JP2771356B2 - Polyethylene-2,6-naphthalate film - Google Patents

Polyethylene-2,6-naphthalate film

Info

Publication number
JP2771356B2
JP2771356B2 JP3226416A JP22641691A JP2771356B2 JP 2771356 B2 JP2771356 B2 JP 2771356B2 JP 3226416 A JP3226416 A JP 3226416A JP 22641691 A JP22641691 A JP 22641691A JP 2771356 B2 JP2771356 B2 JP 2771356B2
Authority
JP
Japan
Prior art keywords
film
tape
particle size
weight
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP3226416A
Other languages
Japanese (ja)
Other versions
JPH055039A (en
Inventor
正広 細井
久 浜野
靖浩 佐伯
正己 越中
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority to JP3226416A priority Critical patent/JP2771356B2/en
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to EP02078281A priority patent/EP1270669B1/en
Priority to DE69233688T priority patent/DE69233688T2/en
Priority to EP92307194A priority patent/EP0532172B1/en
Priority to DE69233066T priority patent/DE69233066T2/en
Priority to KR1019920014597A priority patent/KR0158462B1/en
Publication of JPH055039A publication Critical patent/JPH055039A/en
Priority to US08/181,377 priority patent/US5415930A/en
Application granted granted Critical
Publication of JP2771356B2 publication Critical patent/JP2771356B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は二軸配向ポリエチレン―
2,6―ナフタレートフィルムに関し、更に詳しくは高
密度記録の磁気記録媒体、特にメタルテープのベースフ
ィルムとして有用な二軸配向ポリエチレン―2,6―ナ
フタレートフィルムに関する。
The present invention relates to a biaxially oriented polyethylene.
The present invention relates to a 2,6-naphthalate film, and more particularly to a biaxially oriented polyethylene 2,6-naphthalate film useful as a magnetic recording medium for high-density recording, particularly a base film for a metal tape.

【0002】[0002]

【従来の技術】従来より、ポリエチレンテレフタレート
フィルムは磁気テープのベースフィルムとして広く用い
られている。近年、磁気テープは小型化および高画質化
のために益々高密度記録化が要求され、また8ミリビデ
オに代表されるようにテープの薄手化が要求されてい
る。このため、磁気テープの磁性層側の表面はますます
平滑であることが要求されかつ厚さも薄いものが要求さ
れる。これに伴ないベースフィルムも表面の平坦化と薄
手化が要求される。しかし、従来の家庭用VTRの磁気
テープに供されているポリエステルフィルムには表面が
粗く、上述の要求特性を満足して実用に供しうるものは
見出されない。そこで、高密度記録用には、表面粗さを
非常に低下させたものとする必要がある。しかし、一般
に表面粗さを減少させると、フィルム面間の滑り性が悪
くなり、またフィルム間に存在する空気の逃げが悪くな
り、フィルムをロール上に巻き上げることが非常に難し
くなる。また、その難しさは、フィルムが薄くなればな
るほど著しくなる。さらにフィルムが薄くなるほど高い
ヤング率が要求される。一方高いヤング率のものほど、
一般的には熱収縮率が大きく、磁気テープとした後の寸
法安定性が劣るばかりでなく、磁性層を塗布して表面を
平滑処理したあとの熱処理工程での裏移り現象(ロール
状に巻かれた磁気テープを熱硬化させる熱処理工程にお
いて、仕上げられた磁性面とベースフィルム面が相対し
て巻き締まるため、仕上げられた磁性面が粗化する現
象)が大きくなり、電磁変換特性を悪化する。それ故、
従来このような高密度記録用テープに供されるポリエス
テルフィルムの要求を充分満足するものは見出せなかっ
た。
2. Description of the Related Art Conventionally, polyethylene terephthalate films have been widely used as base films for magnetic tapes. 2. Description of the Related Art In recent years, magnetic tapes have been required to have higher density recording for miniaturization and higher image quality, and thinner tapes such as 8 mm video have been required. For this reason, the surface of the magnetic tape on the side of the magnetic layer is required to be even smoother and thinner. Along with this, the base film is also required to have a flat and thin surface. However, a polyester film used for a conventional home magnetic tape of a VTR has a rough surface, and there is no film which satisfies the above-mentioned required characteristics and can be put to practical use. Therefore, for high-density recording, it is necessary to make the surface roughness extremely low. However, in general, when the surface roughness is reduced, the slipperiness between the film surfaces is deteriorated, and the escape of the air existing between the films is deteriorated, and it becomes very difficult to wind the film on a roll. Also, the difficulty becomes more significant as the film becomes thinner. Further, as the film becomes thinner, a higher Young's modulus is required. On the other hand, the higher the Young's modulus,
Generally, not only the heat shrinkage is large and the dimensional stability after forming a magnetic tape is inferior, but also the set-off phenomenon in the heat treatment process after applying the magnetic layer and smoothing the surface (roll-like winding) In the heat treatment step of thermosetting the magnetic tape, the finished magnetic surface and the base film surface are tightly wound relative to each other, so that the finished magnetic surface is roughened, which deteriorates the electromagnetic conversion characteristics. . Therefore,
Heretofore, no polyester film that sufficiently satisfies the requirements for a polyester film used for such a high-density recording tape has been found.

【0003】[0003]

【発明が解決しようとする課題】本発明の目的は、上記
欠点を解消し、高密度磁気記録用テープとしたときの電
磁変換特性がよく、しかもロール状に巻き上げるのが容
易な磁気記録媒体用二軸配向ポリエチレン―2,6―ナ
フタレートフィルムを提供することにある。
SUMMARY OF THE INVENTION It is an object of the present invention to solve the above-mentioned drawbacks and to provide a magnetic recording medium which has good electromagnetic conversion characteristics when used as a high-density magnetic recording tape and is easy to wind up in a roll. An object of the present invention is to provide a biaxially oriented polyethylene-2,6-naphthalate film.

