag brought about by the previous process and pretreatment,
The components and temperature after treatment varied, and it was difficult to bring them into the target range.

特に気体酸素を上吹きして発生COガスを2次燃焼させる
熱補償方法においては、その熱補償量を処理単位で把握
することが困難であり、処理後温度を正確に推定するこ
とが出来なかった。
In particular, in the heat compensation method in which the generated CO gas is secondarily combusted by blowing up oxygen gas, it is difficult to grasp the amount of heat compensation for each processing unit, and the post-treatment temperature cannot be accurately estimated. It was

処理後の成分及び温度のバラツキは、次工程である転炉
精錬とのマッチングを悪化させ、溶銑予備処理の利点を
最大限に発揮できないという問題を引き起こす。
The variation in the components and the temperature after the treatment deteriorates the matching with the converter refining which is the next step and causes a problem that the advantages of the hot metal pretreatment cannot be maximized.

すなわち、目標Pより低値まで処理を実施した際には、
予備処理における処理剤原単位の悪化及び温度降下の増
大による転炉での熱余裕度の低下、また目標Pまで脱P
が実施できなかった場合は、転炉での脱P負荷の増大あ
るいは再脱P処理の実施による生産性の阻害という問題
点が生じる。
That is, when processing is performed to a value lower than the target P,
Decrease in heat margin in the converter due to deterioration of the basic unit of processing agent and increase in temperature drop in pretreatment, and removal of P to the target P
If it is not possible to carry out the above, there arises a problem that an increase in the P-deloading load in the converter or a re-de-Ping process is carried out to hinder the productivity.

〈発明が解決しようとする課題〉 本発明の目的は溶銑予備処理における従来の上記問題点
を解決し、目標とするP濃度、さらには目標とする溶銑
温度への適中精度を良くし、よって予備処理と転炉との
機能分担をより正確にし、製鋼分野における脱Pコスト
をより削減できる処理方法を提供することにある。
<Problems to be Solved by the Invention> An object of the present invention is to solve the above-mentioned problems of the prior art in hot metal pretreatment, improve the target P concentration, and further improve the accuracy of application to the target hot metal temperature. It is an object of the present invention to provide a processing method that makes it possible to more accurately divide the functions of the processing and the converter and to further reduce the P removal cost in the steelmaking field.

〈問題点を解決するための手段〉 本発明は混銑車等の容器に保持された溶銑中に吹込みラ
ンスを浸漬し、酸化鉄を主成分とする脱Si・脱P剤を吹
込み、脱Si,脱Pする溶銑の予備処理方法において、排
ガス中のCOガスを完全燃焼させると共に、該排ガス中の
CO2濃度及び該排ガス流量を逐次測定し、その測定値よ
り計算される脱炭酸素効率により、溶銑中の〔P〕濃度
を推定し、所定の推定〔P〕濃度になるまで予備処理す
る溶銑の予備処理方法であり、あるいはこれに加えて非
浸漬ランスを用いて溶銑浴上より酸素ガスを上吹きし、
その中の一部をあるいは全ての酸素によって排ガス中の
COガスを完全燃焼させると共に、該酸素ガスの上吹き条
件であるランス内径,ランス高さ及び酸素ガス流量から
求められる気体酸素の2次燃焼効率より、溶銑温度を推
定する溶銑の予備処理方法である。
<Means for Solving Problems> In the present invention, a blowing lance is immersed in hot metal held in a container such as a piggy car, and a de-Si / P-eliminating agent containing iron oxide as a main component is blown to remove the deionizing agent. In the pretreatment method for hot metal that removes Si and P, the CO gas in the exhaust gas is completely burned and
The CO 2 concentration and the flow rate of the exhaust gas are sequentially measured, the [P] concentration in the hot metal is estimated from the decarboxylation efficiency calculated from the measured values, and the hot metal is pretreated until a predetermined estimated [P] concentration is reached. Is a pretreatment method of, or in addition to this, by using a non-immersion lance, oxygen gas is blown upward from the hot metal bath,
Some or all of the oxygen in the exhaust gas
A method for pretreatment of hot metal, in which the hot gas temperature is estimated from the secondary combustion efficiency of gaseous oxygen obtained from the lance inner diameter, the lance height, and the oxygen gas flow rate, which are the conditions for the top blowing of the oxygen gas, while completely burning the CO gas is there.

