JPH07178806A - Polyethylene-2,6-naphthalate film - Google Patents

Polyethylene-2,6-naphthalate film

Info

Publication number
JPH07178806A
JPH07178806A JP5324049A JP32404993A JPH07178806A JP H07178806 A JPH07178806 A JP H07178806A JP 5324049 A JP5324049 A JP 5324049A JP 32404993 A JP32404993 A JP 32404993A JP H07178806 A JPH07178806 A JP H07178806A
Authority
JP
Japan
Prior art keywords
film
tape
modulus
young
magnetic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5324049A
Other languages
Japanese (ja)
Other versions
JP4151994B2 (en
Inventor
Takao Nakajo
隆雄 中條
Kiminori Nishiyama
公典 西山
Hisashi Hamano
久 浜野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP32404993A priority Critical patent/JP4151994B2/en
Priority to US08/358,763 priority patent/US5631063A/en
Priority to DE69428339T priority patent/DE69428339T2/en
Priority to EP94309540A priority patent/EP0659809B1/en
Priority to TW083111992A priority patent/TW396106B/en
Priority to KR1019940036079A priority patent/KR100230632B1/en
Publication of JPH07178806A publication Critical patent/JPH07178806A/en
Application granted granted Critical
Publication of JP4151994B2 publication Critical patent/JP4151994B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a biaxially oriented polyethylene-2,6-naphthalate film having high strength and excellent flatness and especially useful as the base film of a magnetic recording medium capable of long-time recording. CONSTITUTION:A biaxially oriented polyethylene-2,6-naphthalate film is characterized by that Young's modulus (EM) in a longitudinal direction is 800kg/mm<2> or more, Young's modulus (ET) in a lateral direction is 500kg/mm<2> or more, Young's modulus in the longitudinal direction is larger than that in the lateral direction and elongation per load 1kg/mm<2> at 120 deg.C is 0-0.6%.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は二軸配向ポリエチレン−
2,6−ナフタレートフィルムに関し、更に詳しくは縦
方向に高強度で、平坦性の優れた、特に長時間記録可能
なビデオテープ、オーディオテープ、コンピュータ用デ
ータカートリッジ等の磁気記録媒体のベースフィルムと
して有用な二軸配向ポリエチレン−2,6−ナフタレー
トフィルムに関する。
The present invention relates to a biaxially oriented polyethylene-
More specifically, it relates to a 2,6-naphthalate film as a base film for a magnetic recording medium such as a video tape, an audio tape, a data cartridge for a computer, which has a high strength in a longitudinal direction and an excellent flatness and which can record for a long time. It relates to a useful biaxially oriented polyethylene-2,6-naphthalate film.

【0002】[0002]

【従来の技術】近年、ビデオテープ、オーディオテー
プ、コンピュータ用データカートリッジ等の磁気テープ
は小型化および高画質化のために益々高密度記録化が要
求され、また更にテープの薄手化、長時間記録化が要求
されている。この磁気テープの長時間記録化の要求に対
し、ベースフィルムを薄くする必要があるが、薄くする
ことによりテープのスティフネスが低下してローディン
グ時およびアンローディング時にテープのエッジに傷が
つき易くなったり、また瞬間的に高引張り力が加わった
ときテープが変形して記録に歪が生じる場合がある。従
って、長時間記録用磁気テープのベースとなるフィルム
には高ヤング率が要求される。
2. Description of the Related Art In recent years, magnetic tapes such as video tapes, audio tapes, and data cartridges for computers have been required to have higher density recording for downsizing and higher image quality. Is required. The base film needs to be thin to meet the demand for long-time recording of the magnetic tape, but the thinness reduces the stiffness of the tape, and the edge of the tape is easily scratched during loading or unloading. Also, when a high tensile force is applied momentarily, the tape may be deformed and the recording may be distorted. Therefore, a high Young's modulus is required for the film that is the base of the long-time recording magnetic tape.

【0003】更に、最近カメラ一体型VTRが普及し、
戸外で使用されたり、自動車内へ持ち込まれたりするた
め、磁気テープが従来より過酷な温度条件に曝される場
合が多く、スキュー歪みを生じないような高温度下での
テープの寸法安定性、ひいてはベースフィルムの寸法安
定性の要求が強くなっている。
Further, recently, a VTR with a built-in camera has become popular,
Since it is used outdoors or brought into the car, the magnetic tape is often exposed to more severe temperature conditions than before, and the dimensional stability of the tape at high temperatures that does not cause skew distortion, Consequently, the demand for dimensional stability of the base film is increasing.

【0004】これら磁気記録テープのベースフィルムに
は従来から二軸配向ポリエチレンテレフタレートフィル
ムが使用され、特に長時間記録用として縦方向のヤング
率を高めたいわゆるスーパーテンシライズフィルムが知
られている。しかしこのフィルムでは、縦方向のヤング
率は高々 850 kg/mm2 、その場合横方向ヤング率は
高々 450 kg/mm2 が限度である。また、縦方向ヤン
グ率を高めようとすると横方向のヤング率が必然的に低
下するため、テープは走行中にエッジ部の損傷を受け易
くなる。他方、フィルムの製造において幅(以下「横」
という場合がある)方向ヤング率を高めようとすると、
この場合も必然的に充分な縦方向ヤング率が得れず、磁
気ヘッドとのタッチが悪くなり出力変動を生じる。更に
高倍率延伸を施して、ヤング率を高くしたベースフィル
ムには成形時に生じた歪みが残存し、寸法安定性が悪く
なる欠点がある。高倍率の延伸加工は製品歩留まりが低
下するという別な問題点もある。
Conventionally, a biaxially oriented polyethylene terephthalate film has been used as a base film for these magnetic recording tapes, and a so-called super tension film having a high Young's modulus in the longitudinal direction is known for long-time recording. However, with this film, the Young's modulus in the machine direction is at most 850 kg / mm 2 , in which case the Young's modulus in the transverse direction is at most 450 kg / mm 2 . In addition, if the Young's modulus in the vertical direction is increased, the Young's modulus in the horizontal direction inevitably decreases, and the tape is easily damaged by the edge portion during running. On the other hand, in the manufacture of film,
If you try to increase the direction Young's modulus,
In this case as well, a sufficient Young's modulus in the vertical direction cannot be obtained inevitably, and the touch with the magnetic head becomes poor, resulting in output fluctuation. Further, the base film having a higher Young's modulus which has been subjected to high-strength drawing has a drawback that strain generated during molding remains and dimensional stability is deteriorated. The high-magnification stretching process has another problem that the product yield is reduced.

【0005】一方、ポリエチレンテレフタレート(以下
「PET」という場合がある)よりも耐熱寸法安定性の
優れたポリエステルである、ポリエチレン−2,6−ナ
フタレート(以下「PEN」という場合がある)フィル
ムをベースとした磁気テープが種々提案されている。
On the other hand, based on a polyethylene-2,6-naphthalate (hereinafter sometimes referred to as "PEN") film, which is a polyester having better heat-resistant dimensional stability than polyethylene terephthalate (hereinafter sometimes referred to as "PET") Various magnetic tapes have been proposed.

【0006】例えば、特開昭63−60731号公報で
は縦方向ヤング率の高いPENフィルムの製造法の技術
が開示されている。しかし、かかる技術で造られたPE
Nフィルムでは、成形時に生じた歪みが残存し、前記の
戸外での使用等の過酷な温度条件にテープが曝される場
合にフィルムが縦方向に収縮する問題が懸念される。
For example, Japanese Unexamined Patent Publication No. 63-60731 discloses a technique for manufacturing a PEN film having a high Young's modulus in the machine direction. However, PE manufactured by such technology
In the N film, the distortion generated during the molding remains, and there is a concern that the film shrinks in the longitudinal direction when the tape is exposed to the severe temperature conditions such as the outdoor use.

【0007】また例えば、特開平4−198328号公
報ではPENフィルムを用い、面配向度(以下「面配向
係数」という場合がある)を0.255〜0.280の
範囲に特定しスリット性の向上等の技術を開示している
が、主配向方向の特定がなく、縦方向のヤング率を高め
ることによるテープの磁気ヘッドタッチの改善やエッジ
ダメージの防止などの改善が見い出せない。さらに、同
公報では前記の面配向度を満足すると同時に平均屈折率
が1. 666〜1. 676、好ましくは1. 668〜
1. 676の範囲にあるとよく、該範囲より小さいと熱
収縮率が大きくなるとしており、同公報による発明フィ
ルムにおいて、平均屈折率1. 666未満の場合は、過
酷な温度条件のもとではベースフィルムの寸法安定性が
悪いことが容易に推定される。
Further, for example, in Japanese Patent Laid-Open No. 4-198328, a PEN film is used, and the degree of plane orientation (hereinafter sometimes referred to as "plane orientation coefficient") is specified to be in the range of 0.255 to 0.280 and the slit property of Although technologies such as improvement have been disclosed, there is no specification of the main orientation direction, and improvement in magnetic head touch of the tape and prevention of edge damage by increasing Young's modulus in the longitudinal direction cannot be found. Further, in the publication, the above-mentioned degree of plane orientation is satisfied, and at the same time, the average refractive index is 1.666 to 1.676, preferably 1.668 to.
The range of 1.676 is preferable, and if it is smaller than the range, the heat shrinkage rate becomes large. When the average refractive index is less than 1.666 in the invention film according to the above publication, under the severe temperature condition. It is easily estimated that the dimensional stability of the base film is poor.

