JPH07178314A - Wet desulfurizer and desulfurization method - Google Patents

Wet desulfurizer and desulfurization method

Info

Publication number
JPH07178314A
JPH07178314A JP5328823A JP32882393A JPH07178314A JP H07178314 A JPH07178314 A JP H07178314A JP 5328823 A JP5328823 A JP 5328823A JP 32882393 A JP32882393 A JP 32882393A JP H07178314 A JPH07178314 A JP H07178314A
Authority
JP
Japan
Prior art keywords
desulfurization
desulfurization tower
dust
gas
steam
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5328823A
Other languages
Japanese (ja)
Inventor
Hiroyuki Kako
宏行 加来
Naruhito Takamoto
成仁 高本
Hiroshi Ishizaka
浩 石坂
Hirobumi Yoshikawa
博文 吉川
Shigeru Nozawa
滋 野沢
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP5328823A priority Critical patent/JPH07178314A/en
Publication of JPH07178314A publication Critical patent/JPH07178314A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently remove dust even under a low load where the the amt. of a mist absorbent is reduced by using this wet desulfurizer. CONSTITUTION:A pipe 19 for blowing steam into the main body 1 of a desulfurization tower or into the outlet duct 3 of the tower is provided. The main body 1 contains saturated steam due to the contact of an absorbent with waste gas. The gas in the main body 1 is kept at 40-60 deg.C, the steam at >=100 deg.C blown into the main body is cooled by the environmental gas to the saturation concn. at that temp., the surplus steam is condensed to form the droplet, most of the droplets are grown with the dust of several micron size suspending in the gas as the nucleus, and hence the fine particles are apparently enlarged. The fine particle in the gas detours the droplet and is collected by the absorbent only in a small amt., the enlarged particle is collided with the droplet by inertia and easily collected by the absorbent in a large amt., and the dust, etc., are collected more efficiently.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は燃焼装置の排ガス処理に
係わり、特にダストを効果的に除去するに好適な湿式脱
硫装置と方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to the treatment of exhaust gas from a combustion apparatus, and more particularly to a wet desulfurization apparatus and method suitable for effectively removing dust.

【0002】[0002]

【従来の技術】火力発電所などにおいて、化石燃料の燃
焼に伴って発生する排煙中の硫黄酸化物、中でも特に二
酸化硫黄(SO2)は、大気汚染・酸性雨などの地球的
環境問題の主原因の一つである。このため、排煙中から
SO2を除去する排煙脱硫法の研究および脱硫装置の開
発は極めて重要な課題となっている。上記脱硫法として
は、湿式法が主流であり、吸収剤にソーダ化合物を用い
るソーダ法、カルシウム化合物を用いるカルシウム法お
よびマグネシウム化合物を用いるマグネシウム法などが
ある。特に発電用の大型ボイラなどの排煙脱硫装置に
は、比較的安価な炭酸カルシウムなどのカルシウム化合
物を用いる方法が最も多く採用されている。
2. Description of the Related Art Sulfur oxides, especially sulfur dioxide (SO 2 ), in flue gas produced by burning fossil fuels in thermal power plants, etc., are a major cause of global environmental problems such as air pollution and acid rain. It is one of the main causes. For this reason, research on a flue gas desulfurization method for removing SO 2 from flue gas and development of a desulfurization device have become extremely important subjects. As the desulfurization method, a wet method is mainly used, and there are a soda method using a soda compound as an absorbent, a calcium method using a calcium compound, and a magnesium method using a magnesium compound. In particular, a method using a relatively inexpensive calcium compound such as calcium carbonate is most often used for a flue gas desulfurization apparatus such as a large-scale boiler for power generation.

【0003】このカルシウム化合物を吸収液として用い
る脱硫システムを例にとると、気液接触方法の違いによ
りスプレ方式、濡れ壁方式およびバブリング方式の3種
類に大別される。各方式ともそれぞれ特徴を有してい
る。ここではスプレ方式を例に挙げて述べる。このスプ
レ方式の脱硫システムとしては、従来から排ガスの冷却
・除塵を行う冷却塔、吸収液を噴霧して排ガス中のSO
2と反応させる脱硫塔、脱硫塔で生成した亜硫酸カルシ
ウムを酸化する酸化塔の三塔で構成されていた。しか
し、近年になって脱硫塔に冷却・酸化の機能を持たせた
一塔型脱硫塔の開発が進み、最近では一塔型脱硫システ
ムがスプレ方式の主流になっている。
Taking the desulfurization system using this calcium compound as an absorbent, for example, it is roughly classified into three types, a spray system, a wet wall system and a bubbling system, depending on the difference in the gas-liquid contacting method. Each method has its own characteristics. Here, the spray method will be described as an example. As a spray-type desulfurization system, there have been conventional cooling towers for cooling and removing dust from exhaust gas, and SO in exhaust gas by spraying an absorbing liquid.
It was composed of three towers: a desulfurization tower for reacting with 2, and an oxidation tower for oxidizing calcium sulfite produced in the desulfurization tower. However, in recent years, the development of a single tower desulfurization tower in which the desulfurization tower has functions of cooling and oxidation has advanced, and recently, the single tower desulfurization system has become the mainstream of the spray system.