〈作用〉 まず本発明に至った経緯を説明する。<Operation> First, the background of the present invention will be described.

溶銑予備処理後の成分を正確に推定する為には、従来の
様な処理前後の条件より経験的に回帰式によって推定す
る方法では限度があり、処理中の成分推移を適確に推定
してゆく必要があるとの観点から本発明に到達した。
In order to accurately estimate the components after the hot metal pretreatment, there is a limit to the conventional method of estimating by regression equation from the conditions before and after the treatment, and it is possible to accurately estimate the transition of components during the treatment. The present invention has been reached from the viewpoint that it is necessary to proceed.

しかしながら、予備処理中において、主にC,Si,Pの酸化
反応が競合して進行している為、Pの推移の推定にはC,
Siの推移も適確に把握する必要がある。そこで本発明者
らは、このうち反応生物が容器内より外へ排出されるC
に着目し排ガス成分の測定によりその挙動を把握すこと
を考えた。排ガス成分から浴中Cの推移を推定する方法
は、転炉,真空脱炭設備(RH,VOD等)で実用化されてい
る既存技術であるが、それらの方法においては主に鋼中
〔C〕の推定を目的として排ガス中のCO及びCO2濃度を
オンライン測定するものである。しかしながら溶銑予備
処理においては、処理後においても〔C〕が3.5〜4.5%
と飽和かあるいは飽和近く有り、〔C〕の推定にそれほ
どの重要性がないこと及び排ガス集塵系が開放型である
ことから、溶銑中の〔C〕の推定は行われていなかっ
た。
However, during the pretreatment, the oxidation reactions of C, Si, and P mainly proceed in competition with each other.
It is also necessary to accurately grasp the transition of Si. Therefore, the present inventors have found that the reaction product C is discharged out of the container to the outside.
Focusing on, we considered to grasp the behavior by measuring the exhaust gas component. The method of estimating the transition of C in the bath from the exhaust gas components is the existing technology that has been put to practical use in converters and vacuum decarburization equipment (RH, VOD, etc.). For the purpose of [], CO and CO 2 concentrations in exhaust gas are measured online. However, in the hot metal pretreatment, [C] is 3.5 to 4.5% even after the treatment.
Since it is saturated or near saturation, the estimation of [C] is not so important, and the exhaust gas dust collection system is an open type, the estimation of [C] in the hot metal has not been performed.

本発明者らは、排ガス中のCOを完全燃焼させて全てCO2
とし、CO2濃度のみの分析により脱炭速度(効率)をオ
ンラインで測定した。
The inventors of the present invention completely burned CO in exhaust gas to completely remove CO 2
Then, the decarburization rate (efficiency) was measured online by analyzing only the CO 2 concentration.

第1図に本発明法により、予備処理を実施するに際して
の設備及びシステムの概略を示す。
FIG. 1 shows an outline of equipment and system for carrying out a pretreatment by the method of the present invention.

脱Si・脱P剤吹込速度と脱Si・脱P剤中の酸化鉄含有率
より固体酸素の供給速度を、上吹ランスからの酸素ガス
流量より気体酸素の供給速度を求め、これらの和として
トータル(気体酸素+固体酸素)酸素の供給速度を求め
ることができる。但し、上吹ランスからの酸素ガスのう
ち、いくらかは発生COガスの2次燃焼に消費され溶銑浴
中のC,Si,P等との成分との反応には寄与しないので、そ
の分を差し引いて次式の様に加工する必要がある。
Obtain the solid oxygen supply rate from the de-Si / P-free agent blowing rate and the iron oxide content in the de-Si / P-free agent, and the gaseous oxygen supply rate from the oxygen gas flow rate from the top blowing lance. The total (gaseous oxygen + solid oxygen) oxygen supply rate can be obtained. However, some of the oxygen gas from the top blowing lance is consumed in the secondary combustion of the generated CO gas and does not contribute to the reaction with the components such as C, Si, P in the hot metal bath, so subtract that amount. It is necessary to process it according to the following formula.