【0004】[0004]

【課題を解決するための手段】本発明は、かかる目的を
達成するために、次の構成からなる。フィルムの中に平
均粒径が0.05〜0.3μmの単分散シリカを小粒径
粒子として0.05〜0.4重量%、さらに平均粒径が
0.3〜1.0μmの不活性固体粒子を大粒径粒子とし
て0.005〜0.05重量%含有し、かつ大粒径粒子
と小粒径粒子の平均粒径の差が0.2μm以上であり、
フィルムの厚みが2〜12μmであり、フィルムの表面
粗さRaが0.003〜0.010μmであり、縦方向
のヤング率(EM )が650kg/mm2 以上、横方向のヤ
ング率(ET )が600kg/mm2 以上であり、これらの
比(EM /ET )が0.9〜1.5の範囲にあり、そし
て70℃で1時間無荷重で熱処理したときの縦方向の熱
収縮率が0.08%以下である二軸配向ポリエチレン―
2,6―ナフタレートフィルム。
The present invention has the following arrangement to attain the object. Monodisperse silica having an average particle size of 0.05 to 0.3 μm is used as a small particle size in the film, 0.05 to 0.4% by weight, and an inert particle having an average particle size of 0.3 to 1.0 μm. 0.005 to 0.05% by weight of solid particles as large-diameter particles, and the difference between the average diameter of the large-diameter particles and the small-diameter particles is 0.2 μm or more;
The thickness of the film is 2 to 12 μm, the surface roughness Ra of the film is 0.003 to 0.010 μm, the Young's modulus (EM) in the vertical direction is 650 kg / mm 2 or more, and the Young's modulus in the horizontal direction (E T ) Is not less than 600 kg / mm 2 , their ratio (EM / ET) is in the range of 0.9 to 1.5, and the heat shrinkage in the longitudinal direction when heat-treated at 70 ° C. for 1 hour without load. Is biaxially oriented polyethylene having a content of not more than 0.08%
2,6-naphthalate film.

【0005】本発明において、フィルムを構成するポリ
エチレン―2,6―ナフタレートは、ナフタレンジカル
ボン酸を主たる酸成分とするが、少量の他のジカルボン
酸成分を使用してもよく、またエチレングリコールを主
たるグリコール成分とするが、少量の他のグリコール成
分を併用してもよいポリマーである。ナフタレンジカル
ボン酸以外のジカルボン酸としては、例えばテレフタル
酸、イソフタル酸、ジフェニルスルホンジカルボン酸、
ベンゾフェノンジカルボン酸などの芳香族ジカルボン
酸、コハク酸、アジピン酸、セバシン酸、ドデカンジカ
ルボン酸などの脂肪族ジカルボン酸、ヘキサヒドロテレ
フタル酸、1,3―アダマンタンジカルボン酸などの脂
環族ジカルボン酸をあげることができる。またエチレン
グリコール以外のグリコール成分としては、例えば1,
3―プロパンジオール、1,4―ブタンジオール、1,
6―ヘキサンジオール、ネオペンチルグリコール、1,
4―シクロヘキサンジメタノール、p―キシリレングリ
コールなどをあげることができる。また、ポリマー中に
安定剤、着色剤等の添加剤を配合したものでもよい。こ
のようなポリエチレン―2,6―ナフタレートは通常溶
融重合法によって公知の方法で製造される。この際、触
媒等の添加剤は必要に応じて任意に使用することができ
る。
In the present invention, the polyethylene-2,6-naphthalate constituting the film contains naphthalenedicarboxylic acid as a main acid component, but may use a small amount of another dicarboxylic acid component, or ethylene glycol as a main component. The polymer is a glycol component, but may be used in combination with a small amount of another glycol component. Examples of dicarboxylic acids other than naphthalenedicarboxylic acid include terephthalic acid, isophthalic acid, diphenylsulfonedicarboxylic acid,
Examples include aromatic dicarboxylic acids such as benzophenone dicarboxylic acid, aliphatic dicarboxylic acids such as succinic acid, adipic acid, sebacic acid, and dodecane dicarboxylic acid, and alicyclic dicarboxylic acids such as hexahydroterephthalic acid and 1,3-adamantane dicarboxylic acid. be able to. As glycol components other than ethylene glycol, for example, 1,
3-propanediol, 1,4-butanediol, 1,
6-hexanediol, neopentyl glycol, 1,
4-cyclohexanedimethanol, p-xylylene glycol and the like can be mentioned. Further, a polymer in which additives such as a stabilizer and a colorant are blended may be used. Such polyethylene-2,6-naphthalate is usually produced by a known method by a melt polymerization method. At this time, additives such as a catalyst can be optionally used as needed.

【0006】ポリエチレン―2,6―ナフタレートの固
有粘度は0.45〜0.90の範囲にあることが好まし
い。
[0006] The intrinsic viscosity of polyethylene-2,6-naphthalate is preferably in the range of 0.45 to 0.90.

【0007】本発明において上述のポリエチレン―2,
6―ナフタレートに含有させる不活性な固体粒子として
は、好ましくは(1)二酸化ケイ素(水和物、ケイソウ
土、ケイ砂、石英、単分散シリカ等を含む);(2)ア
ルミナ;(3)SiO2 分を30重量%以上含有するケ
イ酸塩(例えば非晶質あるいは結晶質の粘土鉱物、アル
ミノシリケート(焼成物や水和物を含む)、温石綿、ジ
ルコン、フライアッシュ等);(4)Mg、Zn、Z
r、及びTiの酸化物;(5)Ca、及びBaの硫酸
塩;(6)Li、Na、及びCaのリン酸塩(1水素塩
や2水素塩を含む);(7)Li、Na、及びKの安息
香酸塩;(8)Ca、Ba、Zn、及びMnのテレフタ
ル酸塩;(9)Mg、Ca、Ba、Zn、Cd、Pb、
Sr、Mn、Fe、Co、及びNiのチタン酸塩;(1
0)Ba、及びPbのクロム酸塩;(11)炭素(例え
ばカーボンブラック、グラファイト等);(12)ガラ
ス(例えばガラス粉、ガラスビーズ等);(13)C
a、及びMgの炭酸塩;(14)ホタル石及び(15)
ZnSが例示される。更に好ましくは、二酸化ケイ素、
無水ケイ酸、含水ケイ酸、アルミナ、ケイ酸アルミニウ
ム(焼成物、水和物等を含む)、燐酸1リチウム、燐酸
3リチウム、燐酸ナトリウム、燐酸カルシウム、硫酸バ
リウム、酸化チタン、安息香酸リチウム、これらの化合
物の複塩(水和物を含む)、ガラス粉、粘土(カオリ
ン、ベントナイト、白土等を含む)、タルク、ケイソウ
土、炭酸カルシウム等が例示される。特に好ましくは、
単分散シリカ、酸化チタン、アルミナ、炭酸カルシウム
が挙げられる。
In the present invention, the above polyethylene-2,
As the inert solid particles contained in 6-naphthalate, preferably, (1) silicon dioxide (including hydrate, diatomaceous earth, silica sand, quartz, monodispersed silica, etc.); (2) alumina; (3) Silicates containing 30% by weight or more of SiO 2 (eg, amorphous or crystalline clay minerals, aluminosilicates (including calcined products and hydrates), hot asbestos, zircon, fly ash, etc.); ) Mg, Zn, Z
(5) Ca and Ba sulfates; (6) Li, Na, and Ca phosphates (including mono- and di-hydrogen salts); (7) Li, Na And (8) terephthalates of Ca, Ba, Zn, and Mn; (9) Mg, Ca, Ba, Zn, Cd, Pb;
Titanates of Sr, Mn, Fe, Co, and Ni; (1
0) chromates of Ba and Pb; (11) carbon (eg, carbon black, graphite, etc.); (12) glass (eg, glass powder, glass beads, etc.); (13) C
a and Mg carbonates; (14) fluorite and (15)
ZnS is exemplified. More preferably, silicon dioxide,
Silicic anhydride, hydrous silicic acid, alumina, aluminum silicate (including calcined products, hydrates, etc.), 1 lithium lithium phosphate, 3 lithium phosphate, sodium phosphate, calcium phosphate, barium sulfate, titanium oxide, lithium benzoate, etc. (Including hydrates), glass powder, clay (including kaolin, bentonite, clay, etc.), talc, diatomaceous earth, calcium carbonate and the like. Particularly preferably,
Monodisperse silica, titanium oxide, alumina, and calcium carbonate are exemplified.