【0008】また同公報では、PENフィルム中に特定
の平均粒径を有する凝集体粒子(酸化ケイ素、酸化アル
ミニウムから選ばれた粒子)と架橋高分子、炭酸カルシ
ウムから選ばれた粒子とを特定の割合で含有させること
による、耐摩耗性や易滑性の向上を開示しているが、か
かる技術だけでは高密度記録のための高度な表面性を有
する磁気テープが得られ難い。例えば、凝集粒子である
酸化ケイ素あるいは酸化アルミニウムを使用しているた
め、該粒子の含有によるフィルム内でのボイド発生が予
想され、それによるフィルム表面への粗大突起の発生や
耐削れ性の悪化が予想される。また、同公報では、該含
有粒子の粒度分布の特定がないが、同一平均粒径の場合
でも、粒度分布がシャープでないとフィルムの表面に形
成される突起の分布の均一性が悪く、突起高さのそろっ
た均一な表面突起が得られず、滑り性が低下してしま
う。
[0008] In the same publication, the PEN film is characterized in that aggregate particles having a specific average particle diameter (particles selected from silicon oxide and aluminum oxide) and particles selected from a crosslinked polymer and calcium carbonate are specified. Although it has been disclosed that abrasion resistance and slipperiness are improved by containing the magnetic particles in a ratio, it is difficult to obtain a magnetic tape having a high surface property for high density recording only by such a technique. For example, since silicon oxide or aluminum oxide, which is an agglomerated particle, is used, it is expected that voids will be generated in the film due to the inclusion of the particles, and the occurrence of coarse projections on the film surface or deterioration of abrasion resistance due to it. is expected. Further, in the same publication, although the particle size distribution of the contained particles is not specified, even if the particle size distribution is not the same, the distribution of the projections formed on the surface of the film is not uniform and the projection height is poor unless the particle size distribution is sharp. Uniform and uniform surface protrusions cannot be obtained, and the slipperiness is reduced.

【0009】更に、特開平5−117421号公報では
PENフィルムの表面粗さ等を特定な範囲とした技術が
開示されているが、かかる技術では例えば、テープ加工
工程での磁性層の塗布、乾燥時、ベースフィルムが高温
下で高張力の負荷を受けるため、この時ベースフィルム
が伸ばされて、波打ちが発生し、磁性層の塗布斑を起こ
すことが懸念される。
Further, Japanese Patent Laid-Open No. 5-117421 discloses a technique in which the surface roughness of a PEN film is specified within a specific range. In such technique, for example, coating and drying of a magnetic layer in a tape processing step. At this time, the base film is subjected to a high tension load at a high temperature, so that the base film may be stretched at this time, causing waviness and causing coating unevenness of the magnetic layer.

【0010】上述の通り、従来の技術では、縦方向の寸
法変化が少なくかつ高強度で、平坦性に優れ、長時間記
録可能でかつ高密度記録の磁気記録媒体のベースフィル
ムとしての要求を充分満足するポリエステルフィルムは
見出だせなかった。
As described above, according to the prior art, there is sufficient demand as a base film for a magnetic recording medium which has a small change in size in the longitudinal direction, high strength, excellent flatness, long-time recording, and high-density recording. We could not find a satisfactory polyester film.

【0011】[0011]

【発明が解決しようとする課題】本発明の目的は、上記
欠点を解消し、高密度磁気記録用テープとしたときに高
強度で耐久性に優れ、かつ熱寸法安定性や平面性に優れ
た磁気記録媒体用二軸配向PENフィルムを提供するこ
とにある。
SUMMARY OF THE INVENTION The object of the present invention is to solve the above drawbacks and to provide a high density magnetic recording tape with high strength and excellent durability, and excellent thermal dimensional stability and flatness. An object is to provide a biaxially oriented PEN film for a magnetic recording medium.

【0012】[0012]

【課題を解決するための手段】本発明は、かかる目的を
達成するために、次の構成からなる。
The present invention has the following constitution in order to achieve the above object.

【0013】縦方向のヤング率[EM ]が800kg/mm
2 以上、横方向のヤング率[ET ]が500kg/mm2
上であり、かつ縦方向のヤング率が横方向のヤング率よ
り大きく、120℃における荷重1kg/mm2 当たり
の縦方向の伸び率が0〜0.6%の範囲内である二軸配
向ポリエチレン−2,6−ナフタレートフィルム。
Young's modulus [EM] in the longitudinal direction is 800 kg / mm
2 or more, Young's modulus in the lateral direction [ET] is 500 kg / mm 2 or more, Young's modulus in the longitudinal direction is larger than Young's modulus in the lateral direction, and elongation in the longitudinal direction per load of 1 kg / mm 2 at 120 ° C. Is in the range of 0 to 0.6%, a biaxially oriented polyethylene-2,6-naphthalate film.

【0014】本発明において、フィルムを構成するポリ
エチレン−2,6−ナフタレートは、2,6−ナフタレ
ンジカルボン酸を主たる酸成分とするが、少量の他のジ
カルボン酸成分を共重合してもよく、またエチレングリ
コールを主たるグリコール成分とするが、少量の他のグ
リコール成分を共重合してもよい。2,6−ナフタレン
ジカルボン酸以外のジカルボン酸成分としては、例えば
テレフタル酸、イソフタル酸、ジフェニルスルホンジカ
ルボン酸、ベンゾフェノンジカルボン酸、2,7−ナフ
タレンジカルボン酸等の2,6−ナフタレンジカルボン
酸の異性体などの芳香族ジカルボン酸;コハク酸、アジ
ピン酸、セバシン酸、ドデカンジカルボン酸などの脂肪
族ジカルボン酸;ヘキサヒドロテレフタル酸、1,3−
アダマンタンジカルボン酸などの脂環族ジカルボン酸を
あげることができる。またエチレングリコール以外のグ
リコール成分としては、例えば1,3−プロパンジオー
ル、1,4−ブタンジオール、1,6ーヘキサンジオー
ル、ネオペンチルグリコール、1,4−シクロヘキサン
ジメタノール、p−キシリレングリコール、ジエチレン
グリコールなどをあげることができる。また、ポリマー
中に安定剤、着色剤等の添加剤を配合したものでもよ
い。
In the present invention, the polyethylene-2,6-naphthalate constituting the film has 2,6-naphthalenedicarboxylic acid as a main acid component, but a small amount of another dicarboxylic acid component may be copolymerized, Although ethylene glycol is the main glycol component, a small amount of another glycol component may be copolymerized. Examples of dicarboxylic acid components other than 2,6-naphthalenedicarboxylic acid include isomers of 2,6-naphthalenedicarboxylic acid such as terephthalic acid, isophthalic acid, diphenylsulfone dicarboxylic acid, benzophenone dicarboxylic acid, and 2,7-naphthalenedicarboxylic acid. Aromatic dicarboxylic acids such as; aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, dodecanedicarboxylic acid; hexahydroterephthalic acid, 1,3-
Alicyclic dicarboxylic acids such as adamantane dicarboxylic acid may be mentioned. Examples of glycol components other than ethylene glycol include 1,3-propanediol, 1,4-butanediol, 1,6-hexanediol, neopentyl glycol, 1,4-cyclohexanedimethanol, p-xylylene glycol, Diethylene glycol etc. can be mentioned. Further, the polymer may be mixed with additives such as a stabilizer and a colorant.

【0015】このようなPENポリマーは通常溶融重合
法によって公知の方法で製造される。この際、触媒等の
添加剤は必要に応じて任意に使用することができる。P
ENの固有粘度は0.45〜0.90の範囲にあること
が好ましい。
Such a PEN polymer is usually produced by a known method by a melt polymerization method. At this time, additives such as catalysts can be optionally used as required. P
The intrinsic viscosity of EN is preferably in the range of 0.45 to 0.90.

【0016】本発明のPENフィルムは、120℃にお
ける荷重1kg/mm2 当たりの縦方向の伸び率が0〜
0.6%の範囲であることが必要であり、好ましくは0
〜0.5%の範囲であり、更に好ましくは0〜0.4%
の範囲である。該伸び率が0.6%を越える場合、テー
プ加工工程での磁気塗料の塗布、乾燥時、ベースフィル
ムが伸ばされて、フィルムの波打ちが起こり、磁性層の
塗布斑が発生する。
The PEN film of the present invention has a longitudinal elongation of 0 to 120 ° C. per load of 1 kg / mm 2.
It is necessary to be in the range of 0.6%, preferably 0.
To 0.5%, more preferably 0 to 0.4%
Is the range. When the elongation percentage exceeds 0.6%, the base film is stretched during application and drying of the magnetic coating material in the tape processing step, causing waviness of the film and uneven coating of the magnetic layer.