溶銑浴中成分との反応に寄与するトータル酸素供給速度
(Nm3/min) =α・〔脱Si・脱P剤吹込み速度(Kg/min)〕+(1−
ηpc)・〔酸素ガス流量(Nm3/min)〕ここでα:吹込
剤中の固体酸素含有率(Nm3/Kg)ηpc:酸素ガスの2次
燃焼効率 酸素ガスの2次燃焼効率については、上吹ランス先端の
浴面からの距離,酸素ガス流量及びランス内径との間に
第4図に示す様な関係が得られたので、この関係を利用
して、各時点におけるトータル酸素供給速度を上記の式
によって正確に求めることができる。
Total oxygen supply rate (Nm 3 / min) that contributes to the reaction with the components in the hot metal bath = α ・ [De-Si / P-removing agent blowing rate (Kg / min)] + (1-
ηpc) ・ [Oxygen gas flow rate (Nm 3 / min)] where α: Solid oxygen content in the blowing agent (Nm 3 / Kg) ηpc: Secondary combustion efficiency of oxygen gas For the secondary combustion efficiency of oxygen gas, , The distance from the bath surface of the tip of the top blowing lance, the oxygen gas flow rate, and the inner diameter of the lance were obtained as shown in Fig. 4. Using this relationship, the total oxygen supply rate at each time point was obtained. Can be accurately determined by the above equation.

また排ガス情報としては、ピトー管等により排ガス流量
を測定し、排ガス温度及びCO2濃度を合わせて測定する
ことによって脱炭速度をコンピューターにより計算させ
て、脱炭酸素効率を求めることができる。
As the exhaust gas information, the exhaust gas flow rate is measured with a Pitot tube or the like, the exhaust gas temperature and the CO 2 concentration are measured together, and the decarburization rate is calculated by a computer, whereby the decarboxylation element efficiency can be obtained.

この脱炭酸素効率を、種々の溶銑成分で測定すれば、脱
炭酸素効率と溶銑成分との関係を1対1に対応付けるこ
とができる。第2図及び第3図に脱炭効率とその時点に
おける溶銑中Si濃度,P濃度との関係を示す。
By measuring the decarboxylation efficiency with various hot metal components, the relationship between the decarboxylation efficiency and the hot metal component can be associated one-to-one. Figures 2 and 3 show the relationship between the decarburization efficiency and the Si and P concentrations in the hot metal at that time.

これらの関係を用いて、処理開始直後の脱Si期には第2
図の関係より溶銑中〔Si〕濃度が推定でき、第2図より
脱炭酸素効率の推移から脱Si期の終わりを確認した後、
第3図の関係より溶銑中〔P〕濃度が推定できることに
なる。
By using these relationships, it is possible to use the second
The [Si] concentration in the hot metal can be estimated from the relationship in the figure, and after confirming the end of the Si removal period from the transition of the decarbonation efficiency from Fig. 2,
From the relationship shown in FIG. 3, the [P] concentration in the hot metal can be estimated.

さらに、第4図の関係より2次燃焼量をも求めることが
できる為酸素ガスの使用による熱補償量を正確に把握で
きるので、処理後の溶銑温度を精度よく推定することが
可能となる。
Further, since the secondary combustion amount can also be obtained from the relationship of FIG. 4, the amount of heat compensation due to the use of oxygen gas can be accurately grasped, so that the hot metal temperature after the treatment can be accurately estimated.

〈実施例〉 本発明を実機に適用した場合の結果について説明する。<Example> The result when the present invention is applied to an actual machine will be described.

処理前溶銑の平均成分,温度を表1に示す。Table 1 shows the average components and temperature of the hot metal before treatment.

これらの溶銑を用いて同一P濃度(0.02%),温度(12
60℃)を目標として、従来法と本発明法の2種類の推定
方法によって処理を実施した。その時の処理後P,温度の
分布を第5図及び第6図に示す。
Using these hot metals, the same P concentration (0.02%), temperature (12
With the target of 60 ° C., treatment was carried out by two kinds of estimation methods, the conventional method and the method of the present invention. The P and temperature distributions after the treatment at that time are shown in FIGS. 5 and 6.