【0008】本発明においてはかかる不活性な固体粒子
のうち、小粒径粒子としてはその平均粒径が0.05〜
0.3μm、好ましくは0.10〜0.3μmのもの
を、その添加量が0.05〜0.4重量%、好ましくは
0.1〜0.3重量%を満足する範囲で用い、かつ大粒
径粒子としてはその平均粒径が0.3〜1.0μm、好
ましくは0.5〜0.8μmのものを、その添加量が
0.005〜0.05重量%、好ましくは0.01〜
0.03重量%を満足する範囲で用いる。大粒径粒子は
電磁変換特性上多くを添加しない方が望ましいが、添加
しないと巻取が困難となる。したがって、大粒径粒子は
極く少量添加し、巻取性を良化させるのが好ましい。し
かし、0.05重量%より多く添加すると、電磁変換特
性が悪化するので好ましくない。一方、小粒径粒子は、
0.05重量%以上添加しないと、大粒径粒子を添加し
ても巻取りが難しく、また0.4重量%より多く添加す
ると、電磁変換特性上好ましくない。このとき、大粒径
粒子と小粒径粒子との平均粒径の差は0.2μm以上が
必要であり、好ましくは0.3μm以上である。この差
が0.2μmより小さいと、巻取性と電磁変換特性との
両方とも満足するものは得られない。
[0008] In the present invention, among such inert solid particles, the average particle diameter of the small-diameter particles is from 0.05 to 0.05.
0.3 [mu] m, preferably 0.10 to 0.3 [mu] m, in an amount of 0.05 to 0.4% by weight, preferably 0.1 to 0.3% by weight, and As the large-diameter particles, those having an average particle diameter of 0.3 to 1.0 μm, preferably 0.5 to 0.8 μm, and the added amount of 0.005 to 0.05% by weight, preferably 0.1 to 0.05% by weight. 01 ~
It is used in a range satisfying 0.03% by weight. It is desirable not to add a large amount of particles in terms of electromagnetic conversion characteristics, but if not added, winding becomes difficult. Therefore, it is preferable to add a very small amount of large-diameter particles to improve the winding property. However, adding more than 0.05% by weight is not preferable because the electromagnetic conversion characteristics deteriorate. On the other hand, small particle size
Unless it is added in an amount of 0.05% by weight or more, winding is difficult even if large-diameter particles are added. If it is added in an amount of more than 0.4% by weight, it is not preferable in terms of electromagnetic conversion characteristics. At this time, the difference between the average particle diameter of the large particle and the average particle diameter of the small particle is required to be 0.2 μm or more, and preferably 0.3 μm or more. If this difference is smaller than 0.2 μm, a material satisfying both the winding property and the electromagnetic conversion characteristics cannot be obtained.

【0009】本発明のポリエチレン―2,6―ナフタレ
ートフィルムは、上述した大小2種の不活性な固体粒子
を含有するポリエチレン―2,6―ナフタレートからな
るが、さらにフィルム表面粗さ(Ra)は0.003〜
0.010μmであることが必要である。Raが0.0
10μmより大きくなると、最早高密度記録用の磁気テ
ープとして必要な電磁変換特性を維持することは難し
く、またRaが0.003μmより小さくなると、摩擦
係数が大きくなりフィルムの取扱性及びロール状に巻き
上げることが非常に難しくなる。
The polyethylene-2,6-naphthalate film of the present invention comprises polyethylene-2,6-naphthalate containing the above-mentioned two large and small inert solid particles, and further has a film surface roughness (Ra). Is 0.003 ~
It needs to be 0.010 μm. Ra is 0.0
If it is larger than 10 μm, it is difficult to maintain the required electromagnetic conversion characteristics as a magnetic tape for high-density recording. If Ra is smaller than 0.003 μm, the coefficient of friction increases, and the film is easily handled and rolled up into a roll. It becomes very difficult.

【0010】ポリエチレン―2,6―ナフタレートフィ
ルムは、さらに、縦方向のヤング率(EM )が650kg
/mm2 以上、横方向のヤング率(ET )が600kg/mm
2 以上であり、これらの比(EM /ET )が0.9〜
1.5の範囲にあることが必要である。特にベースフィ
ルムの厚みが12μm以下で、かつテープの厚みが16
μm以下の磁気テープでは縦方向が650kg/mm2 より
低く、横方向が600kg/mm2 より低いヤング率ではテ
ープの走行中にテープエッジが折れ曲ったり、テープが
伸びてしまう場合がある。またヤング率が低いとビデオ
回転ヘッドへのテープの押し付けが弱くなり、電磁変換
特性が悪化する。また、ヤング率の比(EM /ET )が
0.9〜1.5の範囲内にない場合には、電磁変換特性
が悪くなる。
The polyethylene-2,6-naphthalate film further has a Young's modulus (EM) in the longitudinal direction of 650 kg.
/ Mm 2 or more, Young's modulus (ET) in the lateral direction is 600 kg / mm
2 or more, and their ratio (EM / ET) is 0.9 to
It must be in the range of 1.5. In particular, when the thickness of the base film is 12 μm or less and the thickness of the tape is 16
With a magnetic tape of μm or less, the longitudinal direction is lower than 650 kg / mm 2 , and if the lateral direction is lower than 600 kg / mm 2 , the tape edge may be bent or the tape may be stretched during the running of the tape. On the other hand, when the Young's modulus is low, the pressing of the tape against the video rotary head becomes weak, and the electromagnetic conversion characteristics deteriorate. If the Young's modulus ratio (EM / ET) is not in the range of 0.9 to 1.5, the electromagnetic conversion characteristics deteriorate.

【0011】かかるヤング率を得る手段としては、一般
的なロールやステンターを用いて縦横同時に延伸しても
よく、また縦横方向に各々逐次に延伸してもよく、また
縦横方向に2段以上延伸する方法を用いてもよい。
As means for obtaining such a Young's modulus, a general roll or a stenter may be used to simultaneously stretch in the longitudinal and transverse directions, may be sequentially stretched in the longitudinal and transverse directions, or may be stretched two or more steps in the longitudinal and transverse directions. May be used.