【0004】図4にスプレ方式による脱硫装置の一例を
示す。脱硫塔は、主に塔本体1、入口ダクト2、出口ダ
クト3、スプレノズル4、吸収液循環ポンプ5、酸化タ
ンク6、酸化用撹拌機7、空気吹き込み管8、ミストエ
リミネータ9、石灰石スラリタンク12、シックナ1
3、遠心分離機17などから構成されている。スプレノ
ズル4は水平方向に複数個、さらに高さ方向に複数段設
置されている。スプレノズル4の段数としては、1〜6
段程度設置することができるが、図4では4段で表すこ
とにした。また、酸化用撹拌機7および空気吹き込み管
8は脱硫塔下部の吸収液が滞留する酸化タンク6に設置
され、ミストエリミネータ9は脱硫塔内最上部あるいは
出口ダクト3内に設置される。
FIG. 4 shows an example of a desulfurization apparatus using a spray method. The desulfurization tower mainly comprises a tower body 1, an inlet duct 2, an outlet duct 3, a spray nozzle 4, an absorbent circulating pump 5, an oxidation tank 6, an oxidizing agitator 7, an air blowing pipe 8, a mist eliminator 9, and a limestone slurry tank 12. , Thickener 1
3, a centrifugal separator 17 and the like. A plurality of spray nozzles 4 are installed in the horizontal direction and a plurality of stages in the height direction. The number of stages of the spray nozzle 4 is 1 to 6
Although it is possible to install about four steps, in FIG. 4, it is decided to represent four steps. Further, the oxidizing stirrer 7 and the air blowing pipe 8 are installed in the oxidation tank 6 in the lower part of the desulfurization tower where the absorbing liquid stays, and the mist eliminator 9 is installed in the uppermost part of the desulfurization tower or in the outlet duct 3.

【0005】ボイラなどの燃焼装置から排出される排ガ
スは、入口ダクト2より脱硫塔本体1に導入され、出口
ダクト3より排出される。石灰石は石灰石スラリタンク
12へ水と共に供給されスラリ状で酸化タンク6へ送ら
れる。酸化タンク6内の炭酸カルシウムを含んだ吸収液
は吸収液循環ポンプ5により抜き出され、ヘッダ10を
通りスプレノズル4により噴霧され、吸収液と排ガスの
気液接触が行われる。このとき吸収液は排ガス中のSO
2を選択的に吸収し、亜硫酸カルシウムを生成する。亜
硫酸カルシウムを生成した吸収液は再び酸化タンク6に
戻る。この酸化タンク6内の吸収液は酸化用撹拌機7に
よって撹拌されており、空気吹き込み管8から供給され
る空気により吸収液中の亜硫酸カルシウムが酸化され石
膏を生成する。炭酸カルシウムおよび石膏が共存する酸
化タンク6内の吸収液の一部は、吸収液循環ポンプ5に
よって再びスプレノズル4に送られる。一部の吸収液は
吸収液抜き出しポンプ11により酸化タンク6からシッ
クナ13へ送られ、沈降脱水され濃縮される。上澄水1
4を除いて濃縮された石膏スラリは石膏スラリタンク1
5に送られ、ポンプ16により遠心分離機17に入り、
脱水され石膏18として回収される。
Exhaust gas discharged from a combustion device such as a boiler is introduced into the desulfurization tower main body 1 through the inlet duct 2 and discharged through the outlet duct 3. The limestone is supplied to the limestone slurry tank 12 together with water and sent to the oxidation tank 6 in the form of a slurry. The absorption liquid containing calcium carbonate in the oxidation tank 6 is extracted by the absorption liquid circulation pump 5, sprayed by the spray nozzle 4 through the header 10, and the absorption liquid and the exhaust gas are brought into gas-liquid contact. At this time, the absorbing liquid is SO in the exhaust gas.
It selectively absorbs 2 to produce calcium sulfite. The absorption liquid that has generated calcium sulfite returns to the oxidation tank 6 again. The absorbing liquid in the oxidizing tank 6 is stirred by the oxidizing stirrer 7, and the calcium sulfite in the absorbing liquid is oxidized by the air supplied from the air blowing pipe 8 to produce gypsum. A part of the absorption liquid in the oxidation tank 6 in which calcium carbonate and gypsum coexist is sent to the spray nozzle 4 again by the absorption liquid circulation pump 5. A part of the absorbing liquid is sent from the oxidizing tank 6 to the thickener 13 by the absorbing liquid extracting pump 11, and is sedimented, dehydrated and concentrated. Clear water 1
Gypsum slurry concentrated except for 4 is gypsum slurry tank 1
5, sent to the centrifuge 17 by the pump 16,
It is dehydrated and collected as gypsum 18.

【0006】また、スプレノズル4から噴霧され、微粒
化された吸収液の中で、液滴径の小さいものは排ガスに
同伴されるが、脱硫塔上部に設けられたミストエリミネ
ータ9によって回収される。脱硫塔はSO2を吸収除去
すると同時にダストを除去する役目も持っている。ダス
トの大部分は図示していない脱硫塔の前段にある集塵機
で除かれるが、電気集塵機などの乾式集塵機では捕集が
困難な細かいダストは脱硫塔で捕集することになる。と
ころが脱硫塔の運転では、ボイラの燃焼装置の負荷変化
に応じて、吸収液の噴霧量を増減させることになる。そ
のため低負荷の場合、噴霧する吸収液量が減少するため
脱硫性能は維持されるが、ダストの除去率が低下する問
題がある。さらに煙突出口でのダスト濃度を低減する要
求が強く、一部で電気集塵機を出たガスを脱硫した後、
さらに湿式電気集塵機を設置する方法が実施されてい
る。
Of the absorbing liquid atomized and sprayed from the spray nozzle 4, those having a small droplet size are entrained in the exhaust gas, but are recovered by the mist eliminator 9 provided in the upper part of the desulfurization tower. The desulfurization tower not only absorbs and removes SO 2 , but also removes dust. Most of the dust is removed by a dust collector (not shown) in the preceding stage of the desulfurization tower, but fine dust that is difficult to collect by a dry dust collector such as an electric dust collector will be collected by the desulfurization tower. However, in the operation of the desulfurization tower, the spray amount of the absorbing liquid is increased or decreased according to the load change of the combustion device of the boiler. Therefore, when the load is low, the desulfurization performance is maintained because the amount of the absorbing liquid sprayed decreases, but there is a problem that the dust removal rate decreases. Furthermore, there is a strong demand to reduce the dust concentration at the smoke outlet, and after desulfurizing the gas that has exited the electrostatic precipitator,
Furthermore, a method of installing a wet electrostatic precipitator is being implemented.