【0017】本発明の縦方向の伸び率を有するフィルム
を得るには、二軸配向PENフィルムを製造する工程に
おいて、ヤング率を高める手段を含めて考慮した条件を
選ぶ必要があり、過酷な温度条件での縦方向の収縮率を
小さくする手段も考慮することが好ましい。例えば、縦
方向の延伸倍率を横方向の倍率より大きくすること、伸
び率を低く押えるために適した熱固定条件を選ぶこと、
更に必要であれば熱収縮を小さくするための熱弛緩条件
を調整することが好ましい。すなわち、本発明の縦方向
の伸び率は延伸倍率、熱固定温度により大きく変化する
ため、あらかじめ、本発明の縦横方向のヤング率を得る
適正条件範囲内で、延伸倍率及び熱固定温度を変えて得
たフィルムの縦方向の伸び率を縦横方向のヤング率と同
時に測定し、測定値を比較しながら最適延伸倍率及び熱
固定温度を選択する。更に熱弛緩により収縮率を好まし
い範囲とし、かつ熱弛緩によるヤング率低下が本発明の
縦方向のヤング率の範囲を外れない条件を選ぶことによ
り本発明のPENフィルムが得られる。
In order to obtain a film having an elongation in the machine direction of the present invention, it is necessary to select conditions including means for increasing Young's modulus in the process of producing a biaxially oriented PEN film, and it is necessary to select a harsh temperature. It is also preferable to consider means for reducing the shrinkage in the vertical direction under the conditions. For example, making the stretching ratio in the longitudinal direction larger than that in the lateral direction, selecting heat setting conditions suitable for keeping the elongation low,
Further, if necessary, it is preferable to adjust the thermal relaxation conditions for reducing the thermal contraction. That is, since the elongation percentage in the machine direction of the present invention largely changes depending on the draw ratio and the heat setting temperature, the draw ratio and the heat setting temperature may be changed in advance within an appropriate condition range for obtaining the Young's modulus in the machine direction of the present invention. The elongation in the machine direction of the obtained film is measured at the same time as the Young's modulus in the machine direction, and the optimum stretching ratio and heat setting temperature are selected while comparing the measured values. Furthermore, the PEN film of the present invention can be obtained by selecting the conditions in which the shrinkage rate is set to a preferable range by thermal relaxation and the Young's modulus decrease due to thermal relaxation does not deviate from the longitudinal Young's modulus range of the present invention.

【0018】本発明のPENフィルムは、縦方向のヤン
グ率[EM ]が800kg/mm2 以上であることが必要で
あり、好ましくは、900kg/mm2 以上、更に好ましく
は、1000kg/mm2 以上である。ここで、縦方向ヤン
グ率が800kg/mm2 未満のフィルムでは、特にベース
フィルムの厚みが12μm以下で、かつテープの厚みが
16μm以下の長時間記録再生用の磁気テープでは、テ
ープとしてのヤング率が充分でなく、テープの繰り返し
走行によりテープエッジが折れ曲がったり、テープが伸
びてしまい、磁気ヘッドへのテープの押しつけが弱くな
り、電磁変換特性が低下し、もはや高密度、高感度の磁
気記録テープを得ることができず、好ましくない。
The PEN film of the present invention is required to have a Young's modulus [EM] in the machine direction of 800 kg / mm 2 or more, preferably 900 kg / mm 2 or more, more preferably 1000 kg / mm 2 or more. Is. In the case of a film having a longitudinal Young's modulus of less than 800 kg / mm 2 , the Young's modulus as a tape is particularly high in a magnetic tape for long-time recording / reproducing with a base film thickness of 12 μm or less and a tape thickness of 16 μm or less. Is not enough, the tape edge is bent or the tape is extended due to repeated running of the tape, the pressing of the tape against the magnetic head is weakened, the electromagnetic conversion characteristics deteriorate, and the magnetic recording tape is no longer high density and high sensitivity. Cannot be obtained, which is not preferable.

【0019】他方、横方向のヤング率[ET ]は500
kg/mm2 以上であることが必要であり、好ましくは、5
50kg/mm2 以上、更に好ましくは、600kg/mm2
上である。このようにするとテープ走行時におけるテー
プの端面の損傷を防止できる。横方向のヤング率が50
0kg/mm2 より小さい場合、例え高強度の磁気バインダ
ーを用いたとしてもテープの走行中にテープエッジがワ
カメ状に変形したりしてテープ端面のダメージを防ぐこ
とができない。
On the other hand, the lateral Young's modulus [ET] is 500.
It is necessary to be kg / mm 2 or more, preferably 5
It is 50 kg / mm 2 or more, more preferably 600 kg / mm 2 or more. This makes it possible to prevent damage to the end surface of the tape when the tape is running. Lateral Young's modulus is 50
If it is less than 0 kg / mm 2 , even if a high-strength magnetic binder is used, the tape edge may be deformed into a wakame shape during running of the tape and damage to the tape end face cannot be prevented.

【0020】このようなヤング率を得る手段としては、
一般的なロールやステンターを用いて縦横同時に延伸し
てもよく、また縦横方向に各々逐時に延伸してもよい。
また縦横方向の延伸回数は、縦方向・横方向各1回でも
よく、それ以上の回数縦方向および/または横方向に延
伸してもよく、その回数に限定されるものではない。
As a means for obtaining such Young's modulus,
It may be stretched simultaneously in the machine and transverse directions using a general roll or a stenter, or may be stretched in the machine direction and in the transverse direction.
Further, the number of stretching in the longitudinal and lateral directions may be once in each of the longitudinal direction and the lateral direction, and may be stretched more times in the longitudinal direction and / or the lateral direction, and is not limited to that number.

【0021】例えば2段延伸する場合は、PENをTm
〜(Tm+70℃)の温度(但し、Tm:PENの融
点)で溶融押出して固有粘度0.45〜0.9dl/gの未
延伸フィルムを得、該未延伸フィルムを一軸方向(縦方
向または横方向)に(Tg−10)〜(Tg+70)℃
の温度(但し、Tg:PENのガラス転移温度)で2.
5〜7.0倍の倍率で延伸し、次いで上記延伸方向と直
角方向(一段延伸が縦方向の場合には、二段目延伸は横
方向となる)にTg(℃)〜(Tg+70)℃の温度で
2.5〜7.0倍の倍率で延伸する。この場合、面積延
伸倍率は15〜35倍、更には20〜35倍にすること
が好ましい。
For example, when stretching in two stages, PEN is added to Tm.
~ (Tm + 70 ° C) (however, Tm: melting point of PEN) is melt-extruded to obtain an unstretched film having an intrinsic viscosity of 0.45 to 0.9 dl / g, and the unstretched film is uniaxially (longitudinal or transverse). Direction) from (Tg-10) to (Tg + 70) ° C
At the temperature of 2 (Tg: glass transition temperature of PEN).
Stretching at a draw ratio of 5 to 7.0 times, and then Tg (° C.) to (Tg + 70) ° C. in a direction perpendicular to the stretching direction (in the case where the first stage stretching is the longitudinal direction, the second stage stretching is the transverse direction). Stretching at a temperature of 1 to 2.5 to 7.0 times. In this case, the area draw ratio is preferably 15 to 35 times, more preferably 20 to 35 times.

【0022】さらに3段以上延伸する場合には、上述の
2段延伸フィルムについて、熱固定温度を(Tg+2
0)〜(Tg+70)℃として熱固定し、更にこの熱固
定温度より10〜40℃高い温度で縦または横に延伸
し、続いて更にこの温度より20〜50℃高い温度で更
に横または縦に延伸し、縦方向の総合延伸倍率を5.0
〜10.0倍、横方向の総合延伸倍率を4.0〜8.0
倍とすることが好ましい。この場合、面積延伸倍率は2
0〜50倍、更には25〜45倍にすることが好まし
い。
When the film is further stretched in three stages or more, the heat setting temperature of the above-mentioned two-stage stretched film is (Tg + 2).
0) to (Tg + 70) ° C., heat-set, further stretched longitudinally or transversely at a temperature 10 to 40 ° C. higher than the heat-setting temperature, and then further transversely or longitudinally at a temperature 20 to 50 ° C. higher than this temperature. Stretching, the total stretching ratio in the machine direction is 5.0
〜10.0 times, the total stretch ratio in the transverse direction is 4.0 to 8.0.
It is preferably doubled. In this case, the area stretch ratio is 2
It is preferably 0 to 50 times, more preferably 25 to 45 times.

【0023】本発明のPENフィルムは、70℃で1時
間無荷重下で熱処理したときのベースフィルムの縦方向
の熱収縮率が0.1%以下であることが好ましく、0.
08%以下が更に好ましく、0.05%以下が特に好ま
しい。該熱収縮率が0.1%より大きいと、磁気テープ
にしたあとも熱的非可逆変化が生じ、またVTRで記録
と再生の温度が異なると画面にスキュー歪を生じる場合
があるため好ましくない。また熱収縮率が大きいと、磁
性表面へのベースフィルム面の裏移り効果が生じ、磁性
面の表面粗さが粗くなりやすい。
The PEN film of the present invention preferably has a heat shrinkage ratio of 0.1% or less in the longitudinal direction of the base film when it is heat-treated at 70 ° C. for 1 hour under no load.
08% or less is more preferable, and 0.05% or less is particularly preferable. If the heat shrinkage ratio is larger than 0.1%, thermal irreversible change occurs even after being made into a magnetic tape, and if the recording and reproducing temperatures are different in the VTR, skew distortion may occur on the screen, which is not preferable. . Further, when the heat shrinkage rate is large, an offset effect of the base film surface onto the magnetic surface occurs, and the surface roughness of the magnetic surface tends to become rough.

【0024】熱収縮率を下げる手段としては、延伸後の
熱処理温度を上げることが一般的であるが、あまり上げ
すぎると機械的特性が悪化する結果となり、また磁気テ
ープ加工工程中でのすりキズ発生が多くなり、その削れ
粉が磁気テープの磁性面に付着して、ドロップアウトの
原因となる。このため熱収縮率の低減は、熱処理後フィ
ルムを低張力下で加熱し、縦方向に弛緩することによっ
て行う。縦方向に弛緩する方法としては、例えば空気力
による浮遊処理方法で加熱低張力下、非接触状態で弛緩
する方式、各々ニップロールを有する加熱ロールと冷却
ロール間で速度差を与えることによって弛緩する方式、
またはテンター内でフィルムを把持したクリップの進行
速度を逐次緩めることによって縦方向に弛緩する方法等
があるが、縦方向に弛緩できる方式であればいずれの方
式も用いることができる。
As a means for lowering the heat shrinkage rate, it is common to raise the heat treatment temperature after stretching, but if it is raised too much, the mechanical properties will deteriorate, and scratches during the magnetic tape processing step will result. The amount of dust generated increases and the shavings adhere to the magnetic surface of the magnetic tape, causing dropout. Therefore, the heat shrinkage rate is reduced by heating the film after heat treatment under low tension and relaxing it in the longitudinal direction. As a method of relaxing in the longitudinal direction, for example, a method of relaxing in a non-contact state under heating low tension by a floating treatment method by aerodynamic force, a method of relaxing by giving a speed difference between a heating roll and a cooling roll each having a nip roll. ,
Alternatively, there is a method of loosening in the longitudinal direction by gradually slowing down the moving speed of the clip holding the film in the tenter, but any method can be used as long as it can loosen in the longitudinal direction.