【0012】ポリエチレン―2,6―ナフタレートフィ
ルムは、さらにまた、70℃で無荷重下で1時間熱処理
したときに生ずる縦方向の熱収縮率が0.08%以下で
あることが必要である。好ましい熱収縮率は0.04%
以下である。この熱収縮率が0.08%より大きいと、
テープにしたあとも熱的非可逆変化が生じ、またVTR
で記録と再生の温度が異なると画面にスキュー歪を生じ
る。また熱収縮率が大きいと、磁性表面へのベースフィ
ルム面の裏移り効果が生じ、磁性面の表面粗さが粗くな
ってしまう。70℃、1時間の熱収縮率を下げる手段と
しては、延伸後の熱処理温度を上げることが一般的であ
るが、あまり上げすぎると機械的特性が悪化する結果と
なり、また磁気テープ加工工程中でのすりキズ発生が多
くなり、その削れ粉が磁気テープの磁性面に付着して、
ドロップアウトの原因となる。この問題を解決する手段
としては速度差を持った2つのロール間にフィルムを通
し、ポリエチレン―2,6―ナフタレートのガラス転移
温度(Tg)以上の温度をかけて弛緩処理をする方法が
あるが、これに限定されるものではない。
The polyethylene-2,6-naphthalate film must further have a longitudinal heat shrinkage of 0.08% or less when heat-treated at 70 ° C. for 1 hour under no load. . Preferred heat shrinkage is 0.04%
It is as follows. If this heat shrinkage is greater than 0.08%,
Thermal irreversible change occurs even after the tape is formed, and VTR
If the recording and reproducing temperatures are different, skew distortion occurs on the screen. If the heat shrinkage is large, an effect of set-off of the base film surface to the magnetic surface occurs, and the surface roughness of the magnetic surface becomes rough. As a means for reducing the heat shrinkage rate at 70 ° C. for one hour, it is general to increase the heat treatment temperature after stretching. However, if it is too high, the mechanical properties are deteriorated. Scratches and scratches increase, and the shavings adhere to the magnetic surface of the magnetic tape.
Cause dropout. As a means for solving this problem, there is a method in which a film is passed between two rolls having a difference in speed, and a relaxation treatment is performed by applying a temperature higher than the glass transition temperature (Tg) of polyethylene-2,6-naphthalate. However, the present invention is not limited to this.

【0013】本発明のポリエチレン―2,6―ナフタレ
ートフィルムは、2〜12μmの厚みのものである。
The polyethylene-2,6-naphthalate film of the present invention has a thickness of 2 to 12 μm.

【0014】本発明の二軸配向ポリエチレン―2,6―
ナフタレートフィルムを用いて磁気記録テープを作成す
ると、磁性面の表面粗さが低く、またテープとビデオデ
ッキ中のヘッドとの押付け圧力が増すために高密度磁気
記録に必要な電磁変換特性が得られる。さらにビデオデ
ッキ走行中に生ずるテープエッジの折れやテープの伸び
等の異常が少なく、かつ熱的安定性が良いのでスキュー
歪が少ない。従って、本発明の二軸配向ポリエチレン―
2,6―ナフタレートフィルムは高密度磁気記録テー
プ、特にメタルテープのベースフィルムとして有用であ
る。
The biaxially oriented polyethylene of the present invention-2,6-
When a magnetic recording tape is made using a naphthalate film, the surface roughness of the magnetic surface is low, and the pressing pressure between the tape and the head in the VCR increases, so that the electromagnetic conversion characteristics required for high-density magnetic recording are obtained. Can be Further, there are few abnormalities such as breakage of the tape edge and tape elongation which occur during the running of the VCR, and the thermal stability is good, so that the skew distortion is small. Therefore, the biaxially oriented polyethylene of the present invention-
2,6-Naphthalate films are useful as base films for high-density magnetic recording tapes, especially metal tapes.

【0015】[0015]

【実施例】以下、実施例に掲げて本発明を更に説明す
る。なお、本発明における種々の物性値及び特性は以下
の如くして測定したものであり、かつ定義される。
The present invention will be further described below with reference to examples. The various physical properties and properties in the present invention are measured and defined as follows.

【0016】(1)ヤング率 フィルムを試料巾10mm、長さ15cmに切り、チャック
間100mmにして引張速度10mm/分、チャート速度5
00mm/分にインストロンタイプの万能引張試験装置に
て引張った。得られた荷重―伸び曲線の立上り部の接線
よりヤング率を計算した。
(1) Young's modulus A film was cut into a sample having a width of 10 mm and a length of 15 cm.
It was pulled at 00 mm / min by an Instron type universal tensile tester. The Young's modulus was calculated from the tangent at the rising portion of the obtained load-elongation curve.

【0017】(2)フィルム表面粗さ(Ra) 小坂研究所(株)製の触針式表面粗さ計(サーフコーダ
30C)を用いて針の半径2μm、触針圧30mgの条件
下にチャート(フィルム表面粗さ曲線)をかかせた。フ
ィルム表面粗さ曲線から、その中心線の方向に測定長さ
Lの部分を抜き取り、この抜き取り部分の中心線をX軸
とし、縦倍率の方向をY軸として、粗さ曲線をY=f
(x)で表わしたとき、次の式(数1)で与えられるR
a(μm)をフィルム表面粗さとして定義する。
(2) Film Surface Roughness (Ra) Using a stylus type surface roughness meter (Surfcoder 30C) manufactured by Kosaka Laboratory Co., Ltd., a chart with a needle radius of 2 μm and a stylus pressure of 30 mg. (Film surface roughness curve). From the film surface roughness curve, a portion of the measured length L is extracted in the direction of the center line, the center line of the extracted portion is set as the X axis, the direction of the vertical magnification is set as the Y axis, and the roughness curve is expressed as Y = f.
When represented by (x), R given by the following equation (Equation 1)
a (μm) is defined as the film surface roughness.

【0018】[0018]

【数1】 本発明では、測定長を1.25mmとし、カットオフ値を
0.08mmとして、5回測定した平均値をRaとした。
(Equation 1) In the present invention, the measurement length was 1.25 mm, the cutoff value was 0.08 mm, and the average value measured five times was Ra.

【0019】(3)電磁変換特性 シバソク(株)製ノイズメーターを使用し、ビデオ用磁
気テープのS/N比を測定した。また表1に示す比較例
3のテープに対するS/N比の差を求めた。また使用し
たVTRはソニー(株)製EV―S700である。
(3) Electromagnetic Conversion Characteristics The S / N ratio of the magnetic tape for video was measured using a noise meter manufactured by Shibasoku Co., Ltd. Further, the difference in S / N ratio with respect to the tape of Comparative Example 3 shown in Table 1 was determined. The VTR used was an EV-S700 manufactured by Sony Corporation.

