JPH07178712A - Preparation of far infrared rays radiator made of carbon - Google Patents

Preparation of far infrared rays radiator made of carbon

Info

Publication number
JPH07178712A
JPH07178712A JP5344767A JP34476793A JPH07178712A JP H07178712 A JPH07178712 A JP H07178712A JP 5344767 A JP5344767 A JP 5344767A JP 34476793 A JP34476793 A JP 34476793A JP H07178712 A JPH07178712 A JP H07178712A
Authority
JP
Japan
Prior art keywords
carbon
far infrared
resin binder
far
pellets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5344767A
Other languages
Japanese (ja)
Inventor
Yoshiaki Seki
吉明 関
Kenjiro Adachi
健次郎 安達
Masao Desaki
征夫 出崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NIPPON CARBON SEIKO KK
Original Assignee
NIPPON CARBON SEIKO KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NIPPON CARBON SEIKO KK filed Critical NIPPON CARBON SEIKO KK
Priority to JP5344767A priority Critical patent/JPH07178712A/en
Publication of JPH07178712A publication Critical patent/JPH07178712A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Oxide Ceramics (AREA)
  • Producing Shaped Articles From Materials (AREA)
  • Ceramic Products (AREA)
  • Compositions Of Macromolecular Compounds (AREA)

Abstract

PURPOSE:To obtain a carbon-made far infrared rays radiator with various shapes such as a panel shape in various sizes in few number of processes and low cost by pelletizing and performing injection molding or extrusion molding and to make injection molding and extrusion molding easy by using a thermoplastic resin binder with a high emissivity. CONSTITUTION:A carbon compsn. wherein a carbon powder and a thermoplastic resin binder are incorporated is made into pellets, which are then injection- molded or extrusion-molded.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、カーボン製の遠赤外線
放射体の製法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for manufacturing a far infrared radiator made of carbon.

【0002】[0002]

【従来の技術】遠赤外線は、赤外線よりもさらに波長の
長い赤外線のうち波長が4ミクロン〜50ミクロンの電
磁波であって、生物の育成に有効なものであり、特に、
8ミクロンから14ミクロンの波長のものが人体への作
用効果が大きく、皮膚下40〜50mmまで浸透して細
胞を共振させ加温して身体を芯から温め、微細血管の拡
張、血液循環の活性化、新陳代謝の強化、体液障害の一
掃、組織再生力の増加、成長の促進等に著効があり、医
療機関における未熟児用の保育器や温熱物理治療機に利
用され、また、暖房器具や料理を調理する場合等に広く
利用されている。
2. Description of the Related Art Far-infrared rays are electromagnetic waves having a wavelength of 4 to 50 microns among infrared rays having a wavelength longer than that of infrared rays, and are effective for growing living things.
The wavelength of 8 to 14 microns has a great effect on the human body. It penetrates up to 40 to 50 mm under the skin and resonates the cells to heat and warm the body from the core, dilation of microvessels, and activity of blood circulation. It has a remarkable effect on aging, enhancement of metabolism, elimination of body fluid disorder, increase of tissue regenerative power, promotion of growth, etc., and it is used for incubators for premature babies and thermal physiotherapy machines in medical institutions. It is widely used for cooking food.

【0003】当該料理を調理するのに用いられる調理用
加熱板として、炭素材を焼成して黒鉛化した黒鉛材から
成る加熱板があるが、このものの製造に際しては、石油
系や石炭系のコークスに結合剤としてピッチ、タールを
加え、一旦、プレス成形等により一定の形に成形し、焼
成し、ピッチまたは樹脂含浸ならびに焼成を繰り返して
黒鉛化し、これを加熱板に加工するという工程が採られ
ている。したがって、工程が長くなり、そのためコスト
も勢い高いものになってしまう。
[0003] As a cooking heating plate used for cooking the dish, there is a heating plate made of a graphite material obtained by firing a carbon material and graphitizing it. At the time of manufacturing this, a petroleum-based or coal-based coke is used. Pitch and tar are added as a binder to the product, and the product is once formed into a certain shape by press molding or the like, fired, and pitch or resin impregnation and firing are repeated to graphitize, and a process of processing this into a heating plate is adopted. ing. Therefore, the process becomes long, and the cost becomes high.