【0025】いずれの方法においても二軸配向フィルム
は延伸操作後に(Tg+70)℃〜Tm(℃)の温度で
熱固定することができる。例えば190〜250℃で熱
固定することが好ましく、熱固定時間は例えば1〜60
秒である。更に熱弛緩により本発明の好ましい収縮率を
有するフィルムが得られる。
In either method, the biaxially oriented film can be heat-set at a temperature of (Tg + 70) ° C. to Tm (° C.) after the stretching operation. For example, heat setting at 190 to 250 ° C. is preferable, and heat setting time is, for example, 1 to 60.
Seconds. Further, heat relaxation gives a film having the preferred shrinkage ratio of the present invention.

【0026】磁気テープ用ベースフィルムの表面に形成
された突起高さと突起数は、特定の範囲にあるものがベ
ースフィルムの巻き特性、磁気テープとした時の走行
性、電磁変換特性に優れることが明らかになった。本発
明はフィルム表面の突起物の突起高さ[h(単位n
m)]の個数が下記の(1)式
The height and the number of protrusions formed on the surface of the base film for a magnetic tape are within a specific range, and the winding properties of the base film, the running property when used as a magnetic tape, and the electromagnetic conversion properties are excellent. It was revealed. In the present invention, the protrusion height [h (unit: n
m)] is the number of expressions (1) below.

【0027】[0027]

【数2】 [Equation 2]

【0028】で示される範囲にあることが好ましい。更
に好ましくは、下記の(1−2)式
It is preferably in the range shown by. More preferably, the following formula (1-2)

【0029】[0029]

【数3】 [Equation 3]

【0030】で示される範囲にあり、特に好ましくは、
下記の(1−3)式
Within the range indicated by, and particularly preferably,
Formula (1-3) below

【0031】[0031]

【数4】 [Equation 4]

【0032】の範囲を満足するものがベースフィルムの
取扱い性が良好で、また磁気テープとした時の走行性と
電磁変換特性に優れる。突起物の突起高さh(単位n
m)が,1≦h<50である個数が10000個/mm
2 越えるものは、磁気テープとする時のカレンダー処理
時にロールによるフィルムの削れを生ずる。突起物の突
起高さが、50≦h<100である個数が、200個/
mm2 を越えるものは、磁気テープとしたときの電磁変
換特性が低下する。100≦h<150である個数が1
00個/mm2 を越えるものは、テープ走行性は良好で
あるが電磁変換特性が低下するとともに、ドロップアウ
トが発生する原因となる。更に150≦hである突起が
存在する場合、粗大突起の存在頻度が増えるため、電磁
変換特性が著しく低下すると共にドロップアウトが頻繁
に発生する。更に、該150≦hの粗大突起はテープ走
行時に突起の削れが起こるため、ドロップアウトの発生
を助長する。1≦h<50である個数が1000個/m
2 より少なく、また、50≦h<100である個数が
10個/mm2 より少なく、100≦h<150である
個数が10個/mm2 より少ない場合、摩擦係数が大き
くなりフィルムの取扱性及びロール上に巻き上げること
が非常に難しくなる。さらにテープとしたときの走行性
も不良となる。ここで突起高さがh<1である突起物の
個数は特に限定されない。
Those satisfying the above range have good handleability of the base film, and are excellent in runnability and electromagnetic conversion characteristics when used as a magnetic tape. Projection height h of projection (unit n
m), the number of 1 ≦ h <50 is 10000 / mm
If it exceeds 2, the film will be scraped off by the roll during the calendar process when it is used as a magnetic tape. The number of protrusions whose protrusion height is 50 ≦ h <100 is 200 /
If it exceeds mm 2 , the electromagnetic conversion characteristics of a magnetic tape will be deteriorated. The number of 100 ≦ h <150 is 1
When the number exceeds 00 pieces / mm 2 , the tape running property is good, but the electromagnetic conversion characteristics are deteriorated and dropout occurs. Further, when the protrusions with 150 ≦ h are present, the frequency with which the coarse protrusions are present is increased, so that the electromagnetic conversion characteristics are significantly deteriorated and the dropout frequently occurs. Further, the coarse protrusions of 150 ≦ h cause the protrusions to be scraped when the tape is running, which promotes the occurrence of dropout. The number of 1 ≦ h <50 is 1000 / m
If it is less than m 2 , and the number of 50 ≦ h <100 is less than 10 / mm 2 and the number of 100 ≦ h <150 is less than 10 / mm 2 , the coefficient of friction becomes large and the film is handled. And very difficult to wind up on a roll. Further, the running property of the tape is also poor. Here, the number of protrusions having a protrusion height h <1 is not particularly limited.

【0033】前記したフィルム表面特性を有するフィル
ムを得るには、例えば、PENに数種類の粒度分布の異
なる不活性な固体微粒子を添加することにより得られ
る。不活性固体微粒子としては、好ましくは(1)二酸
化ケイ素(水和物、ケイソウ土、ケイ砂、石英等を含
む);(2)アルミナ;(3)SiO2 成分を30重量
%以上含有するケイ酸塩(例えば非晶質あるいは結晶質
の粘土鉱物、アルミノシリケート(焼成物や水和物を含
む)、温石綿、ジルコン、フライアッシュ等);(4)
Mg、Zn、Zr、及びTiの酸化物;(5)Ca及び
Baの硫化物;(6)Li、Na、及びCaのリン酸塩
(1水素塩や2水素塩を含む);(7)Li、Na、及
びKの安息香酸塩;(8)Ca、Ba、Zn、及びMn
のテレフタル酸塩;(9)Mg、Ca、Ba、Zn、C
d、Pb、Sr、Mn、Fe、Co、及びNiのチタン
酸塩;(10)Ba、及びPbのクロム酸塩;(11)
炭素(例えばカーボンブラック、グラファイト等);
(12)ガラス(例えばガラス粉、ガラスビーズ等);
(13)Ca、及びMgの炭酸塩;(14)ホタル石;
(15)ZnS及び(16)シリコーン樹脂、架橋ポリ
スチレン等の如き耐熱性の高い高分子よりなる微粒子が
例示される。更に好ましくは、二酸化ケイ素、無水ケイ
酸、含水ケイ酸、酸化アルミニウム、ケイ酸アルミニウ
ム(焼成物、水和物等を含む)、燐酸1リチウム、燐酸
3リチウム、燐酸ナトリウム、燐酸カルシウム、硫酸バ
リウム、酸化チタン、安息香酸リチウム、これらの化合
物の複塩(水和物を含む)、ガラス粉、粘土(カオリ
ン、ベントナイト、白土等を含む)、タルク、ケイソウ
土、炭酸カルシウム、シリコーン樹脂、架橋ポリスチレ
ン等の微粒子が例示される。特に好ましくは、二酸化ケ
イ素、酸化チタン、炭酸カルシウム、シリコーン樹脂微
粒子、架橋ポリスチレン微粒子等が挙げられ、これらを
単体あるいは複数の組合わせでフィルム中に含有させ
る。
In order to obtain a film having the above-mentioned film surface characteristics, for example, several kinds of inert solid fine particles having different particle size distributions are added to PEN. The inert solid fine particles are preferably (1) silicon dioxide (including hydrate, diatomaceous earth, silica sand, quartz, etc.); (2) alumina; (3) silica containing 30% by weight or more of SiO 2 component. Acid salts (for example, amorphous or crystalline clay minerals, aluminosilicates (including calcined products and hydrates), hot asbestos, zircon, fly ash, etc.); (4)
Oxides of Mg, Zn, Zr, and Ti; (5) Sulfides of Ca and Ba; (6) Phosphates of Li, Na, and Ca (including monohydrogen salt and dihydrogen salt); (7) Benzoates of Li, Na, and K; (8) Ca, Ba, Zn, and Mn
Terephthalate; (9) Mg, Ca, Ba, Zn, C
Titanates of d, Pb, Sr, Mn, Fe, Co, and Ni; (10) Chromates of Ba and Pb; (11)
Carbon (eg carbon black, graphite, etc.);
(12) glass (for example, glass powder, glass beads, etc.);
(13) Ca and Mg carbonates; (14) Fluorite;
Examples are (15) ZnS and (16) fine particles made of a polymer having high heat resistance such as silicone resin and crosslinked polystyrene. More preferably, silicon dioxide, silicic anhydride, hydrous silicic acid, aluminum oxide, aluminum silicate (including calcined products, hydrates, etc.), 1 lithium phosphate, 3 lithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, Titanium oxide, lithium benzoate, double salts of these compounds (including hydrates), glass powder, clay (including kaolin, bentonite, clay etc.), talc, diatomaceous earth, calcium carbonate, silicone resin, cross-linked polystyrene, etc. The fine particles of Particularly preferred are silicon dioxide, titanium oxide, calcium carbonate, fine particles of silicone resin, fine particles of crosslinked polystyrene and the like, and these are contained alone or in a combination of a plurality of them in the film.