【0020】(4)磁気テープの耐久性 ソニー(株)製EV―S700で走行開始、停止を繰り
返しながら100時間走行させ、走行状態を調べるとと
もに出力測定を行った。このときの磁気テープの走行耐
久性を下記のように判定した。 <3段階判定> ○:テープの端が折れたり、ワカメ状にならない。ま
た、削れがなく白粉付着がない。 △:若干、テープの端の折れやワカメが発生したり、小
量の白粉付着が見られる。 ×:テープの折れやワカメの発生が著しい。また、テー
プ削れが著しく白粉が多量に発生する。
(4) Durability of Magnetic Tape The vehicle was run for 100 hours while repeatedly running and stopping with an EV-S700 manufactured by Sony Corporation, and the running state was checked and the output was measured. The running durability of the magnetic tape at this time was determined as follows. <Three-step judgment> :: The end of the tape is not broken or wakame. Also, there is no scraping and no white powder adhesion. Δ: Slight breakage of the tape end or wakame occurs, and a small amount of white powder adhered. X: The breakage of the tape and the occurrence of seaweed are remarkable. Further, the tape is sharply scraped and a large amount of white powder is generated.

【0021】(5)熱収縮率 70℃に設定されたオーブンの中にあらかじめ正確な長
さを測定した長さ約30cm、巾1cmのフィルムを無荷重
で入れ、1時間熱処理し、その後オーブンよりサンプル
を取り出し、室温に戻してからその寸法の変化を読み取
った。熱処理前の長さ(L0 )と熱処理による寸法変化
量(ΔL)より、次式(数2)で熱収縮率を求める。
(5) Heat shrinkage A film having a length of about 30 cm and a width of 1 cm, which has been measured accurately in advance, is placed in an oven set at 70 ° C. with no load, and heat-treated for 1 hour. The sample was removed and allowed to return to room temperature before reading its dimensional change. From the length (L 0 ) before the heat treatment and the dimensional change (ΔL) due to the heat treatment, the heat shrinkage is calculated by the following equation (Equation 2).

【0022】[0022]

【数2】 (Equation 2)

【0023】(6)スキュー スキュー特性は常温(20℃)常湿下で録画したビデオ
テープを70℃で1時間熱処理した後、再び常温常湿下
で再生し、ヘッド切換点におけるズレ量を読み取った。
(6) Skew The skew characteristic is as follows. After a video tape recorded at room temperature (20 ° C.) and normal humidity is heat-treated at 70 ° C. for 1 hour, it is reproduced again at room temperature and normal humidity, and the amount of deviation at the head switching point is read. Was.

【0024】(7)巻き上がり良品率 フィルムを500mm巾で4000m、ロール状に100
本巻き取ったときに得られる良品数を百分率で示した。
このとき良品とは、次のものをいう。 フィルムが円
筒上に巻き上げられており、角ばったり、たれさがった
りしていない。 フィルムロールにしわの発生がな
い。
(7) Non-defective winding rate The film is 500 mm wide and 4000 m long, and 100
The number of non-defective products obtained when this winding was performed is shown as a percentage.
At this time, the non-defective product means the following. The film is rolled up on a cylinder and is not square or sagging. There are no wrinkles on the film roll.

【0025】(8)不活性粒子の平均粒径 島津製作所製CP―50型セントリフュグル パーティ
クル サイズ アナライザー(Centrifugal Particle S
ize Analyzer)を用いて測定した。得られた遠心沈降曲
線をもとに算出した各粒径の粒子とその存在量との累積
曲線から、50マスパーセント(mass percent)に相当
する粒径を読み取り、この値を上記平均粒径とした。
(8) Inert Particle Average Particle Size CP-50 Centrifugal Particle Size Analyzer (Centrifugal Particle S) manufactured by Shimadzu Corporation
ize Analyzer). From the cumulative curve of particles of each particle size and its abundance calculated based on the obtained centrifugal sedimentation curve, the particle size corresponding to 50 mass percent (mass percent) was read. did.

【0026】[0026]

【実施例1】平均粒径0.1μmの単分散シリカ粒子を
0.2重量%、平均粒径0.6μmの炭酸カルシウム粒
子を0.014重量%含有した固有粘度0.62dl/g
(オルソクロロフェノールを溶媒として用い、25℃で
測定した値)のポリエチレン―2,6―ナフタレートを
170℃で乾燥した後300℃で溶融押出し、60℃に
保持したキャスティングドラム上で急冷固化せしめて1
80μmの厚みの未延伸フィルムを得た。
Example 1 An intrinsic viscosity of 0.62 dl / g containing 0.2% by weight of monodispersed silica particles having an average particle size of 0.1 μm and 0.014% by weight of calcium carbonate particles having an average particle size of 0.6 μm.
Polyethylene-2,6-naphthalate (measured at 25 ° C. using orthochlorophenol as a solvent) was dried at 170 ° C., melt-extruded at 300 ° C., and quenched and solidified on a casting drum maintained at 60 ° C. 1
An unstretched film having a thickness of 80 μm was obtained.

【0027】この未延伸フィルムを速度差をもった2つ
のロール間で125℃の温度で縦方向に4.85倍延伸
し、さらにテンターによって横方向に5.15倍延伸
し、その後215℃で10秒間熱処理をした。さらに1
10℃に加熱されたオーブンにより浮遊熱処理を実施
し、これにより0.3%弛緩処理した。
This unstretched film is stretched 4.85 times in the machine direction at a temperature of 125 ° C. between two rolls having a difference in speed, further stretched 5.15 times in the transverse direction by a tenter, and then at 215 ° C. Heat treatment was performed for 10 seconds. One more
A floating heat treatment was performed in an oven heated to 10 ° C., thereby performing a 0.3% relaxation treatment.

【0028】このようにして厚み7μmの二軸配向ポリ
エチレン―2,6―ナフタレートフィルムを巻取った。
Thus, a biaxially oriented polyethylene-2,6-naphthalate film having a thickness of 7 μm was wound.

【0029】一方、下記に示す組成物をボールミルに入
れ、16時間混練、分散した後、イソシアネート化合物
(バイエル社製のデスモジュールL)5重量部を加え、
1時間高速剪断分散して磁性塗料とした。
On the other hand, the following composition was put into a ball mill, kneaded and dispersed for 16 hours, and then 5 parts by weight of an isocyanate compound (Desmodur L manufactured by Bayer AG) was added.
A high-speed shearing dispersion was performed for 1 hour to obtain a magnetic paint.