【0007】[0007]

【発明が解決しようとする課題】湿式脱硫装置は一般に
集塵機の後続に取り付けられており、脱硫を行うと同時
に集塵機としての機能も持っている。そこで総合的な排
ガスの集塵性能はこれらの二つの機器によって決定され
る。また、脱硫装置での集塵性能を高めることは集塵機
の負荷を低減できる効果がある。さらに、負荷変動に応
じた脱硫塔の操作は吸収液量を変化させるが、特に低負
荷の場合、吸収液量を減少させ脱硫率を一定に保つ操作
を行うため、集塵性能は低下する。このような事態にな
っても集塵効果を低下させないようにするため、集塵機
は常に高い性能を維持するように計画されている。また
排ガス中に微量に含まれるSO3ミストの除去でも同様
な問題がある。そこで、湿式脱硫装置においては脱硫性
能と独立にダストを除去する機能を持たせることが望ま
しい。しかし、脱硫塔に入るダストは数ミクロンメータ
以下の細かい粒径であり、吸収液の噴霧液滴とダストと
の衝突による慣性集塵効果を期待することは難しい。
The wet desulfurization device is generally attached after the dust collector, and at the same time as performing the desulfurization, it also has a function as a dust collector. Therefore, the total exhaust gas dust collection performance is determined by these two devices. In addition, improving the dust collecting performance of the desulfurizer has the effect of reducing the load on the dust collector. Further, the operation of the desulfurization tower according to the load change changes the amount of the absorbing liquid, but especially when the load is low, the amount of absorbing liquid is reduced and the desulfurization rate is kept constant, so that the dust collection performance is deteriorated. Even if such a situation occurs, the dust collector is planned to always maintain high performance so as not to reduce the dust collecting effect. Further, the removal of SO 3 mist contained in a small amount in the exhaust gas has the same problem. Therefore, it is desirable that the wet desulfurization device has a function of removing dust independently of the desulfurization performance. However, the dust entering the desulfurization tower has a fine particle diameter of several micrometers or less, and it is difficult to expect the inertial dust collection effect due to the collision between the spray droplets of the absorbing liquid and the dust.

【0008】これらの問題を解決するために、脱硫塔内
に冷却した水または冷却した吸収液の一部を脱硫塔内に
噴霧して、ダストを前記冷却水等に付着させて脱硫塔内
で除去する方法が実開平5−18630号等で提案され
ている。前記考案は簡単な方法で除塵を行う優れた方法
であるが、前記方法では温度の低い冷却水等の液滴の表
面にガス中の水蒸気が優先的に凝縮して付着するため、
ガス中に浮遊している比較的温度の高い微細なダストを
核として凝縮水を肥大化させることが十分でない。その
結果、前記方法による排ガスの除塵性能についても、改
良の余地がある。そこで本発明の目的は噴霧吸収液量の
少ない、低負荷時においてもダストを効率的に除去する
ことができる湿式脱硫装置と方法を提供することであ
る。また、本発明の目的は排ガス中の凝縮水などの付着
によりダストを肥大化させて除塵効率を向上させた湿式
脱硫装置と方法を提供することである。
In order to solve these problems, a part of the water cooled in the desulfurization tower or the cooled absorption liquid is sprayed into the desulfurization tower, and dust is attached to the cooling water or the like in the desulfurization tower. A method for removing is proposed in Japanese Utility Model Publication No. 5-18630. The above-mentioned device is an excellent method for removing dust by a simple method, but in the above method, water vapor in the gas preferentially condenses and adheres to the surface of droplets such as cooling water having a low temperature.
It is not sufficient to enlarge the condensed water by using fine particles of relatively high temperature floating in the gas as nuclei. As a result, there is room for improvement in the dust removal performance of exhaust gas by the above method. Therefore, an object of the present invention is to provide a wet desulfurization apparatus and method capable of efficiently removing dust even when the load is small and the amount of the spray-absorbed liquid is small. Another object of the present invention is to provide a wet desulfurization apparatus and method in which dust is enlarged due to adhesion of condensed water in exhaust gas to improve dust removal efficiency.