【0034】上記不活性な固体微粒子をPENに添加す
る場合の添加時期は、PENの重合前でもよく、重合反
応中でもよく、また重合終了後ペレタイズする時に押出
機中で混練させてもよく、さらにシート状に溶融押出し
する際に添加し押出機中で分散して押出してもよいが、
重合前に添加するのが分散性の点から好ましい。しかし
ながら、本発明のフィルム表面特性を有するフィルムを
得る手段としてPENに不活性な固体微粒子を添加する
方法だけに限定されず、重合時にリン成分若しくは必要
なその他の添加物を加えて粒子源を生成させフィルム中
に存在せしめる方法、更には重合時にリン成分を加えて
重合したものと、不活性固体微粒子を加えて重合を行っ
たものとをブレンドする方法などが好ましく用いられて
いる。
When the above-mentioned inert solid fine particles are added to PEN, they may be added before the polymerization of PEN, during the polymerization reaction, or when they are pelletized after the completion of the polymerization, they may be kneaded in an extruder. It may be added when melt-extruding into a sheet and dispersed in an extruder and extruded,
From the viewpoint of dispersibility, it is preferable to add it before the polymerization. However, the method for obtaining a film having the film surface characteristics of the present invention is not limited to the method of adding inactive solid fine particles to PEN, but a phosphorus component or other necessary additives are added during polymerization to form a particle source. It is preferable to use a method of allowing it to be present in the film, and a method of blending a polymer obtained by adding a phosphorus component at the time of polymerization and a polymer obtained by adding inert solid fine particles.

【0035】本発明のフィルム表面特性を調整する手段
としては、該不活性微粒子を含有しないフィルム上に、
あるいは該不活性微粒子を含有するフィルム上に他の表
面処理、例えばコーティング処理によって調整すること
もできる。
As means for adjusting the surface properties of the film of the present invention, a film containing no inert fine particles is
Alternatively, it can be prepared on the film containing the inert fine particles by another surface treatment such as coating treatment.

【0036】本発明のPENフィルムは、さらに、面配
向係数[NS]と平均屈折率[nA]が下記の(2)式
及び(3)式を満足することが好ましい。
In the PEN film of the present invention, it is preferable that the plane orientation coefficient [NS] and the average refractive index [nA] satisfy the following equations (2) and (3).

【0037】[0037]

【数5】 [Equation 5]

【0038】ここで、面配向係数[NS]とは、下記
(A)式で求められ、平均屈折率[nA]とは、下記
(B)式で求められる。
Here, the surface orientation coefficient [NS] is obtained by the following equation (A), and the average refractive index [nA] is obtained by the following equation (B).

【0039】[0039]

【数6】 [Equation 6]

【0040】nx は2軸フィルムの機械方向の屈折率を
表し、ny は機械方向と直交する方向の屈折率を表し、
nz はフィルム厚み方向の屈折率を表す。
Nx represents the refractive index in the machine direction of the biaxial film, ny represents the refractive index in the direction orthogonal to the machine direction,
nz represents the refractive index in the film thickness direction.

【0041】(2)式は、更に好ましくは、下記の(2
−2)式
The expression (2) is more preferably the following (2)
-2) formula

【0042】[0042]

【数7】 [Equation 7]

【0043】で示される範囲にあり、特に好ましくは、
下記の(2−3)式
Within the range indicated by, and particularly preferably,
The following formula (2-3)

【0044】[0044]

【数8】 [Equation 8]

【0045】の範囲を満足し、かつ(3)式の範囲を同
時に満足するものがベースフィルムの腰の強さが十分で
あり、横方向に比べ、縦方向の配向度が高く、かつ厚み
斑が良く、磁気加工において高密度磁気記録を可能とす
る均一磁性層が得られるため、磁気テープとした時の磁
気ヘッドとの追従性が良好で、出力の安定した磁気記録
媒体を得ることができる。
Those satisfying the range of (3) and the range of the formula (3) at the same time have sufficient rigidity of the base film, have a higher degree of orientation in the longitudinal direction than in the lateral direction, and have thickness unevenness. Since a uniform magnetic layer that enables high-density magnetic recording in magnetic processing is obtained, a magnetic recording medium having stable output and good followability with a magnetic head when used as a magnetic tape can be obtained. .

【0046】配向係数[NS]と平均屈折率[nA ]と
が、前記(2)式を満たさず、下記の(4)式
The orientation coefficient [NS] and the average refractive index [nA] do not satisfy the above equation (2), and the following equation (4) is obtained.

【0047】[0047]

【数9】 [Equation 9]

【0048】の範囲の場合、縦、横方向ともヤング率が
低くなり、磁気テープ走行時磁気テープの伸びやエッジ
ダメージを起こしやすく、磁気ヘッドとの一定条件にお
ける接触が保ち難いため、記録ミスや再生ミスを生じや
すい。さらに、厚み斑やフィルムたるみ等平面性が悪い
ため磁性層の斑や磁気抜けが発生しやすく、再生時に出
力変動が発生しやすい。また耐熱劣化性も劣る。
In the case of the range, the Young's modulus becomes low in both the vertical and horizontal directions, the magnetic tape is apt to stretch and edge damage during running of the magnetic tape, and it is difficult to maintain contact with the magnetic head under a certain condition. Playback mistakes are likely to occur. Furthermore, since the flatness such as unevenness in thickness and sagging of the film is poor, unevenness in the magnetic layer or loss of magnetic field is likely to occur, and output fluctuation is likely to occur during reproduction. Also, the heat deterioration resistance is poor.

【0049】配向係数[NS]の上限はPENフィルム
が製造可能な範囲迄であるが、NSが0.28より大き
いとフィルムに縦裂けが発生する場合があり好ましくな
い。
The upper limit of the orientation coefficient [NS] is within the range in which a PEN film can be produced, but if NS is larger than 0.28, longitudinal tearing may occur in the film, which is not preferable.

【0050】平均屈折率が、nA >1.665の場合、
縦方向の強度やヤング率が不足気味なため、磁気テープ
とした場合、テープと磁気ヘッドとのヘッドタッチが悪
く記録ミスや再生ミスを生じる場合がある。平均屈折率
が、nA <1.658の場合、縦方向にまたは横方向の
内の一方向あるいは両方向の強度、ヤング率等の機械特
性が不足気味で、磁気テープとしたときにテープの伸び
やエッジダメージを生じやすく記録再生ミスが発生しや
すい。また、特にポリエチレンテレフタレートフィルム
は該領域に入り、縦横機械特性のバランスが悪くなると
共に、耐熱寸法安定性に劣っている。
When the average refractive index is nA> 1.665,
Since the strength and Young's modulus in the vertical direction tend to be insufficient, when the magnetic tape is used, the head touch between the tape and the magnetic head is poor and a recording error or a reproducing error may occur. When the average refractive index is nA <1.658, the mechanical properties such as the strength and Young's modulus in one or both of the longitudinal direction and the lateral direction may be insufficient, and the tape may not elongate when formed into a magnetic tape. Edge damage is likely to occur and recording / reproducing errors are likely to occur. In particular, a polyethylene terephthalate film falls into this region, resulting in poor balance of longitudinal and transverse mechanical properties and poor heat-resistant dimensional stability.

【0051】本発明のPENフィルムは、その厚さに特
に制限はないが、12μm以下の厚さのものが好まし
く、特に180分以上の長時間録画再生の8mmビデオ
テープやDCCテープ等に供される場合は6μm以下が
好ましい。厚さの下限はフィルムのスティフネスから3
μmが好ましい。
The PEN film of the present invention is not particularly limited in its thickness, but a thickness of 12 μm or less is preferable, and it is particularly used for 8 mm video tapes or DCC tapes for long-time recording / reproduction of 180 minutes or more. If it is, the thickness is preferably 6 μm or less. The lower limit of the thickness is 3 from the stiffness of the film.
μm is preferred.

【0052】[0052]

【実施例】以下、実施例に掲げて本発明を更に説明す
る。なお、本発明における種々の物性値及び特性は以下
の如くして測定したものであり、かつ定義される。
EXAMPLES The present invention will be further described below with reference to examples. Incidentally, various physical properties and characteristics in the present invention are measured and defined as follows.

【0053】(1)表面突起数 WYKO社製の非接触三次元粗さ計(TOPO−3D)
を用いて測定倍率40倍、測定面積242μm×239
μm(0.058mm2 )の条件にて測定を行った。突
起解析によりフィルム表面平均粗さからの表面突起の高
さと突起個数のヒストグラム図を得、該ヒストグラム図
から特定の突起高さ範囲毎の個数を読み取り、同一フィ
ルム表面上5回測定した突起数を積算し、単位面積(1
mm2 )あたりの突起数に換算した。
(1) Number of surface protrusions Non-contact three-dimensional roughness meter (TOPO-3D) manufactured by WYKO
Measurement magnification of 40 times, measurement area of 242 μm × 239
The measurement was performed under the condition of μm (0.058 mm 2 ). A histogram diagram of the height of surface protrusions and the number of protrusions from the average roughness of the film surface was obtained by the protrusion analysis, and the number in each specific protrusion height range was read from the histogram diagram, and the number of protrusions measured 5 times on the same film surface was calculated. Accumulate, unit area (1
It was converted to the number of protrusions per mm 2 ).

【0054】(2)ヤング率 フィルムを試料巾10mm、長さ15mmに切り、チャック
間100mmにして引張速度10mm/分、チャート速度5
00mm/分でインストロンタイプの万能引張試験装置に
て引張り、得られた荷重−伸び曲線の立上り部の接線よ
りヤング率を計算した。
(2) Young's modulus The film was cut into a sample width of 10 mm and a length of 15 mm, the chuck space was set to 100 mm, the tensile speed was 10 mm / min, and the chart speed was 5
The Young's modulus was calculated from the tangent line of the rising portion of the obtained load-elongation curve by pulling at 00 mm / min with an Instron type universal tensile tester.