【0030】[0030]

【表1】 [Table 1]

【0031】この磁性塗料を上述のポリエチレン―2,
6―ナフタレートフィルムの片面に塗布厚3μmとなる
ように塗布し、次いで2500ガウスの直流磁場中で配
向処理を行ない、100℃で加熱乾燥後、スーパーカレ
ンダー処理(線圧200kg/cm、温度80℃)を行な
い、巻き取った。この巻き取ったロールを55℃のオー
ブン中に3日間放置した。
This magnetic paint was treated with the above polyethylene-2,
One side of the 6-naphthalate film is coated so as to have a coating thickness of 3 μm, then subjected to an orientation treatment in a DC magnetic field of 2500 gauss, heated and dried at 100 ° C., and then subjected to a super calender treatment (linear pressure 200 kg / cm, temperature 80 ° C) and wound up. The wound roll was left in an oven at 55 ° C. for 3 days.

【0032】さらに下記組成のバックコート層塗料を厚
さ1μmに塗布し、乾燥させ、さらに8mmに裁断し、磁
気テープを得た。
Further, a backcoat paint having the following composition was applied to a thickness of 1 μm, dried, and cut into 8 mm to obtain a magnetic tape.

【0033】[0033]

【表2】 [Table 2]

【0034】得られたフィルム及びテープの特性を第1
表(表3)に示す。この表から明らかなように巻き上り
良品率もよく、電磁変換特性、走行耐久性、スキューも
良好であった。
The characteristics of the obtained film and tape are
It is shown in the table (Table 3). As is clear from this table, the good winding rate was good, and the electromagnetic conversion characteristics, running durability, and skew were also good.

【0035】[0035]

【実施例2】実施例1と同様にして未延伸フィルムを
得、該未延伸フィルムを縦方向に130℃で2.3倍延
伸し、次いで横方向に130℃で4.0倍延伸し、引き
続いて160℃で中間熱処理した。このフィルムをさら
に縦方向に170℃で2.4倍、横方向に1.5倍延伸
し、215℃で熱処理した。このようにして7μm厚み
の二軸配向フィルムを得た。以下、実施例1と同様にし
てテープを得た。この結果を第1表(表3)に示す。実
施例1と同様に良好な結果が得られた。
Example 2 An unstretched film was obtained in the same manner as in Example 1. The unstretched film was stretched 2.3 times in the machine direction at 130 ° C., and then 4.0 times in the transverse direction at 130 ° C. Subsequently, an intermediate heat treatment was performed at 160 ° C. This film was further stretched 2.4 times in the longitudinal direction at 170 ° C. and 1.5 times in the transverse direction, and heat-treated at 215 ° C. Thus, a biaxially oriented film having a thickness of 7 μm was obtained. Thereafter, a tape was obtained in the same manner as in Example 1. The results are shown in Table 1 (Table 3). Good results were obtained as in Example 1.

【0036】[0036]

【実施例3】実施例1における添加不活性粒子の代わり
に小粒径粒子として平均粒径0.1μmの単分散シリカ
粒子を0.35重量%、大粒径粒子として平均粒径0.
8μmの炭酸カルシウム粒子を0.01重量%添加した
以外は実施例1と同様にして未延伸フィルムを得、次い
で実施例2と同様にして7μm厚みの二軸配向フィルム
を得た。以下、実施例1と同様にしてテープを得た。こ
の結果を第1表(表3)に示す。実施例1と同様に良好
な結果が得られた。
Example 3 Instead of the inert particles added in Example 1, 0.35% by weight of monodispersed silica particles having an average particle size of 0.1 μm as small particles and 0.3% by weight as large particles were used.
An unstretched film was obtained in the same manner as in Example 1 except that 0.01% by weight of 8 μm of calcium carbonate particles was added, and then a biaxially oriented film having a thickness of 7 μm was obtained in the same manner as in Example 2. Thereafter, a tape was obtained in the same manner as in Example 1. The results are shown in Table 1 (Table 3). Good results were obtained as in Example 1.

【0037】[0037]

【実施例4】実施例3における不活性粒子の代わりに平
均粒径0.25μmの単分散シリカ粒子を0.3重量
%、平均粒径0.5μmの炭酸カルシウム粒子を0.0
15重量%を使用した以外は実施例3と同様にしてフィ
ルムおよびテープを得た。この結果を第1表(表3)に
示す。実施例3と同様に良好な結果が得られた。
Example 4 Instead of the inert particles in Example 3, 0.3% by weight of monodispersed silica particles having an average particle size of 0.25 μm and 0.0% of calcium carbonate particles having an average particle size of 0.5 μm were used.
A film and a tape were obtained in the same manner as in Example 3 except that 15% by weight was used. The results are shown in Table 1 (Table 3). Good results were obtained as in Example 3.

【0038】[0038]

【比較例1】実施例1における添加不活性粒子の代わり
に平均粒径0.02μmの単分散シリカを0.05重量
%使用した以外は実施例1と同様にして厚み7μmの二
軸配向フィルムを得たが、ベースフィルムの滑り不良の
ため巻取り不可となり、磁気テープとすることができな
かった。
Comparative Example 1 A biaxially oriented film having a thickness of 7 μm was prepared in the same manner as in Example 1 except that 0.05% by weight of monodisperse silica having an average particle size of 0.02 μm was used instead of the inert particles added in Example 1. However, winding was impossible due to poor slippage of the base film, and a magnetic tape could not be obtained.

【0039】[0039]

【比較例2】実施例1における添加不活性粒子の代わり
に小粒径粒子として平均粒径0.15μmの単分散シリ
カを0.3重量%、大粒径粒子として平均粒径0.2μ
mの炭酸カルシウムを0.03重量%添加した以外は実
施例1と同様にしてフィルム及びテープを得た。その結
果を第1表(表3)に示す。テープの電磁変換特性も悪
化しており、また巻き上がり良品率も50%であって実
施例1に比べると悪い。
COMPARATIVE EXAMPLE 2 Instead of the inert particles added in Example 1, 0.3% by weight of monodispersed silica having an average particle size of 0.15 .mu.m as small particles and 0.2 .mu.m as large particles were used.
A film and a tape were obtained in the same manner as in Example 1 except that 0.03% by weight of calcium carbonate was added. The results are shown in Table 1 (Table 3). The electromagnetic conversion characteristics of the tape are also deteriorated, and the yield ratio of the wound product is 50%, which is worse than that of the first embodiment.

【0040】[0040]

【比較例3】実施例1において縦延伸倍率を3.7倍、
横延伸倍率を4.0倍に延伸し(延伸温度は縦、横とも
実施例1と同じ)てフィルム及びテープを得た。その結
果を第1表(表3)に示す。ヤング率が低いために走行
耐久性は不良であった。また、電磁変換特性もテープの
腰が弱いために良くなかった。
Comparative Example 3 In Example 1, the longitudinal stretching ratio was 3.7 times.
The film and tape were obtained by stretching the film to a transverse stretching ratio of 4.0 times (the stretching temperature was the same as in Example 1 for both the length and width). The results are shown in Table 1 (Table 3). The running durability was poor due to the low Young's modulus. Also, the electromagnetic conversion characteristics were not good due to the weakness of the tape.