【0009】[0009]

【課題を解決するための手段】本発明の上記目的は次の
構成によって達成される。すなわち、ボイラなどの燃焼
装置からの排ガス中に含まれる硫黄酸化物を除去するた
めにアルカリ金属またはアルカリ土類金属等の吸収剤と
気液接触させる脱硫塔を備えた湿式脱硫装置において、
脱硫塔内あるいは脱硫塔出口ダクト内に水蒸気を吹き込
む水蒸気管を設けた湿式脱硫装置、または、脱硫塔内に
アルカリ金属またはアルカリ土類金属等の吸収剤を噴霧
して、ボイラなどの燃焼装置からの排ガス中に含まれる
硫黄酸化物を除去する湿式脱硫方法において、脱硫塔内
あるいは脱硫塔出口ダクト内に水蒸気を吹き込むことに
より、排ガス中のダストを除去する湿式脱硫方法であ
る。本発明においては、水蒸気管の後流側の脱硫塔内ま
たは脱硫塔出口ダクトにデミスタを設置した構成とする
ことができる。また、脱硫塔内あるいは脱硫塔出口ダク
ト内に吹き込む水蒸気は100℃以上の温度の水蒸気で
あることが好ましい。
The above objects of the present invention can be achieved by the following constitutions. That is, in a wet desulfurization apparatus including a desulfurization tower that makes gas-liquid contact with an absorbent such as an alkali metal or an alkaline earth metal in order to remove sulfur oxides contained in exhaust gas from a combustion apparatus such as a boiler,
Wet desulfurization equipment provided with a steam pipe for blowing water vapor into the desulfurization tower or the desulfurization tower outlet duct, or spraying an absorbent such as alkali metal or alkaline earth metal into the desulfurization tower, and then from a combustion device such as a boiler. In the wet desulfurization method of removing sulfur oxides contained in the exhaust gas, the wet desulfurization method of removing dust in the exhaust gas by blowing steam into the desulfurization tower or the desulfurization tower outlet duct. In the present invention, a demister may be installed in the desulfurization tower on the downstream side of the steam pipe or in the desulfurization tower outlet duct. Further, the steam blown into the desulfurization tower or the desulfurization tower outlet duct is preferably steam having a temperature of 100 ° C. or higher.

【0010】[0010]

【作用】脱硫塔に供給される排ガス中のダストの粒径は
数ミクロンメータ以下と非常に小さく、脱硫塔内で吸収
液を噴霧してもダストがガス流に乗って吸収液の噴霧液
滴を容易に迂回するため、ダストと前記液滴とが慣性衝
突して捕集される確率は低い。そこでダストを核とした
水の凝縮などを起こさせ、見かけ上ダストの粒径を大き
くできればダストの捕集効率を高くすることができる。
排ガスは100℃から200℃程度の温度で脱硫塔に送
られ吸収液と接触することで冷却される。この時吸収液
中の水分が蒸発し、排ガスは水の飽和蒸気を含んだ40
℃から60℃のガスとなる。脱硫塔内の飽和水蒸気を含
む40℃から60℃のガスの中に100℃以上の水蒸気
を吹き込むと周囲の排ガスにより冷却され、ガス中の水
蒸気はその温度における飽和濃度となり余剰の水蒸気は
凝縮して液滴となる。すなわち脱硫塔内に霧が発生し、
この霧は大部分が数ミクロンメータ以下のガス中に浮遊
しているダストなどを核として成長するため、微細なこ
れらの粒子が見かけ上肥大化し、数十から数百ミクロン
メータの粒子となる。ガス中の細かい粒子は吸収液の噴
霧液滴を迂回して流れるため吸収液に捕集される割合は
少ないが、粒子が大きくなると慣性により液滴が衝突し
て捕集されやすくなり、ダストなどの捕集効率が増大す
る。
[Function] The particle size of the dust in the exhaust gas supplied to the desulfurization tower is very small, less than a few micrometers, and even if the absorption liquid is sprayed in the desulfurization tower, the dust rides on the gas flow and the spray droplets of the absorption liquid The dust and the droplets are less likely to be collected by colliding with each other due to inertial collision. Therefore, if the particle diameter of the dust can be increased apparently by causing water to condense with the dust as the nucleus, the dust collection efficiency can be increased.
The exhaust gas is sent to the desulfurization tower at a temperature of about 100 to 200 ° C. and is cooled by coming into contact with the absorbing liquid. At this time, the water content in the absorbing liquid was evaporated and the exhaust gas contained saturated water vapor.
It becomes a gas of 60 to 60 ° C. When steam of 100 ° C or higher is blown into a gas of 40 ° C to 60 ° C containing saturated steam in the desulfurization tower, it is cooled by the surrounding exhaust gas, and the steam in the gas becomes a saturated concentration at that temperature, and excess steam is condensed. And become droplets. That is, fog is generated in the desulfurization tower,
Most of this mist grows with dust or the like suspended in a gas having a particle diameter of several micrometers or less as a core, so that these fine particles are apparently enlarged and become particles of several tens to several hundreds of micrometers. The fine particles in the gas flow around the spray droplets of the absorbing liquid, so the ratio of being trapped in the absorbing liquid is small, but when the particles become large, the droplets collide due to inertia and are easily collected, such as dust. The collection efficiency of is increased.

【0011】しかし、吸収液と排ガスとの接触により飽
和水蒸気を含む40℃から60℃のガスがある脱硫塔内
に、前記従来技術のように周囲に排ガス温度より低い物
体、例えば冷却水などを噴霧すると、選択的にこの冷却
水等の物体の表面で水蒸気が凝縮するため、ダストなど
の表面での凝縮はなくなる。すなわち、脱硫塔に冷却水
を供給すると、冷却水近傍のガスが冷却されこの中に含
まれるガス中の水分が凝縮し冷却水に付着することにな
る。冷却されたガス中の水分濃度が下がると、周囲のガ
ス中の水分(冷却されたガス中の水分濃度より高い飽和
水分濃度を持っている)が拡散し、この温度の低いガス
中に入り、さらに凝縮を繰り返すためガス中での水の凝
縮は起こらない。
However, as in the prior art, an object having a temperature lower than the exhaust gas temperature, such as cooling water, is placed around the desulfurization tower in which there is a gas of 40 ° C. to 60 ° C. containing saturated steam due to the contact between the absorbing liquid and the exhaust gas. When sprayed, the water vapor selectively condenses on the surface of the object such as cooling water, so that the condensation of dust on the surface disappears. That is, when cooling water is supplied to the desulfurization tower, the gas in the vicinity of the cooling water is cooled and the water contained in the gas is condensed and adheres to the cooling water. When the water concentration in the cooled gas decreases, the water in the surrounding gas (having a saturated water concentration higher than the water concentration in the cooled gas) diffuses and enters the low temperature gas, Furthermore, since the condensation is repeated, the condensation of water in the gas does not occur.