【0055】(3)屈折率 ナトリウムD線(589nm)を光源として、アッベ屈
折計を用いて屈折率を測定した。同時に神崎製紙(株)
製の分子配向計(MOA−2001A)を用いて配向度
を測定し、アッベ屈折計で測定できない値の大きい屈折
率は、配向度と屈折率の相関グラフを作成し、該相関グ
ラフより求めた。
(3) Refractive Index The refractive index was measured using an Abbe refractometer with sodium D line (589 nm) as a light source. At the same time Kanzaki Paper Co., Ltd.
The degree of orientation was measured using a molecular orientation meter (MOA-2001A) manufactured by K.K., and a large refractive index that cannot be measured by the Abbe refractometer was determined from the correlation graph of the degree of orientation and the refractive index. .

【0056】(4)フィルム伸び率 真空理工(株)製のTMA(TM−3000L)を用い
て、フィルム巾5mm、長さ15mmの試料で、荷重条
件:0g(荷重なし)、25g、50g、75g、10
0gそれぞれの条件下、昇温速度5℃/minで、20
℃から150℃まで昇温し、各荷重についての120℃
における伸縮率をチャートより読み取り、この伸縮率と
フィルム断面積当たりの荷重(kg/mm2 )の相関グ
ラフを作成し、グラフから1kg/mm2 当たりの伸び
率(%)を求めた。
(4) Film elongation rate Using TMA (TM-3000L) manufactured by Vacuum Riko Co., Ltd., a sample having a film width of 5 mm and a length of 15 mm, load conditions: 0 g (no load), 25 g, 50 g, 75g, 10
20 g at each heating rate of 5 ° C./min under each condition of 0 g
Temperature rises from ℃ to 150 ℃, 120 ℃ for each load
The expansion / contraction ratio in Table 1 was read from the chart, and a correlation graph between the expansion / contraction ratio and the load per film cross-sectional area (kg / mm 2 ) was prepared, and the expansion ratio (%) per 1 kg / mm 2 was obtained from the graph.

【0057】(5)電磁変換特性 シバソク(株)製のノイズメーターを使用し、ビデオ用
磁気テープのS/N比を測定した。また表1に示す比較
例3のテープに対するS/N比の差を求めた。また使用
したVTRはソニー(株)製EV−S700である。
(5) Electromagnetic conversion characteristics Using a noise meter manufactured by Shibasoku Co., Ltd., the S / N ratio of the magnetic tape for video was measured. Further, the difference in S / N ratio with respect to the tape of Comparative Example 3 shown in Table 1 was obtained. The VTR used is EV-S700 manufactured by Sony Corporation.

【0058】(6)磁気テープの走行耐久性 ソニー(株)製のEV−S700で走行開始、停止を繰
り返しながら100時間走行させ、走行状態を調べると
ともに出力測定を行った。このときの磁気テープの走行
耐久性を下記ように判定した。 <3段階判定> ○ テープの伸びやテープの端が折れたり、ワカメ状に
ならない。出力変動が全くない。 △ 若干、テープの伸びやテープの端の折れ、ワカメが
発生し、出力の変動が若干みられる。 × テープの伸びや折れやワカメの発生が著しい。ま
た、テープの走行が不安定になり出力変動も非常に大き
い。
(6) Running durability of magnetic tape An EV-S700 manufactured by Sony Corporation was run for 100 hours while repeatedly starting and stopping running, and the running state was checked and the output was measured. The running durability of the magnetic tape at this time was determined as follows. <Three-stage judgment> ○ The tape is not stretched, the edge of the tape is broken, or it does not become wakame. There is no output fluctuation. Fairly, the tape was slightly stretched, the edge of the tape was broken, and seaweed was generated, and the output was slightly changed. × Tape stretches, breaks, and wakame are noticeable. In addition, the running of the tape becomes unstable and the output fluctuation is very large.

【0059】(7)熱収縮率 70℃に設定されたオーブンの中にあらかじめ正確な長
さを測定した長さ約30cm、巾1cmのフィルムを無荷重
で入れ、1時間熱処理し、その後オーブンよりサンプル
を取り出し、室温に戻してからその寸法の変化を読みと
った。熱処理前の長さ(L0 )と熱処理による寸法変化
量(ΔL)より、下記の(5)式で熱収縮率(%)を求
めた。
(7) Heat shrinkage rate A film having a length of about 30 cm and a width of 1 cm measured in advance in an oven set at 70 ° C. was placed without load and heat-treated for 1 hour, and then from the oven. The sample was removed and allowed to come to room temperature before reading its dimensional changes. From the length (L0) before heat treatment and the amount of dimensional change (ΔL) due to heat treatment, the heat shrinkage rate (%) was determined by the following equation (5).

【0060】[0060]

【数10】 [Equation 10]

【0061】(8)スキュー スキュー特性は常温(20℃)常湿下で録画したビデオ
テープを70℃で1時間熱処理した後、再び常温常湿下
で再生し、ヘッド切換点におけるズレ量を読み取った。
(8) Skew The skew characteristic is that the video tape recorded at room temperature (20 ° C.) and normal humidity is heat-treated at 70 ° C. for 1 hour and then reproduced again at room temperature and normal humidity to read the shift amount at the head switching point. It was

【0062】(9)不活性粒子の平均粒径 島津製作所製のCP−50型セントリフェグルパーティ
クル サイズ アナライザー(Centrifugal Particle S
ize Analyzer)を用いて測定した。得られた遠心沈降曲
線をもとに算出した各粒径の粒子とその存在量との累積
曲線から、50マスパーセント(mass percent)に相当
する粒径を読みとり、この値を上記平均粒径とした。
(9) Average Particle Size of Inert Particles CP-50 type Centrifuge particle size analyzer (Centrifugal Particle S) manufactured by Shimadzu Corporation
ize Analyzer). From the cumulative curve of particles of each particle size calculated based on the obtained centrifugal sedimentation curve and its abundance, the particle size corresponding to 50 mass percent is read, and this value is taken as the above average particle size. did.

【0063】[実施例1]平均粒径0.2μmの球状シ
リカ粒子を0.25重量%、平均粒径0.5μmの炭酸
カルシウム粒子を0.03重量%含有した固有粘度0.
62dl/g(オルソクロロフェノールを溶媒として用
い、25℃で測定した値)のPENペレットを170℃
で乾燥した後300℃で溶融押出し、60℃に保持した
キャスティングドラム上で急冷固化せしめて厚み約17
0μmの未延伸フィルムを得た。
[Example 1] 0.25 wt% of spherical silica particles having an average particle size of 0.2 μm and 0.03 wt% of calcium carbonate particles having an average particle size of 0.5 μm were contained, and an intrinsic viscosity of 0.1.
A PEN pellet of 62 dl / g (value measured at 25 ° C. using orthochlorophenol as a solvent) was 170 ° C.
After being melted and extruded at 300 ° C, it is rapidly cooled and solidified on a casting drum kept at 60 ° C to have a thickness of about 17
An unstretched film of 0 μm was obtained.

【0064】この未延伸フィルムを縦方向に130℃で
5.6倍、引続いて横方向に135℃で3.8倍、逐次
二軸延伸し、更に215℃で熱固定を行った。次いでこ
の熱固定したフィルムを加熱ロールで110℃に加熱
後、冷却ロールとの間で張力を調整して弛緩処理するこ
とにより、縦方向の収縮率が0.05%となるよう調整
した。得られた二軸配向PENフィルム厚みは8μmで
あった。
This unstretched film was sequentially biaxially stretched in the machine direction at 130 ° C. for 5.6 times, then in the transverse direction at 135 ° C. for 3.8 times, and further heat set at 215 ° C. Next, this heat-fixed film was heated to 110 ° C. with a heating roll and then subjected to relaxation treatment by adjusting tension with a cooling roll so that the shrinkage rate in the longitudinal direction was adjusted to 0.05%. The thickness of the obtained biaxially oriented PEN film was 8 μm.

【0065】一方、下記に示す組成物をボールミルに入
れ、16時間混練、分散した後、イソシアネート化合物
(バイエル社製のデスモジュールL)5重量部を加え、
1時間高速剪断分散して磁性塗料とした。
On the other hand, the composition shown below was put in a ball mill, kneaded and dispersed for 16 hours, and then 5 parts by weight of an isocyanate compound (Desmodur L manufactured by Bayer) was added,
High-speed shear dispersion was carried out for 1 hour to obtain a magnetic paint.

【0066】磁性塗料の組成 針状Fe粒子 100重量部 塩化ビニル−酢酸ビニル共重合体 (積水化学製のエスレック7A) 15重量部 熱可塑性ポリウレタン樹脂 5重量部 酸化クロム 5重量部 カーボンブラック 5重量部 レシチン 2重量部 脂肪酸エステル 1重量部 トルエン 50重量部 メチルエチルケトン 50重量部 シクロヘキサノン 50重量部 この磁性塗料を上述の二軸配向PENフィルムの片面
に、塗布厚3μmとなるように塗布し、ついで2500
ガウスの直流磁場中で配向処理を行ない、100℃で加
熱乾燥後、スーパーカレンダー処理(線圧200kg/c
m、温度80度)を行ない、巻き取った。この巻き取っ
たロールを55℃のオーブン中に3日間放置した。
Composition of magnetic paint: Needle-like Fe particles 100 parts by weight Vinyl chloride-vinyl acetate copolymer (Eslek 7A manufactured by Sekisui Chemical Co., Ltd.) 15 parts by weight Thermoplastic polyurethane resin 5 parts by weight Chromium oxide 5 parts by weight Carbon black 5 parts by weight Lecithin 2 parts by weight Fatty acid ester 1 part by weight Toluene 50 parts by weight Methyl ethyl ketone 50 parts by weight Cyclohexanone 50 parts by weight This magnetic paint is applied to one side of the above-mentioned biaxially oriented PEN film so that the application thickness is 3 μm, and then 2500
Alignment treatment is performed in a Gaussian DC magnetic field, and after heating and drying at 100 ° C, super calender treatment (linear pressure 200 kg / c
m, temperature 80 degrees) and wound up. The wound roll was left in an oven at 55 ° C for 3 days.