【0004】[0004]

【発明が解決しようとする課題】そこで、本発明は、簡
単な製法で、しかも、遠赤外線放射効率にも優れたカー
ボン系の遠赤外線放射体を提供することをを目的とした
ものである。本発明の前記ならびにそのほかの目的と新
規な特徴は、本明細書の記述からあきらかになるであろ
う。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide a carbon-based far-infrared radiator which has a simple manufacturing method and is excellent in far-infrared radiation efficiency. The above and other objects and novel characteristics of the present invention will be apparent from the description of the present specification.

【0005】[0005]

【課題を解決するための手段】本発明は、カーボン粉末
と熱可塑性樹脂バインダーとを含有してなるカーボン組
成物をペレットとなし、当該ペレットを射出成形または
押出成形することを特徴とするカーボン製遠赤外線放射
体の製法に係るものである。
The present invention is characterized in that a carbon composition containing carbon powder and a thermoplastic resin binder is formed into pellets, and the pellets are injection-molded or extrusion-molded. The present invention relates to a manufacturing method of a far infrared radiator.

【0006】本発明において使用されるカーボン粉末に
は、黒鉛質粉末、炭素質粉末が使用できるが、黒鉛質粉
末の使用が好ましい。樹脂バインダーには、後工程の射
出成形または押出成形を考慮して、熱可塑性樹脂が使用
される。熱可塑性樹脂バインダーとしては、例えば、ポ
リプロピレン、ポリエチレン、ポリアセタール等が挙げ
られる。カーボン粉末の組成物中の配合割合は、10〜
40重量%好ましくは15〜30重量%で、10重量%
未満では遠赤外線放射効果が不足し、40重量%を超え
るときには、その効果が飽和し、それ以上配合すること
は経済的でないし、また、成形が難しくなる。カーボン
組成物は、上記カーボン粉末と熱可塑性樹脂バインダー
とからなっていればよいが、必要に応じて、遠赤外線放
射効果を妨げない範囲内で、適宜天然黒鉛、遠赤外線放
射物質を含有するセラミック材等を添加してもよい。
As the carbon powder used in the present invention, graphite powder and carbonaceous powder can be used, but the use of graphite powder is preferable. A thermoplastic resin is used for the resin binder in consideration of injection molding or extrusion molding in the subsequent step. Examples of the thermoplastic resin binder include polypropylene, polyethylene, polyacetal and the like. The blending ratio of the carbon powder in the composition is 10 to 10.
40% by weight, preferably 15-30% by weight, 10% by weight
If it is less than 40% by weight, the far-infrared radiation effect is insufficient, and if it exceeds 40% by weight, the effect is saturated, and it is not economical to compound more, and molding becomes difficult. The carbon composition may be composed of the above carbon powder and a thermoplastic resin binder, but if necessary, within a range that does not hinder the far infrared radiation effect, natural graphite, a ceramic containing a far infrared radiation substance as appropriate. Materials may be added.