【0012】一方、本発明では、水蒸気の供給管および
供給直後の水蒸気の温度は高いが、40℃から60℃の
ガスがある脱硫塔内は、水蒸気の供給管および供給直後
の水蒸気の温度より低い均一温度になっているため、脱
硫塔に供給された水蒸気が周囲のガスで冷却されると、
水蒸気の凝縮が起こり、ガス中に微細な水滴からなる液
滴(霧)が発生する。この時、前記液滴は大部分が数ミ
クロンメータ以下のガス中に浮遊しているダストなどを
核として成長するため、微細なこれらの粒子が見かけ上
肥大化し、数十から数百ミクロンメータの粒子となる。
脱硫塔内のガス中の細かい粒子は吸収液の噴霧液滴を迂
回して流れるため吸収液に捕集される割合は少ないが、
粒子が大きくなると慣性により液滴が衝突して捕集され
やすくなり、ダストなどの捕集効率が増大する。特に、
ガス中にダストなどの微粒子がある場合には、これらの
粒子を核として液滴が成長するため、ガス中のダストな
どが見かけ上肥大化する。粒径が大きくなると慣性衝突
により容易に吸収液の液滴に捕集されることになる。
On the other hand, in the present invention, although the temperature of the steam supply pipe and the temperature of the steam immediately after the supply are high, the temperature of the steam supply pipe and the temperature of the steam immediately after the supply are higher than the temperature of the steam in the desulfurization tower containing the gas of 40 to 60 ° C. Because of the low uniform temperature, when the steam supplied to the desulfurization tower is cooled by the surrounding gas,
Condensation of water vapor occurs, and droplets (fog) composed of fine water droplets are generated in the gas. At this time, most of the droplets grow with dust or the like suspended in a gas of several microns or less as a nucleus, and thus these fine particles are apparently enlarged, and the particle size of several tens to several hundreds of microns. Become particles.
The fine particles in the gas in the desulfurization tower flow around the spray droplets of the absorption liquid, so the ratio of collection in the absorption liquid is small, but
When the particles are large, inertially causes the droplets to collide with each other and is easily collected, and the collection efficiency of dust and the like increases. In particular,
When fine particles such as dust are present in the gas, droplets grow using these particles as nuclei, so that the dust and the like in the gas are apparently enlarged. If the particle size becomes large, it will be easily collected in the droplets of the absorbing liquid due to inertial collision.

【0013】[0013]

【実施例】本発明の一実施例を図面と共に説明する。図
1に示す実施例では、ボイラの燃焼装置からのSO2
どを含む排ガスは、入口ダクト2から脱硫塔に供給され
脱硫塔本体1に入る。脱硫塔内ではスプレノズル4から
噴霧される吸収液と接触し、排ガス中のSO2が除去さ
れる。SO2を除去された排ガスはさらにミストエリミ
ネータ9で吸収液のミストが除去され、出口ダクト3を
通って系外へ排出される。噴霧された吸収液はSO2
吸収した後、酸化タンク6内に落下する。酸化タンク6
内の吸収液は循環ポンプ5により抜き出され、ヘッダ1
0を通って再びスプレノズル4に送られる。下段のスプ
レノズル4から噴霧される吸収液は排ガスと接触するこ
とによりSO2を吸収すると同時に、100℃から20
0℃である排ガスの温度を下げる。この時、吸収液中の
水が蒸発して排ガスは飽和水蒸気を含むことになる。こ
の水の飽和状態にある脱硫塔内のガスに水蒸気管19か
ら100℃以上の水蒸気を吹き込むと一部の水蒸気は周
囲のガスで冷却され凝縮して、数十から数百ミクロンメ
ータの粒径からなる液滴に成長する。この液滴は排ガス
中に含まれる微量で細かいダストを核にして成長するた
め見かけの粒径が大きくなる。この大きくなったダスト
を含む液滴は排ガスに同伴されて送られるが、上段のス
プレノズル4から噴霧される吸収液の液滴と衝突して捕
集される。この時の捕集性能は液滴の径が大きいほど高
くなる。また水蒸気管19から供給される水蒸気の量を
制御することにより捕集性能を自由に変えることができ
る。さらに凝縮した吸収液の液滴は粒径が小さく広い吸
収面積を持っているため、SO2を吸収する能力も大き
く脱硫性能を向上させる効果もある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described with reference to the drawings. In the embodiment shown in FIG. 1, the exhaust gas containing SO 2 and the like from the boiler combustion device is supplied to the desulfurization tower from the inlet duct 2 and enters the desulfurization tower main body 1. In the desulfurization tower, it comes into contact with the absorbing liquid sprayed from the spray nozzle 4, and SO 2 in the exhaust gas is removed. The mist of the absorbing liquid is further removed by the mist eliminator 9 from the exhaust gas from which SO 2 has been removed, and the exhaust gas is discharged to the outside of the system through the outlet duct 3. The sprayed absorbent absorbs SO 2 and then falls into the oxidation tank 6. Oxidation tank 6
The absorption liquid inside is extracted by the circulation pump 5, and the header 1
It is sent again to the spray nozzle 4 through 0. The absorbing liquid sprayed from the lower spray nozzle 4 absorbs SO 2 by coming into contact with the exhaust gas, and at the same time from 100 ° C. to 20 ° C.
Reduce the temperature of the exhaust gas, which is 0 ° C. At this time, the water in the absorbing liquid evaporates and the exhaust gas contains saturated steam. When steam at a temperature of 100 ° C. or higher is blown into the gas in the desulfurization tower in a saturated state of water from the steam pipe 19, a part of the steam is cooled and condensed by the surrounding gas to have a particle diameter of several tens to several hundreds of micrometers. Grow into droplets consisting of. These droplets grow with a small amount of fine dust contained in the exhaust gas as the nucleus, so that the apparent particle size becomes large. Although the droplets containing the increased dust are sent along with the exhaust gas, they are collected by colliding with the droplets of the absorbing liquid sprayed from the upper spray nozzle 4. The collecting performance at this time becomes higher as the diameter of the droplet becomes larger. Further, the collection performance can be freely changed by controlling the amount of water vapor supplied from the water vapor pipe 19. Further, since the condensed droplets of the absorbing liquid have a small particle size and a wide absorbing area, the ability to absorb SO 2 is large and the desulfurization performance is improved.