ここで示す従来法とは、処理前〔Si〕,〔P〕,温度の
みから、目標P,温度を達成する為の処理剤原単位,気体
酸素量を第7図,第8図及び第9図に示す回帰式のみを
用いて処理終了を推定したものであり、発明法では従来
法の推定に加えて処理中の排ガス情報及び酸素ガス上吹
条件を基に終点調整を実施したものである。排ガス情報
及び酸素ガス上吹条件による終点調整を実施することに
よって明らかに処理後P,温度の適中精度が向上してい
る。
In the conventional method shown here, the processing agent basic unit and the amount of gaseous oxygen for achieving the target P and temperature are shown in FIGS. 7, 8 and 9 only from the pre-treatment [Si], [P] and temperature. The end of treatment is estimated using only the regression equation shown in the figure, and in the method of the invention, the end point is adjusted based on the exhaust gas information during treatment and the oxygen gas top blowing condition in addition to the estimation of the conventional method. . By adjusting the end point according to the exhaust gas information and the oxygen gas top-blowing condition, the accuracy of P and temperature after treatment is obviously improved.

なお従来及び本発明法の平均的実施条件は次の通りであ
る。
The average conditions for performing the conventional method and the method of the present invention are as follows.

脱Si・脱P剤組成 : Fe2O3 75% CaO 22% CaF2 3% 脱Si・脱P剤吹込速度: 450Kg/min 混銑車中の溶銑量 : 230ton 〈発明の効果〉 溶銑処理後のP濃度の適中精度向上によって、Pの下げ
過ぎがなくなり、脱P剤使用量の低減が可能となる。さ
らに転炉へ要求される最適の成分(P濃度),温度で予
備処理溶銑を供給でき、予備処理から転炉精錬に至るプ
ロセスのトータルコストが削減され、生産性の向上も期
待できる。
Composition of de-Si and de-P agent: Fe 2 O 3 75% CaO 22% CaF 2 3% De-Si and de-P agent blowing rate: 450Kg / min Hot metal amount in the hot metal car: 230ton <Effect of the invention> After hot metal treatment By improving the accuracy of P concentration, the amount of P deoxidizer used can be reduced without lowering P too much. Furthermore, the pretreatment hot metal can be supplied to the converter at the optimum component (P concentration) and temperature required, the total cost of the processes from pretreatment to converter refining can be reduced, and improvement in productivity can be expected.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の設備及びシステムの概要図、第2図は
溶銑中Si濃度と脱炭酸素効率との関係を示すグラフ、第
3図は溶銑中P濃度と脱炭酸素効率との関係を示すグラ
フ、第4図はランス条件と気体酸素の2次燃焼効率との
関係を示すグラフ、第5図は目標P濃度、第6図は目標
温度との偏位を示すグラフ、第7図は溶銑,溶滓中のSi
濃度の平均と脱Si酸素効率との関係を示すグラフ、第8
図は溶銑,溶滓中のP濃度の平均と脱Si外脱P酸素効率
との関係を示すグラフ、第9図は気酸比率と処理剤によ
る温度降下との関係を示すグラフである。
FIG. 1 is a schematic view of the equipment and system of the present invention, FIG. 2 is a graph showing the relationship between the Si concentration in hot metal and decarboxylation efficiency, and FIG. 3 is the relationship between P concentration in hot metal and decarbonation efficiency. 4 is a graph showing the relationship between the lance condition and the secondary combustion efficiency of gaseous oxygen, FIG. 5 is the target P concentration, FIG. 6 is the graph showing the deviation from the target temperature, and FIG. Is hot metal, Si in molten slag
Graph showing the relationship between the average concentration and the oxygen removal efficiency, No. 8
FIG. 9 is a graph showing the relationship between the average P concentration in the hot metal and molten slag and the oxygen removal efficiency from the outside of Si, and FIG. 9 is a graph showing the relationship between the vapor acid ratio and the temperature drop due to the treatment agent.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】混銑車等の容器に保持された溶銑中に吹込
みランスを浸漬し、酸化鉄を主成分とする脱Si・脱P剤
を吹込み、脱Si,脱Pする溶銑の予備処理方法におい
て、排ガス中のCOガスを完全燃焼させると共に、該排ガ
ス中のCO2濃度及び該排ガス流量を逐次測定し、その測
定値より計算される脱炭酸素効率により、溶銑中の
〔P〕濃度を推定し、所定の推定〔P〕濃度になるまで
予備処理することを特徴とする溶銑の予備処理方法。
1. A hot metal reserve for removing Si and P by immersing a blowing lance in hot metal held in a container such as a piggy car and blowing a de-Si and de-P agent containing iron oxide as a main component. In the treatment method, the CO gas in the exhaust gas is completely burned, the CO 2 concentration in the exhaust gas and the exhaust gas flow rate are sequentially measured, and the decarboxylation efficiency calculated from the measured values is used to determine [P] in the hot metal. A pretreatment method for hot metal, comprising estimating the concentration and pretreating until a predetermined estimated [P] concentration is reached.
【請求項2】請求項1記載の溶銑の予備処理方法におい
て、さらに非浸漬ランスを用いて溶銑浴上より酸素ガス
を上吹きし、その一部あるいは全ての酸素によって排ガ
ス中のCOガスを完全燃焼させると共に、該酸素ガスの上
吹き条件であるランス内径,ランス高さ及び酸素ガス流
量から求められる気体酸素の2次燃焼効率より、溶銑温
度を推定することを特徴とする溶銑の予備処理方法。
2. The hot metal pretreatment method according to claim 1, wherein oxygen gas is blown from above the hot metal bath using a non-immersion lance, and the CO gas in the exhaust gas is completely removed by part or all of the oxygen. A method for pretreatment of hot metal, which comprises burning and estimating the hot metal temperature from the secondary combustion efficiency of gaseous oxygen obtained from the lance inner diameter, the lance height, and the oxygen gas flow rate, which are the conditions for the upper blowing of the oxygen gas. .
JP22852388A 1988-09-14 1988-09-14 Hot metal pretreatment method Expired - Lifetime JPH0717933B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP22852388A JPH0717933B2 (en) 1988-09-14 1988-09-14 Hot metal pretreatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP22852388A JPH0717933B2 (en) 1988-09-14 1988-09-14 Hot metal pretreatment method