【0007】本発明に係る遠赤外線放射体は、カーボン
粉末と熱可塑性樹脂バインダーと、その他適宜必要に応
じて用いられる人造黒鉛等を配合してなるカーボン組成
物を混捏し、ペレット化し、次いで、射出成形または押
出成形することにより得ることができる。例えば、当該
組成物をミキサーで混合し、ミキシングロールで混練
し、その粒度を調節して混練物を粉砕したり、造粒機で
当該粉末を造粒したりする等の方法でペレットとし、当
該ペレットを射出成形または押出成形すればよい。射出
成形の方法は、例えば、当該ペレットを射出成形機のホ
ッパに供給し、射出成形機のシリンダ中で加熱流動化さ
せ、高圧で金型内に射出し、冷却固化させ、金型を開
き、射出成形品を取り出しする方法により行うことがで
きる。一軸または二軸押出機により上記カーボン組成物
を混練し、押出することにより、ペレットとすることも
でき、当該ペレットを押出成形機に供給し、遠赤外線放
射体を押出成形するようにしてもよい。
The far-infrared radiator according to the present invention is obtained by kneading and pelletizing a carbon composition obtained by mixing carbon powder, a thermoplastic resin binder, and other artificial graphite, etc., which are appropriately used as necessary. It can be obtained by injection molding or extrusion molding. For example, the composition is mixed with a mixer, kneaded with a mixing roll, the kneaded material is crushed by adjusting the particle size, or pelletized by a method such as granulating the powder with a granulator, The pellets may be injection molded or extruded. The method of injection molding is, for example, supplying the pellets to the hopper of the injection molding machine, heating and fluidizing in the cylinder of the injection molding machine, injecting into the mold at high pressure, cooling and solidifying, opening the mold, It can be performed by a method of taking out an injection-molded article. The carbon composition may be kneaded with a single-screw or twin-screw extruder and extruded to form pellets. The pellets may be supplied to an extrusion molding machine to extrude the far infrared radiator. .

【0008】こうしたペレット化し、これを射出成形ま
たは押出成形することにより、各種の大きさの板状等の
各種形態のカーボン製遠赤外線放射体が、従来行われて
いた黒鉛化素材の後工程での機械加工等の加工を要せず
に、一段で、工程数が少なく得ることができる。また、
カーボン粉末と樹脂バインダーとの組み合わせにより、
従来の石油系や石炭系のコークスに結合剤としてピッ
チ、タールを加え、一旦、プレス成形等により一定の形
に成形し、焼成し、ピッチまたは樹脂含浸ならびに焼成
を繰り返して黒鉛化し、これを調理用加熱板としたもの
とほぼ同等の放射率のものが得られる。さらに、バイン
ダーに熱可塑性樹脂バインダーを用いることにより、射
出成形、押出成形が容易となり、工程数が少なく、コス
トを低減してカーボン製遠赤外線放射体を得ることがで
きる。
By pelletizing and injection-molding or extruding the pellets, carbon-made far-infrared radiators of various shapes such as plates of various sizes can be produced in the post-process of the conventional graphitizing material. The number of steps can be reduced in one step without the need for machining such as. Also,
By combining carbon powder and resin binder,
Pitch and tar are added to conventional petroleum-based or coal-based coke as a binder, and once shaped into a certain shape by press molding, etc., baked, and pitch or resin impregnation and baking are repeated to graphitize and cook this. It is possible to obtain an emissivity that is almost the same as that used for the heating plate. Furthermore, by using a thermoplastic resin binder as the binder, injection molding and extrusion molding can be facilitated, the number of steps is small, and the cost can be reduced to obtain a carbon far-infrared radiator.

【0009】[0009]

【実施例】次に、本発明の実施例を示す。 実施例1.黒鉛粉20重量%とポリプロピレン系樹脂バ
インダー80重量%とを二軸押出機により混練し、押出
し、ペレットとし、当該ペレットを射出成形機のホッパ
に供給し、シリンダ温度260℃、射出圧力100kg
/cm2で、金型内で射出成形し、冷却固化させ、金型
を開き、射出成形品を取り出し、解凍板として使用でき
る遠赤外線放射体を得た。当該カーボン放射体につい
て、表1に示す各測定温度での波長5micron時の
放射率を測定した。その結果を表1に示す。また、図1
に、測定温度74℃での当該カーボン放射体の遠赤外線
放射率を黒体(一定温度において最大分光密度の熱輻射
をする物体)1.0として比較したグラフを、さらに、
図2に、前記各測定温度での当該カーボン放射体の放射
エネルギー量(w/(cm2・ster・micro
n))分布を黒体放射エネルギー量分布と比較したグラ
フを示す。これら表1、図1および図2から、本発明の
カーボン放射体は有効な波長領域で高い放射率を有し、
また、黒体に近い放射性能を有していることが判る。
EXAMPLES Next, examples of the present invention will be shown. Example 1. 20% by weight of graphite powder and 80% by weight of polypropylene resin binder are kneaded by a twin-screw extruder and extruded to form pellets, and the pellets are supplied to a hopper of an injection molding machine, a cylinder temperature of 260 ° C., an injection pressure of 100 kg.
/ Cm 2 , injection-molded in a mold, cooled and solidified, the mold was opened, the injection-molded product was taken out, and a far-infrared radiator usable as a thawing plate was obtained. With respect to the carbon radiator, the emissivity at a wavelength of 5 micron at each measurement temperature shown in Table 1 was measured. The results are shown in Table 1. Also, FIG.
Further, a graph comparing the far-infrared emissivity of the carbon radiator at a measurement temperature of 74 ° C. as a black body (an object that radiates thermal radiation with a maximum spectral density at a constant temperature) of 1.0 is further shown:
FIG. 2 shows the amount of radiant energy (w / (cm 2 · ster · micro) of the carbon radiator at each measurement temperature.
n)) shows a graph comparing the distribution with the black body radiation energy distribution. From these Table 1, FIG. 1 and FIG. 2, the carbon radiator of the present invention has a high emissivity in the effective wavelength region,
Also, it can be seen that it has a radiation performance close to that of a black body.