【0014】図2および図3に他の実施例を示す。図2
および図3で示した例はいずれも脱硫塔本体1の出口ダ
クト3内に水蒸気を噴霧する水蒸気管19を配置したも
のである。図2に示す例は出口ダクト3にミストエリミ
ネータ9を設置した場合で、この上流に水蒸気管19を
設置している。またミストエリミネータ9を洗うための
洗浄水スプレノズル21が取り付けられている。洗浄水
スプレノズル21には水タンク22から給水管23を経
て水が供給されいる。そして、水タンク22内の水は一
部水タンク抜出管24を経て酸化タンク6にも補給され
る。水蒸気管19より水蒸気を出口ダクト3内に吹き込
むと脱硫塔本体1内と同様に排ガスは飽和状態にあるた
め、供給された水蒸気の一部が凝縮してダストを核とし
て大きな液滴に成長し、容易にミストエリミネータ9で
これらを捕集することができ、ミストの捕集効率が向上
する。
2 and 3 show another embodiment. Figure 2
In each of the examples shown in FIG. 3 and FIG. 3, a steam pipe 19 for spraying steam is arranged in the outlet duct 3 of the desulfurization tower body 1. In the example shown in FIG. 2, a mist eliminator 9 is installed in the outlet duct 3, and a steam pipe 19 is installed upstream of this. Further, a washing water spray nozzle 21 for washing the mist eliminator 9 is attached. Water is supplied to the cleaning water spray nozzle 21 from a water tank 22 via a water supply pipe 23. Then, the water in the water tank 22 is partially supplied to the oxidation tank 6 through the water tank drain pipe 24. When steam is blown into the outlet duct 3 from the steam pipe 19, the exhaust gas is in a saturated state as in the desulfurization tower main body 1. Therefore, a part of the supplied steam is condensed to grow into large droplets with dust as a nucleus. The mist eliminator 9 can easily collect these, and the mist collecting efficiency is improved.

【0015】図3に示す例も、出口ダクト3内に水蒸気
を供給する方法であるが、この場合は洗浄水スプレノズ
ル21から水蒸気管19の後流に洗浄水を噴霧し、ダス
トを含む水蒸気の凝縮により肥大した液滴を捕集するこ
とでミストの捕集効率を高める。また同時に脱硫塔本体
1から飛散してくるミストも同時に捕集する。洗浄水は
図2に示す場合と同様に水タンク22に回収した後に循
環利用され、一部は水タンク抜出管24から脱硫塔本体
1へ送られる。水タンク22には給水管23から水が補
給される。上記実施例の湿式脱硫装置内に水蒸気を供給
した場合の脱塵性能の比較を示す。入口の排ガス中のS
2は1000ppm、ダスト濃度は100mg/m3
で噴霧した吸収液量は排ガス量に対して10リットル/
3である。吸収液の温度は飽和温度に達しており55
℃である。この条件で水蒸気量を排ガス量の0.2、
0.4、0.8%としてそれぞれ試験を行った結果、脱
硫塔出口のダスト濃度は水蒸気を供給しない場合のそれ
ぞれ47%、61%、75%であり水蒸気を供給するこ
とで脱硫塔のダスト濃度を低減できることが分かる。
The example shown in FIG. 3 is also a method of supplying steam into the outlet duct 3, but in this case, the cleaning water is sprayed from the cleaning water spray nozzle 21 to the downstream of the steam pipe 19 to generate steam containing dust. The collection efficiency of the mist is enhanced by collecting the enlarged droplets due to the condensation. At the same time, the mist scattered from the desulfurization tower body 1 is also collected at the same time. As in the case shown in FIG. 2, the wash water is circulated and used after being collected in the water tank 22, and a part is sent from the water tank withdrawal pipe 24 to the desulfurization tower body 1. Water is supplied to the water tank 22 from a water supply pipe 23. The comparison of the dust removal performance when steam is supplied into the wet desulfurization apparatus of the above-mentioned example is shown. S in the exhaust gas at the entrance
O 2 is 1000 ppm, dust concentration is 100 mg / m 3 N
The amount of absorption liquid sprayed in
m is 3. The temperature of the absorption liquid has reached the saturation temperature and 55
℃. Under this condition, the amount of steam is 0.2 of the amount of exhaust gas,
As a result of conducting tests with 0.4 and 0.8%, respectively, the dust concentrations at the desulfurization tower outlet are 47%, 61%, and 75%, respectively, when steam is not supplied. It can be seen that the concentration can be reduced.