【0041】[0041]

【比較例4】実施例1において弛緩処理を省略した以外
は実施例1と同様の方法でフィルム及びテープを得た。
その結果を第1表(表3)に示す。熱収縮率が高いため
にスキューが大きく、また裏移り効果のために磁性面を
粗化し、電磁変換特性はやや不良であった。
Comparative Example 4 A film and a tape were obtained in the same manner as in Example 1 except that the relaxation treatment was omitted.
The results are shown in Table 1 (Table 3). The skew was large due to the high heat shrinkage, and the magnetic surface was roughened due to the set-off effect, and the electromagnetic conversion characteristics were somewhat poor.

【0042】[0042]

【比較例5】実施例2における添加不活性粒子の代わり
に小粒径粒子として平均粒径0.35μmの単分散シリ
カを0.2重量%、大粒径粒子として平均粒径1.2μ
mの炭酸カルシウムを0.01重量%添加した以外は実
施例2と同様にしてフィルム及びテープを得た。その結
果を第1表(表3)に示す。ベースフィルムの表面粗さ
(Ra)が大きいため、磁性面も粗化し電磁変換特性が
悪い。また大粒径粒子の粒径が大きく粗大突起がテープ
表面に散在するため、テープ走行時に若干削れが発生し
走行耐久性がやや悪い。
Comparative Example 5 Instead of the inert particles added in Example 2, 0.2% by weight of monodisperse silica having an average particle diameter of 0.35 μm was used as the small particle, and the average particle diameter was 1.2 μm as the large particle.
A film and a tape were obtained in the same manner as in Example 2 except that 0.01% by weight of m calcium carbonate was added. The results are shown in Table 1 (Table 3). Since the surface roughness (Ra) of the base film is large, the magnetic surface is roughened and the electromagnetic conversion characteristics are poor. In addition, since the large-diameter particles have a large particle size and coarse projections are scattered on the tape surface, a slight shaving occurs when the tape runs, and the running durability is slightly poor.

【0043】[0043]

【比較例6】実施例1における添加不活性固体粒子の代
わりに小粒径粒子として平均粒径0.1μmの単分散シ
リカを0.35重量%、大粒径粒子として平均粒径0.
8μmの炭酸カルシウム粒子を0.01重量%添加した
以外は実施例1と同様にして未延伸フィルムを得、該未
延伸フィルムを縦方向に130℃で2.3倍延伸し、次
いで横方向に130℃で4.0倍延伸し、引き続いて1
60℃で中間熱処理し、さらに縦方向に170℃で2.
6倍、215℃で熱処理した後、実施例1と同様のフィ
ルム及びテープを得た。この結果を第1表(表3)に示
す。該テープの横方向のヤング率が低く弱いためエッジ
ダメージを生じ走行耐久性がやや悪い。また縦横ヤング
率比が大きいためVTRヘッドとのなじみが悪く電磁変
換特性も良くない。
Comparative Example 6 Instead of the inert solid particles added in Example 1, 0.35% by weight of monodispersed silica having an average particle diameter of 0.1 μm was used as small-sized particles, and 0.3% by weight was used as large-sized particles.
An unstretched film was obtained in the same manner as in Example 1 except that 0.01% by weight of 8 μm calcium carbonate particles were added, and the unstretched film was stretched 2.3 times in the machine direction at 130 ° C., and then in the transverse direction. Stretched 4.0 times at 130 ° C.
1. Intermediate heat treatment at 60 ° C, and then longitudinally at 170 ° C.
After heat treatment at 215 ° C. 6 times, the same film and tape as in Example 1 were obtained. The results are shown in Table 1 (Table 3). Since the Young's modulus of the tape in the lateral direction is low and weak, edge damage is caused and running durability is somewhat poor. Further, since the ratio of the Young's modulus to the width is large, the familiarity with the VTR head is poor and the electromagnetic conversion characteristics are not good.

【0044】[0044]

【比較例7】実施例2における添加不活性粒子の代わり
に小粒径粒子として平均粒径0.1μmの単分散シリカ
を0.5重量%、大粒径粒子として平均粒径1.2μm
の炭酸カルシウム粒子を0.07重量%添加した以外は
実施例2と同様にしてフィルム及びテープを得た。この
結果を第1表(表3)に示す。ベースフィルムの表面粗
さ(Ra)が非常に大きく、磁性面も粗れているため電
磁変換特性が悪く、また削れによる白粉発生が著しい。
COMPARATIVE EXAMPLE 7 Instead of the inert particles added in Example 2, 0.5% by weight of monodispersed silica having an average particle diameter of 0.1 μm as small-sized particles and 1.2 μm as large-sized particles.
A film and a tape were obtained in the same manner as in Example 2 except that 0.07% by weight of calcium carbonate particles was added. The results are shown in Table 1 (Table 3). The surface roughness (Ra) of the base film is very large, and the magnetic surface is rough, so that the electromagnetic conversion characteristics are poor, and the generation of white powder due to shaving is remarkable.

【0045】[0045]

【表3】 [Table 3]

【0046】[0046]

【発明の効果】本発明によれば、電磁変換特性、走行耐
久性、スキュー歪、巻き特性等に優れ、高密度磁気記録
媒体特にメタルテープのベースフィルムとして有用なポ
リエチレン―2,6―ナフタレートフィルムを提供する
ことができる。
According to the present invention, polyethylene-2,6-naphthalate having excellent electromagnetic conversion characteristics, running durability, skew distortion, winding characteristics, etc., and useful as a base film for high-density magnetic recording media, especially metal tapes. A film can be provided.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 FI C08L 67/02 C08L 67/02 // B29K 67:00 B29L 7:00 (72)発明者 越中 正己 神奈川県相模原市小山3丁目37番19号 帝人株式会社 相模原研究センター内 (56)参考文献 特開 昭62−143938(JP,A) 特開 平2−202924(JP,A) 特開 昭63−235335(JP,A)────────────────────────────────────────────────── ─── Continued on the front page (51) Int.Cl. 6 Identification code FI C08L 67/02 C08L 67/02 // B29K 67:00 B29L 7:00 (72) Inventor Masami Etsuna 3 Oyama, Sagamihara City, Kanagawa Prefecture No. 37-19, Teijin Limited Sagamihara Research Center (56) References JP-A-62-143938 (JP, A) JP-A-2-202924 (JP, A) JP-A-63-235335 (JP, A)