【0010】実施例2.ポリプロピレン系樹脂バインダ
ーに代えてポリエチレン系樹脂バインダーとした以外は
実施例1と同様にして、射出成形品を取り出し、解凍板
として使用できる遠赤外線放射体を得た。当該カーボン
放射体について、実施例1と同様にして、放射率を測定
した。その結果を表1に示す。
Embodiment 2. An injection molded product was taken out in the same manner as in Example 1 except that a polyethylene resin binder was used in place of the polypropylene resin binder to obtain a far-infrared radiator that can be used as a thawing plate. The emissivity of the carbon radiator was measured in the same manner as in Example 1. The results are shown in Table 1.

【0011】実施例3.黒鉛粉30重量%とポリエチレ
ン系樹脂バインダー70重量%とを一軸押出機により混
練し、押出し、ペレットとし、当該ペレットを押出成形
機に供給し、金型温度250℃、出口温度125℃、押
出圧力100kg/cm2で押出し、解凍板として使用
できる遠赤外線放射体を得た。当該カーボン放射体につ
いて、放射率を測定したところ、測定温度95℃で0.
949、同160℃で0.918の放射率を示した。
Embodiment 3. Graphite powder 30% by weight and polyethylene resin binder 70% by weight are kneaded by a uniaxial extruder and extruded into pellets, and the pellets are supplied to an extrusion molding machine, a mold temperature of 250 ° C., an outlet temperature of 125 ° C., an extrusion pressure. It was extruded at 100 kg / cm 2 to obtain a far infrared radiator that can be used as a thawing plate. The emissivity of the carbon radiator was measured and found to be 0.
The emissivity was 0.918 at 949 and 160 ° C.

【0012】[0012]

【表1】 [Table 1]

【0013】[0013]

【発明の効果】以上本発明によれば、遠赤外線放射効果
を有する遠赤外線放射体が工程数が少なく、コスト的に
安く得ることができ、当該カーボン製遠赤外線放射体
は、健康医療器具に止まらず、調理用器具、電子機器・
部品、各種産業用機器、水質浄化等環境機器、玩具機器
等の広範囲の用途が期待でき、特に、カーボンによる遠
赤外線放射効果を有する解凍板として有用である。
As described above, according to the present invention, a far-infrared radiator having a far-infrared radiation effect can be obtained at a low cost in a small number of steps. Without stopping, cooking utensils, electronic devices,
A wide range of applications such as parts, various industrial equipment, environmental equipment such as water purification, toy equipment, etc. can be expected, and it is particularly useful as a thawing plate having a far infrared radiation effect by carbon.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明品の遠赤外線放射率を黒体1.0として
比較したグラフである。
FIG. 1 is a graph comparing the far infrared emissivity of the product of the present invention with a black body of 1.0.

【図2】本発明品の放射エネルギー量分布を黒体の放射
エネルギー量分布と比較したグラフである。
FIG. 2 is a graph comparing the radiant energy amount distribution of the product of the present invention with the radiant energy amount distribution of a black body.