【0067】さらに下記組成のバックコート層塗料を厚
さ1μmに塗布し、乾燥させ、さらに8mm巾に裁断し、
磁気テープを得た。
Further, a back coat layer coating material having the following composition was applied to a thickness of 1 μm, dried, and further cut into a width of 8 mm,
I got a magnetic tape.

【0068】バックコート層塗料の組成 カーボンブラック 100重量部 熱可塑性ポリウレタン樹脂 60重量部 イソシアネート化合物 (日本ポリウレタン工業社製コロネートL)18重量部 シリコーンオイル 0.5重量部 メチルエチルケトン 250重量部 トルエン 50重量部Composition of coating for back coat layer Carbon black 100 parts by weight Thermoplastic polyurethane resin 60 parts by weight Isocyanate compound (Coronate L manufactured by Nippon Polyurethane Industry Co., Ltd.) 18 parts by weight Silicone oil 0.5 parts by weight Methyl ethyl ketone 250 parts by weight Toluene 50 parts by weight

【0069】得られたフィルム及びテープの特性を表1
に示す。この表から明らかなように本発明のフィルムは
加工性に問題が無く、耐熱寸法安定性に優れ、縦方向の
ヤング率が高く、電磁変換特性、走行耐久性、スキュー
も良好で、高温雰囲気での使用も良好であった。
The characteristics of the obtained film and tape are shown in Table 1.
Shown in. As is clear from this table, the film of the present invention has no problem in processability, is excellent in heat-resistant dimensional stability, has a high Young's modulus in the longitudinal direction, has good electromagnetic conversion characteristics, running durability, and skew, and has a high temperature atmosphere. The use of was also good.

【0070】[実施例2]実施例1と同様にして未延伸
フィルムを得、該未延伸フィルムを縦方向に130℃で
2.3倍延伸し、次いで横方向に130℃で3.9倍延
伸し、引き続いて160℃で中間熱処理した。このフィ
ルムをさらに縦方向に170℃で2.6倍、横方向に
1.3倍延伸し、215℃で熱処理した。ついで、実施
例1と同様にして、縦方向の熱収縮率が0.04%とな
るよう調整した。このようにして8μm厚みの二軸配向
フィルムを得た。以下、実施例1と同様にしてテープを
得た。この結果を表1に示す。実施例1と同様に良好な
結果が得られた。
[Example 2] An unstretched film was obtained in the same manner as in Example 1, and the unstretched film was stretched 2.3 times in the machine direction at 130 ° C and then 3.9 times in the transverse direction at 130 ° C. It was stretched and subsequently subjected to intermediate heat treatment at 160 ° C. This film was further stretched 2.6 times in the longitudinal direction at 170 ° C. and 1.3 times in the transverse direction and heat-treated at 215 ° C. Then, in the same manner as in Example 1, the heat shrinkage ratio in the longitudinal direction was adjusted to 0.04%. Thus, a biaxially oriented film having a thickness of 8 μm was obtained. Then, a tape was obtained in the same manner as in Example 1. The results are shown in Table 1. Good results were obtained as in Example 1.

【0071】[実施例3]実施例1と同様にして未延伸
フィルムを得、該未延伸フィルムを縦方向に130℃で
2.5倍延伸し、次いで横方向に130℃で3.9倍延
伸し、引き続いて160℃で中間熱処理した。このフィ
ルムをさらに縦方向に170℃で2.8倍、横方向に
1.2倍延伸し、215℃で熱処理した。ついで、実施
例1と同様にして、縦方向の熱収縮率を0.05%と調
整した。このようにして8μm厚みの二軸配向フィルム
を得、実施例1と同様にしてテープを得た。この結果を
表1に示す。実施例1と同様に良好な結果が得られた。
Example 3 An unstretched film was obtained in the same manner as in Example 1, and the unstretched film was stretched 2.5 times in the longitudinal direction at 130 ° C. and then 3.9 times in the transverse direction at 130 ° C. It was stretched and subsequently subjected to intermediate heat treatment at 160 ° C. This film was further stretched 2.8 times in the longitudinal direction at 170 ° C. and 1.2 times in the lateral direction and heat-treated at 215 ° C. Then, in the same manner as in Example 1, the heat shrinkage ratio in the longitudinal direction was adjusted to 0.05%. Thus, a biaxially oriented film having a thickness of 8 μm was obtained, and a tape was obtained in the same manner as in Example 1. The results are shown in Table 1. Good results were obtained as in Example 1.

【0072】[比較例1]実施例1と同様にして未延伸
フィルムを得、該未延伸フィルムを縦方向に130℃で
3.5倍、引続いて横方向に135℃で3.5倍、逐次
二軸延伸を施し、更に215℃で熱固定を行った。つい
で、実施例1と同様にして、縦方向の熱収縮率を0.0
5%と調整した。このようにして8μm厚みの二軸配向
フィルムを得、実施例1と同様にしてテープを得た。こ
の結果を表1に示したが、120℃における1kg/m
2 当たりのフィルム伸び率が大きいためテープ加工工
程で、ベースフィルムが伸ばされて、波打ちが起こり、
磁性層の塗布斑が発生した。更に、平均屈折率が高く、
しかも縦方向のヤング率が低いため、磁気テープの磁気
ヘッドに対するヘッドタッチが不良で電磁変換特性がか
なり悪く、記録ミスや再生ミスを生じた。
[Comparative Example 1] An unstretched film was obtained in the same manner as in Example 1, and the unstretched film was stretched 3.5 times at 130 ° C in the longitudinal direction and subsequently 3.5 times at 135 ° C in the transverse direction. Then, biaxial stretching was sequentially performed, and heat setting was further performed at 215 ° C. Then, in the same manner as in Example 1, the heat shrinkage ratio in the longitudinal direction was set to 0.0.
Adjusted to 5%. Thus, a biaxially oriented film having a thickness of 8 μm was obtained, and a tape was obtained in the same manner as in Example 1. The results are shown in Table 1, which was 1 kg / m at 120 ° C.
Since the film elongation rate per m 2 is large, the base film is stretched and wavy in the tape processing process,
Coating unevenness of the magnetic layer occurred. Furthermore, the average refractive index is high,
Moreover, since the Young's modulus in the vertical direction is low, the head touch on the magnetic head of the magnetic tape is poor and the electromagnetic conversion characteristics are considerably poor, resulting in recording errors and reproducing errors.

【0073】[比較例2]実施例1と同一の2種粒子を
含有した固有粘度0.65dl/g(オルソクロロフェノ
ールを溶媒として用い、25℃で測定した値)のPET
ペレットを160℃で乾燥した後、280℃で溶融押出
し、40℃に保持したキャスティングドラム上で急冷固
化せしめて約110μmの厚みの未延伸フィルムを得
た。この未延伸フィルムを速度差をもった2つのロール
間で縦方向に1.8倍延伸し、さらにテンターによって
横方向に3.1倍延伸し、引き続いて150℃で中間熱
処理した。このフィルムをさらに縦方向に155℃で
3.6倍延伸し、230℃で熱固定を行った。次いでこ
の熱固定した二軸配向PETフィルムを加熱ロールで9
0℃に加熱後冷却ロールとの間で張力を調整することに
より、縦方向の熱収縮率の低減化処理を施し、厚み8μ
mの2軸配向PETフィルムを得た。続いて、実施例1
と同様にしてテープを得た。その結果を表1に示してい
るが、弛緩熱処理により熱収縮率の低減化を計っている
のにかかわらず、PET素材であるため、熱収縮率が高
くスキューが著しく悪かった。さらに縦方向延伸倍率を
高くし、本願発明の縦方向のヤング率の高いフィルムを
得たが横方向のヤング率は横方向倍率を上げることが出
来ず横方向のヤング率をかなり低くなったため、テープ
走行時にエッジダメージを生じ、走行耐久性が悪い。さ
らに、120℃における荷重1kg/mm2 当たりの縦
方向の伸び率が非常に大きいため、テープ加工工程でフ
ィルムの伸びによる波打ちが起こり、磁性層の塗布斑が
発生した。そのため電磁変換特性も極めて悪い。このこ
とから、PET素材はPENと比べてトータルバランス
的に劣っている。
Comparative Example 2 PET containing the same two kinds of particles as in Example 1 and having an intrinsic viscosity of 0.65 dl / g (value measured at 25 ° C. using orthochlorophenol as a solvent)
The pellets were dried at 160 ° C., melt-extruded at 280 ° C., and rapidly solidified on a casting drum kept at 40 ° C. to obtain an unstretched film having a thickness of about 110 μm. This unstretched film was stretched 1.8 times in the machine direction between two rolls having a speed difference, further stretched 3.1 times in the cross direction by a tenter, and subsequently subjected to intermediate heat treatment at 150 ° C. This film was further stretched in the longitudinal direction at 155 ° C by 3.6 times, and heat-set at 230 ° C. Then, this heat-set biaxially oriented PET film was heated with a heating roll to 9
After heating to 0 ° C., the tension between the cooling roll and the cooling roll is adjusted to reduce the heat shrinkage in the longitudinal direction, and the thickness is 8 μm.
A biaxially oriented PET film of m was obtained. Then, Example 1
A tape was obtained in the same manner as. The results are shown in Table 1, but the heat shrinkage rate was high and the skew was remarkably bad because it was a PET material, although the heat shrinkage rate was reduced by the relaxation heat treatment. Further, by increasing the stretching ratio in the machine direction, a film having a high Young's modulus in the machine direction of the present invention was obtained, but the Young's modulus in the machine direction could not be increased in the machine direction and the Young's modulus in the machine direction was considerably low. Edge damage occurs when running the tape, and running durability is poor. Further, since the elongation in the longitudinal direction per load of 1 kg / mm 2 at 120 ° C. is very large, waviness due to the elongation of the film occurred in the tape processing step, and coating unevenness of the magnetic layer occurred. Therefore, the electromagnetic conversion characteristics are also extremely poor. From this, the PET material is inferior in total balance as compared with PEN.