Publications (2)

Publication Number Publication Date
JPH0277513A JPH0277513A (en) 1990-03-16
JPH0717933B2 true JPH0717933B2 (en) 1995-03-01

Family

ID=16877754

Family Applications (1)

Application Number Title Priority Date Filing Date
JP22852388A Expired - Lifetime JPH0717933B2 (en) 1988-09-14 1988-09-14 Hot metal pretreatment method

Country Status (1)

Country Link
JP (1) JPH0717933B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5211895B2 (en) * 2008-07-02 2013-06-12 新日鐵住金株式会社 Hot metal dephosphorization method
JP6098572B2 (en) * 2014-05-23 2017-03-22 Jfeスチール株式会社 Hot metal pretreatment method

Also Published As

Publication number Publication date
JPH0277513A (en) 1990-03-16

Similar Documents

Publication Publication Date Title
JP5686091B2 (en) Converter refining method
JPH0717933B2 (en) Hot metal pretreatment method
JP2007169717A (en) Method for judging decarburize-end point in vacuum degassing facility
JP4686917B2 (en) Melting method of molten steel in vacuum degassing equipment
US3236630A (en) Oxygen steelmaking
JP4022266B2 (en) Stainless steel melting method
JP2653301B2 (en) Reusing method of low P converter slag
JPH04346611A (en) Method for refining stainless steel
JP2885620B2 (en) Converter refining method
JPH07268440A (en) Deoxidizing method of molten steel
CN113574188B (en) Blowing control method and blowing control device of converter type dephosphorization refining furnace
JPH11246245A (en) Method for modifying chromium oxide-containing slag
JPH02209411A (en) Method for pre-treating molten iron
JP3877826B2 (en) Method for producing high Ni molten steel
JPH05320731A (en) Method for effectively utilizing collected dust of aod furnace
JP4850336B2 (en) Hot metal dephosphorization method
JP3167901B2 (en) Decarburization refining method for Cr-containing molten steel
JPH05247522A (en) Refining method of highly clean stainless steel
JPH089730B2 (en) Decarburization refining method for molten steel containing chromium
JPH0611885B2 (en) Simultaneous desiliconization and dephosphorization of hot metal
JPH036312A (en) Method for controlling blowing in converter
SU931755A1 (en) Method for melting tungsten-containing steel
JP2807900B2 (en) Heat Compensation Method in Hot Metal Pretreatment
JP3757435B2 (en) Method for decarburizing and refining chromium-containing molten steel
JP2001152238A (en) Method of melting high cleanliness low carbon steel