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 フィルム中に平均粒径が0.05〜0.
3μmの単分散シリカを小粒径粒子として0.05〜
0.4重量%、さらに平均粒径が0.3〜1.0μmの
不活性固体粒子を大粒径粒子として0.005〜0.0
5重量%含有し、かつ大粒径粒子と小粒径粒子の平均粒
径の差が0.2μm以上であり、フィルムの厚みが2〜
12μmであり、フィルムの表面粗さRaが0.003
〜0.010μmであり、縦方向のヤング率(EM )が
650kg/mm2 以上、横方向のヤング率(ET )が60
0kg/mm2 以上であり、これらの比(EM /ET )が
0.9〜1.5の範囲にあり、そして70℃で1時間無
加重で熱処理したときの縦方向の熱収縮率が0.08%
以下である二軸配向ポリエチレン―2,6―ナフタレー
トフィルム。
1. A film having an average particle size of 0.05 to 0.1.
3 μm monodisperse silica is used as small particle
0.4% by weight, and inert solid particles having an average particle size of
5% by weight, and the difference between the average particle size of the large particle size and the small particle size is 0.2 μm or more, and the thickness of the film is 2 to 2.
12 μm, and the surface roughness Ra of the film is 0.003.
0.00.010 μm, Young's modulus (EM) in the vertical direction is 650 kg / mm 2 or more, and Young's modulus (ET) in the horizontal direction is 60
0 kg / mm 2 or more, these ratios (E M / E T) are in the range of 0.9 to 1.5, and the heat shrinkage in the longitudinal direction when heat-treated at 70 ° C. for 1 hour without load is 0%. 0.08%
The following biaxially oriented polyethylene-2,6-naphthalate film.
【請求項2】 大粒径粒子としての不活性固体粒子が炭
酸カルシウムである請求項1記載の二軸配向ポリエチレ
ン―2,6―ナフタレートフィルム。
2. A biaxially oriented polyethylene-2,6-naphthalate fill beam according to claim 1, wherein the inert solid particles are of calcium carbonate as large particles.
JP3226416A 1991-03-14 1991-08-13 Polyethylene-2,6-naphthalate film Expired - Fee Related JP2771356B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3226416A JP2771356B2 (en) 1991-03-14 1991-08-13 Polyethylene-2,6-naphthalate film
DE69233688T DE69233688T2 (en) 1991-08-13 1992-08-06 Biaxially oriented polyethylene 26-naphthalate film stretched in a longitudinal direction and magnetic tape made therefrom
EP92307194A EP0532172B1 (en) 1991-08-13 1992-08-06 Magnetic hape from a biaxially oriented,unidirectionally long polythylene-2,6-naphthalate film
DE69233066T DE69233066T2 (en) 1991-08-13 1992-08-06 Magnetic tape made from a biaxially oriented, unidirectionally expanded polyethylene -2,6-naphthalate film
EP02078281A EP1270669B1 (en) 1991-08-13 1992-08-06 Biaxially oriented, unidirectionally long polyethylene-2,6-naphthalate film and magnetic tape therefrom
KR1019920014597A KR0158462B1 (en) 1991-08-13 1992-08-13 Biaxially oriented, long in one direction, polyethylene 2,6-naphthalate film and magentic tape using it
US08/181,377 US5415930A (en) 1991-08-13 1994-01-14 Biaxially oriented, unidirectionally long polyethylene-2,6-naphthalate film and magnetic tape therefrom

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-73709 1991-03-14
JP7370991 1991-03-14
JP3226416A JP2771356B2 (en) 1991-03-14 1991-08-13 Polyethylene-2,6-naphthalate film

Publications (2)

Publication Number Publication Date
JPH055039A JPH055039A (en) 1993-01-14
JP2771356B2 true JP2771356B2 (en) 1998-07-02

Family

ID=26414854

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3226416A Expired - Fee Related JP2771356B2 (en) 1991-03-14 1991-08-13 Polyethylene-2,6-naphthalate film

Country Status (1)

Country Link
JP (1) JP2771356B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05310964A (en) * 1992-04-30 1993-11-22 Diafoil Co Ltd Biaxially oriented polyester film
WO2000021731A1 (en) * 1998-10-09 2000-04-20 Teijin Limited Biaxially oriented polyester film and flexible disk
JP5230326B2 (en) * 2008-09-30 2013-07-10 ユニチカ株式会社 Sequential biaxially stretched polyester film and method for producing the same
JP5556145B2 (en) * 2009-11-27 2014-07-23 コニカミノルタ株式会社 Image forming apparatus

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62135339A (en) * 1985-12-09 1987-06-18 Diafoil Co Ltd Polyethylene-2,6-naphthalate film for magnetic recording medium
JPH0625267B2 (en) * 1985-12-17 1994-04-06 ダイアホイルヘキスト株式会社 Polyethylene-2,6-naphthalate film for high density magnetic recording media
JPS62164733A (en) * 1986-01-14 1987-07-21 Teijin Ltd Biaxially oriented polyester film for magnetic recording
JPS63235335A (en) * 1987-03-24 1988-09-30 Teijin Ltd Biaxially oriented polyester film
JP2528959B2 (en) * 1989-02-01 1996-08-28 帝人株式会社 Polyethylene-2,6-naphthalate film

Also Published As

Publication number Publication date
JPH055039A (en) 1993-01-14

Similar Documents

Publication Publication Date Title
JP2989080B2 (en) Laminated polyester film for magnetic recording media
EP0199244A2 (en) Polyester base film for magnetic recording media
EP0659810B1 (en) A biaxially oriented film of polyethylene-2,6-naphthalenedicarboxylate
JP2585494B2 (en) Polyethylene-2,6-naphthalate film
JP2675217B2 (en) Polyethylene-2,6-naphthalate film
EP0532172B1 (en) Magnetic hape from a biaxially oriented,unidirectionally long polythylene-2,6-naphthalate film
JPH0430973B2 (en)
JP2771356B2 (en) Polyethylene-2,6-naphthalate film
JP2675216B2 (en) Polyethylene-2,6-naphthalate film
JP2738644B2 (en) Polyethylene-2,6-naphthalate film
JP2738645B2 (en) Polyethylene-2,6-naphthalate film
JP4151994B2 (en) Polyethylene-2,6-naphthalate film
JP3489849B2 (en) Base film for magnetic recording tape
JPH11144227A (en) Biaxially oriented polyethylene-2,6-naphthalate film for magnetic recording medium
JPH0518327B2 (en)
JP2738638B2 (en) Biaxially oriented polyester film
JP2738637B2 (en) Biaxially oriented polyester film
JP2003132523A (en) Biaxially oriented polyester film for magnetic recording medium
JP2738636B2 (en) Biaxially oriented polyester film
JPS61261026A (en) Biaxially oriented polyester film
JP3545435B2 (en) Base film for magnetic recording tape
JP3051263B2 (en) Laminated polyester film for magnetic recording media
JP2002370276A (en) Biaxially oriented polyester film
JP2937693B2 (en) Biaxially oriented laminated polyester film
JPH07178808A (en) Polyethylene-2,6-naphthalate film

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080417

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090417

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100417

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110417

Year of fee payment: 13

LAPS Cancellation because of no payment of annual fees