【符号の説明】[Explanation of symbols]

A・・・本発明品、 B・・・黒体、 A: product of the present invention, B: black body,

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 C04B 35/52 C08K 3/04 KAB C08L 101/00 C04B 35/54 B ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Internal reference number FI Technical display location C04B 35/52 C08K 3/04 KAB C08L 101/00 C04B 35/54 B

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 カーボン粉末と熱可塑性樹脂バインダー
とを含有してなるカーボン組成物をペレットとなし、当
該ペレットを射出成形または押出成形することを特徴と
するカーボン製遠赤外線放射体の製法。
1. A process for producing a far infrared radiator made of carbon, characterized in that a carbon composition containing carbon powder and a thermoplastic resin binder is formed into pellets, and the pellets are injection-molded or extruded.
JP5344767A 1993-12-21 1993-12-21 Preparation of far infrared rays radiator made of carbon Pending JPH07178712A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344767A JPH07178712A (en) 1993-12-21 1993-12-21 Preparation of far infrared rays radiator made of carbon

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344767A JPH07178712A (en) 1993-12-21 1993-12-21 Preparation of far infrared rays radiator made of carbon

Publications (1)

Publication Number Publication Date
JPH07178712A true JPH07178712A (en) 1995-07-18

Family

ID=18371825

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344767A Pending JPH07178712A (en) 1993-12-21 1993-12-21 Preparation of far infrared rays radiator made of carbon

Country Status (1)

Country Link
JP (1) JPH07178712A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101429A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Lead impregnated iron system sintered alloy made valve seat for internal combustion engine
JP2008200491A (en) * 2007-01-26 2008-09-04 Takehiko Oki Accessory

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06101429A (en) * 1992-09-22 1994-04-12 Mitsubishi Materials Corp Lead impregnated iron system sintered alloy made valve seat for internal combustion engine
JP2008200491A (en) * 2007-01-26 2008-09-04 Takehiko Oki Accessory

Similar Documents

Publication Publication Date Title
CN103980682B (en) A kind of 3D printing polycaprolactone material and preparation method thereof
CN102115558A (en) High-conductivity polymer carbon nanotube composite material and micro-processing method thereof
CN106827428B (en) A kind of method of injection molding high-performance conductive or thermal conductive polymer based composites product
CN108424630B (en) Preparation method and application of TPU-based microwave response 4D printing supplies
CN104760296A (en) Selective laser sintering forming method of heat-conducting functional material
JPH07178712A (en) Preparation of far infrared rays radiator made of carbon
KR20040027447A (en) Porous carbon material and porous carbon material product obtained by using the same
CA2045194A1 (en) Method of manufacturing silicone rubber moldings
CN105084886A (en) Piezoresistor blank, preparation method thereof, piezoresistor and preparation method thereof
RU2258032C1 (en) Method of manufacture of structural graphite
CN105670324B (en) A kind of bamboo modeling heating floor and its processing method with anion
CN107722451A (en) A kind of plastic woven-bag filament based on reworked material
US6129877A (en) Method and system for fabricating elastomeric articles
CN110229358B (en) Polypropylene material and modification method of polypropylene
JPS56116277A (en) Manufacture of gas-separating plate for fuel cell
GB2019853A (en) Method of producing thermoplastics moulding compounds using scrap materials
WO2019105072A1 (en) Process for manufacturing super thermal-conductive graphene capsule
JPS5827208B2 (en) Manufacturing method of graphite molded body
JP2003128475A (en) Carbonaceous, porous body and its manufacturing method
JPS6013962B2 (en) Manufacturing method of isotropic special carbon material
CN1616578A (en) Method for producing far infrared energy pad
JPS57163444A (en) Fomrming of chewing gum by injection molding
RU2389605C2 (en) Method of shotting multi-component thermo elastoplasts-based armored composition (tepc)
JPS624750A (en) Composition having positive temperature coefficient and production thereof
KR20210150070A (en) Flat Type Heating Element for Portable Sauna