【0016】本発明は以上述べたように、ボイラシステ
ムに設置された湿式脱硫装置に適用した場合は、次のよ
うな利点がある。すなわち、ボイラ(図示せず)から出
る排ガスは燃焼用空気の空気予熱器(図示せず)により
100〜200℃程度まで冷却され、集塵機(図示せ
ず)に送られダストの大部分が除去される。その後排ガ
スは脱硫塔に導入されるが、脱硫塔は前述のように水蒸
気を吹き込むことによる除塵機能を持っており、ボイラ
システムの総合的な集塵性能は集塵機と脱硫塔の集塵性
能によって決定される。脱硫塔での集塵性能を高めると
集塵機の負荷を低減することができる。また、排ガス中
のSO2濃度が低い場合、またはボイラの負荷が下がり
処理ガス量が減少した場合に吸収液の噴霧量を減少させ
ても、脱硫塔内に供給する水蒸気量を変化させること
で、脱硫性能とは独立に所定の脱塵性能を得ることがで
きる。すなわち脱塵のために過剰の吸収液を循環供給す
る必要はない。現在、現行の基準よりさらに厳しい脱塵
性能が要求されており、脱硫塔の後続に湿式の電気集塵
機を設置する方法が具体化されているが、本方式を用い
るとこれらの設備も不要となる。
As described above, the present invention has the following advantages when applied to a wet desulfurization apparatus installed in a boiler system. That is, exhaust gas emitted from a boiler (not shown) is cooled to about 100 to 200 ° C. by an air preheater (not shown) for combustion air and sent to a dust collector (not shown) to remove most of dust. It After that, the exhaust gas is introduced into the desulfurization tower, and the desulfurization tower has a dust removal function by blowing in steam as described above, and the overall dust collection performance of the boiler system is determined by the dust collection performance of the dust collector and the desulfurization tower. To be done. If the dust collection performance in the desulfurization tower is improved, the load on the dust collector can be reduced. Moreover, even if the amount of sprayed absorption liquid is reduced when the SO 2 concentration in the exhaust gas is low or the load of the boiler is reduced and the amount of treated gas is reduced, the amount of steam supplied to the desulfurization tower can be changed. It is possible to obtain a predetermined dust removal performance independent of the desulfurization performance. That is, it is not necessary to circulate and supply an excessive amount of absorbing solution for removing dust. At present, stricter dedusting performance than the current standard is required, and a method of installing a wet electrostatic precipitator after the desulfurization tower has been embodied.However, if this method is used, these facilities are also unnecessary. .

【0017】[0017]

【発明の効果】本発明によれば、脱硫塔自身が除塵機能
を持っているので、排ガス中のSO2濃度が低い場合ま
たは排ガス量が減少した場合に吸収液の噴霧量を減少さ
せても、脱硫塔での集塵性能が低下しない。その結果、
厳しい脱塵性能が要求されても、脱硫塔の後続に湿式の
電気集塵機を設置する必要がなくなる。
According to the present invention, since the desulfurization tower itself has a dust removing function, even if the amount of sprayed absorption liquid is reduced when the SO 2 concentration in the exhaust gas is low or the amount of exhaust gas decreases. The dust collection performance in the desulfurization tower does not deteriorate. as a result,
Even if severe dust removal performance is required, there is no need to install a wet electrostatic precipitator after the desulfurization tower.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の湿式脱硫装置の系統図で
ある。
FIG. 1 is a system diagram of a wet desulfurization apparatus according to an embodiment of the present invention.

【図2】 本発明の他の実施例の湿式脱硫装置の系統図
である。
FIG. 2 is a system diagram of a wet desulfurization device according to another embodiment of the present invention.

【図3】 本発明の他の実施例の湿式脱硫装置の系統図
である。
FIG. 3 is a system diagram of a wet desulfurization device according to another embodiment of the present invention.

【図4】 従来の湿式脱硫装置の系統図である。FIG. 4 is a system diagram of a conventional wet desulfurization device.

【符号の説明】[Explanation of symbols]

1…脱硫塔本体、3…出口ダクト、4…スプレノズル、
6…酸化タンク、9…ミストエリミネータ、19…水蒸
気管、21…洗浄水スプレノズル、22…水タンク、2
3…給水管、24…水タンク抜出管
1 ... Desulfurization tower main body, 3 ... Exit duct, 4 ... Spray nozzle,
6 ... Oxidation tank, 9 ... Mist eliminator, 19 ... Steam pipe, 21 ... Wash water spray nozzle, 22 ... Water tank, 2
3 ... Water supply pipe, 24 ... Water tank extraction pipe

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 B01D 53/18 ZAB E 53/34 ZAB B01D 53/34 125 D 125 Q (72)発明者 吉川 博文 広島県呉市宝町3番36号 バブコック日立 株式会社呉研究所内 (72)発明者 野沢 滋 広島県呉市宝町6番9号 バブコック日立 株式会社呉工場内─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification number Reference number within the agency FI Technical indication location B01D 53/18 ZAB E 53/34 ZAB B01D 53/34 125 D 125 Q (72) Inventor Hirofumi Yoshikawa 3-6 Takaracho, Kure City, Hiroshima Prefecture Kure Research Institute, Babcock Hitachi Ltd. (72) Inventor Shigeru Nozawa 6-9 Takaracho, Kure City, Hiroshima Prefecture Babcock Hitachi Ltd., Kure Factory