【0074】[比較例3]実施例1と同様にして未延伸
フィルムを得、該未延伸フィルムを縦方向に130℃で
2.2倍延伸し、次いで横方向に130℃で3.9倍延
伸し、引き続いて160℃で中間熱処理した。このフィ
ルムをさらに縦方向に170℃で2.2倍、横方向に
1.8倍延伸し、215℃で熱処理し、ついで、実施例
1の縦方向の熱収縮率低減化のための弛緩処理を実施せ
ずに、7μm厚みの二軸配向フィルムとテープを得た。
この結果を表1に示しているが、特に熱収縮率が高いた
めスキューが著しく悪かった。また、120℃における
荷重1kg/mm2 当たりの縦方向の伸び率が若干大き
いため、磁性層の塗布斑があり、そのため電磁変換特性
も悪かった。さらに縦方向ヤング率が低く、平均屈折率
も(3)式の範囲を外れ高いため、ヘッドタッチが悪
く、記録再生ミスを生じた。
Comparative Example 3 An unstretched film was obtained in the same manner as in Example 1, and the unstretched film was stretched 2.2 times in the machine direction at 130 ° C. and then 3.9 times in the transverse direction at 130 ° C. It was stretched and subsequently subjected to intermediate heat treatment at 160 ° C. This film was further stretched in the machine direction at 170 ° C by 2.2 times and in the transverse direction by 1.8 times, heat-treated at 215 ° C, and then subjected to a relaxation treatment for reducing the heat shrinkage ratio in the machine direction of Example 1. Without carrying out, a 7 μm thick biaxially oriented film and tape were obtained.
The results are shown in Table 1, and the skew was remarkably bad because the heat shrinkage rate was particularly high. Further, since the elongation in the longitudinal direction per load of 1 kg / mm 2 at 120 ° C. was slightly large, there were coating spots on the magnetic layer, and therefore the electromagnetic conversion characteristics were also poor. Further, since the Young's modulus in the longitudinal direction is low and the average refractive index is out of the range of the formula (3) and is high, the head touch is bad and a recording / reproducing error occurs.

【0075】[0075]

【表1】 [Table 1]

【0076】[0076]

【発明の効果】本発明のポリエチレン−2,6−ナフタ
レートフィルムを用いた磁気記録テープは、走行中に生
ずるテープ伸びやエッジの折れの発生が無いためテープ
と磁気ヘッドとのなじみ(ヘッドタッチ)が良好で高密
度磁気記録に必要な電磁変換特性が得られ、かつ耐熱寸
法安定性が良いのでスキュー歪が少なく、特に長時間記
録可能な高密度磁気記録テープのベースフィルムとして
有用である。
The magnetic recording tape using the polyethylene-2,6-naphthalate film of the present invention does not cause tape elongation or edge breakage that occurs during running, so that the tape is compatible with the magnetic head (head touch). ) Is good, the electromagnetic conversion characteristics required for high density magnetic recording are obtained, and the heat-resistant dimensional stability is good, so there is little skew distortion, and it is particularly useful as a base film for high-density magnetic recording tapes that can be recorded for a long time.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 縦方向のヤング率[EM ]が800kg/
mm2 以上、横方向のヤング率[ET ]が500kg/mm2
以上であり、かつ縦方向のヤング率が横方向のヤング率
より大きく、120℃における荷重1kg/mm2 当た
りの縦方向の伸び率が0〜0.6%の範囲内である二軸
配向ポリエチレン−2,6−ナフタレートフィルム。
1. Young's modulus [EM] in the longitudinal direction is 800 kg /
mm 2 or more, lateral Young's modulus [ET] is 500 kg / mm 2
Above, the Young's modulus in the machine direction is larger than the Young's modulus in the machine direction, and the elongation rate in the machine direction per load 1 kg / mm 2 at 120 ° C. is in the range of 0 to 0.6%. -2,6-naphthalate film.
【請求項2】 70℃で1時間無荷重で熱処理したとき
の縦方向の熱収縮率が0.1%以下である、請求項1記
載の二軸配向ポリエチレン−2,6−ナフタレートフィ
ルム。
2. The biaxially oriented polyethylene-2,6-naphthalate film according to claim 1, which has a longitudinal thermal shrinkage of 0.1% or less when heat-treated at 70 ° C. for 1 hour without load.
【請求項3】 フィルム表面に形成された突起の高さh
(単位nm)の個数が下記の(1)式で示される範囲に
ある、請求項1または2記載の二軸配向ポリエチレン−
2,6−ナフタレートフィルム。 【数1】
3. The height h of the protrusions formed on the film surface
The biaxially oriented polyethylene- according to claim 1 or 2, wherein the number of (unit: nm) is in the range represented by the following formula (1).
2,6-naphthalate film. [Equation 1]
JP32404993A 1993-12-22 1993-12-22 Polyethylene-2,6-naphthalate film Expired - Lifetime JP4151994B2 (en)

Priority Applications (6)

Application Number Priority Date Filing Date Title
JP32404993A JP4151994B2 (en) 1993-12-22 1993-12-22 Polyethylene-2,6-naphthalate film
US08/358,763 US5631063A (en) 1993-12-22 1994-12-19 Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
DE69428339T DE69428339T2 (en) 1993-12-22 1994-12-20 Biaxially oriented film made of polyethylene-2,6-naphthalenedicarboxylate
EP94309540A EP0659809B1 (en) 1993-12-22 1994-12-20 Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
TW083111992A TW396106B (en) 1993-12-22 1994-12-21 Biaxially oriented film of polyethylene -2, 6-Naphthalenedicarboxylate
KR1019940036079A KR100230632B1 (en) 1993-12-22 1994-12-22 Biaxially oriented film of polyethylene-2,6- naphtalendicarboxylate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32404993A JP4151994B2 (en) 1993-12-22 1993-12-22 Polyethylene-2,6-naphthalate film

Publications (2)

Publication Number Publication Date
JPH07178806A true JPH07178806A (en) 1995-07-18
JP4151994B2 JP4151994B2 (en) 2008-09-17

Family

ID=18161585

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32404993A Expired - Lifetime JP4151994B2 (en) 1993-12-22 1993-12-22 Polyethylene-2,6-naphthalate film

Country Status (1)

Country Link
JP (1) JP4151994B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091172A (en) * 2011-10-24 2013-05-16 Teijin Chem Ltd Biaxially orientated polyester film for in-mold transfer

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013091172A (en) * 2011-10-24 2013-05-16 Teijin Chem Ltd Biaxially orientated polyester film for in-mold transfer

Also Published As

Publication number Publication date
JP4151994B2 (en) 2008-09-17

Similar Documents

Publication Publication Date Title
US5618609A (en) Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
JP3306088B2 (en) High density magnetic recording media
JP2675217B2 (en) Polyethylene-2,6-naphthalate film
US5415930A (en) Biaxially oriented, unidirectionally long polyethylene-2,6-naphthalate film and magnetic tape therefrom
US5431982A (en) Unidirectionally long biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
KR100297271B1 (en) Magnetic Tape for Digital Audio Tape Recorder Cassette and Biaxially Oriented Polyester Substrate Film Used in It
US5631063A (en) Biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
JPS62164733A (en) Biaxially oriented polyester film for magnetic recording
JP2738644B2 (en) Polyethylene-2,6-naphthalate film
JP4151994B2 (en) Polyethylene-2,6-naphthalate film
JP2771356B2 (en) Polyethylene-2,6-naphthalate film
JP2675216B2 (en) Polyethylene-2,6-naphthalate film
JP2738645B2 (en) Polyethylene-2,6-naphthalate film
JPH07178808A (en) Polyethylene-2,6-naphthalate film
JP2002370276A (en) Biaxially oriented polyester film
JP3051263B2 (en) Laminated polyester film for magnetic recording media
JP2738637B2 (en) Biaxially oriented polyester film
JP3545435B2 (en) Base film for magnetic recording tape
JPH11144227A (en) Biaxially oriented polyethylene-2,6-naphthalate film for magnetic recording medium
JPH06335963A (en) Biaxially oriented polyester film
JPH0644553A (en) Base film for magnetic recording tape
JPH05298671A (en) Laminated polyester film for magnetic recording medium
JPH06335965A (en) Biaxially oriented polyester film
JPH071691A (en) Biaxially-oriented laminated polyester film

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040302

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20040427

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20061017

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20061211

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20070219

A912 Removal of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A912

Effective date: 20070928

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080701

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110711

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120711

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130711

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140711

Year of fee payment: 6

EXPY Cancellation because of completion of term