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 ボイラなどの燃焼装置からの排ガス中に
含まれる硫黄酸化物を除去するためにアルカリ金属また
はアルカリ土類金属等の吸収剤と気液接触させる脱硫塔
を備えた湿式脱硫装置において、 脱硫塔内あるいは脱硫塔出口ダクト内に水蒸気を吹き込
む水蒸気管を設けたことを特徴とする湿式脱硫装置。
1. A wet desulfurization apparatus provided with a desulfurization tower for making gas-liquid contact with an absorbent such as an alkali metal or an alkaline earth metal in order to remove sulfur oxides contained in exhaust gas from a combustion apparatus such as a boiler. A wet desulfurization apparatus characterized in that a steam pipe for injecting steam is provided inside the desulfurization tower or inside the desulfurization tower outlet duct.
【請求項2】 水蒸気管の後流側の脱硫塔内または脱硫
塔出口ダクトにデミスタを設置したことを特徴とする請
求項1記載の湿式脱硫装置。
2. The wet desulfurization apparatus according to claim 1, wherein a demister is installed in the desulfurization tower on the downstream side of the steam pipe or in the desulfurization tower outlet duct.
【請求項3】 脱硫塔内にアルカリ金属またはアルカリ
土類金属等の吸収剤を噴霧して、ボイラなどの燃焼装置
からの排ガス中に含まれる硫黄酸化物を除去する湿式脱
硫方法において、 脱硫塔内あるいは脱硫塔出口ダクト内に水蒸気を吹き込
むことにより、排ガス中のダストを除去することを特徴
とする湿式脱硫方法。
3. A wet desulfurization method for removing sulfur oxides contained in exhaust gas from a combustion device such as a boiler by spraying an absorbent such as an alkali metal or an alkaline earth metal into the desulfurization tower. A wet desulfurization method, characterized in that dust in exhaust gas is removed by blowing water vapor into the interior of the desulfurization tower outlet duct.
【請求項4】 脱硫塔内あるいは脱硫塔出口ダクト内に
吹き込む水蒸気は100℃以上の温度の水蒸気であるこ
とを特徴とする請求項3記載の湿式脱硫方法。
4. The wet desulfurization method according to claim 3, wherein the steam blown into the desulfurization tower or the desulfurization tower outlet duct is steam having a temperature of 100 ° C. or higher.
JP5328823A 1993-12-24 1993-12-24 Wet desulfurizer and desulfurization method Pending JPH07178314A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5328823A JPH07178314A (en) 1993-12-24 1993-12-24 Wet desulfurizer and desulfurization method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5328823A JPH07178314A (en) 1993-12-24 1993-12-24 Wet desulfurizer and desulfurization method

Publications (1)

Publication Number Publication Date
JPH07178314A true JPH07178314A (en) 1995-07-18

Family

ID=18214492

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5328823A Pending JPH07178314A (en) 1993-12-24 1993-12-24 Wet desulfurizer and desulfurization method

Country Status (1)

Country Link
JP (1) JPH07178314A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029741A (en) * 1999-07-27 2001-02-06 Ishikawajima Harima Heavy Ind Co Ltd Water supply replenishing method for wet flue gas treating installation and device therefor
KR100480416B1 (en) * 2002-04-26 2005-04-06 지현기술주식회사 Wet dust eliminator with multistage collection layer
CN103335541A (en) * 2013-07-10 2013-10-02 信发科技开发有限公司 Improved washing water heater and making method thereof
WO2014038354A1 (en) * 2012-09-10 2014-03-13 三菱重工業株式会社 Desulfurization device, and soot removal system
JP2015536817A (en) * 2012-11-06 2015-12-24 イノベーション イン サイエンシーズ アンド テクノロジーズ エス.アール.エル.Innovationin Sciences & Technologies S.R.L. Method and system for mixing gases and liquids to recover compounds gravitationally, physically and chemically
CN106362536A (en) * 2016-11-03 2017-02-01 东南大学 Device for strengthening fine particle growth based on vapor phase transition
CN106669326A (en) * 2017-01-20 2017-05-17 东南大学 Wet desulfurization synergized fine particle and SO3 acid mist removing method and device
CN108722102A (en) * 2018-07-27 2018-11-02 双良节能系统股份有限公司 A kind of desulfurizer and water balance control method with flue gas condensing function in tower
CN111185072A (en) * 2020-03-12 2020-05-22 北京中航天业科技有限公司 Flue gas desulfurization device and flue gas desulfurization method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001029741A (en) * 1999-07-27 2001-02-06 Ishikawajima Harima Heavy Ind Co Ltd Water supply replenishing method for wet flue gas treating installation and device therefor
KR100480416B1 (en) * 2002-04-26 2005-04-06 지현기술주식회사 Wet dust eliminator with multistage collection layer
WO2014038354A1 (en) * 2012-09-10 2014-03-13 三菱重工業株式会社 Desulfurization device, and soot removal system
JPWO2014038354A1 (en) * 2012-09-10 2016-08-08 三菱日立パワーシステムズ株式会社 Desulfurization equipment and dust removal system
JP2015536817A (en) * 2012-11-06 2015-12-24 イノベーション イン サイエンシーズ アンド テクノロジーズ エス.アール.エル.Innovationin Sciences & Technologies S.R.L. Method and system for mixing gases and liquids to recover compounds gravitationally, physically and chemically
CN103335541A (en) * 2013-07-10 2013-10-02 信发科技开发有限公司 Improved washing water heater and making method thereof
CN106362536A (en) * 2016-11-03 2017-02-01 东南大学 Device for strengthening fine particle growth based on vapor phase transition
CN106669326A (en) * 2017-01-20 2017-05-17 东南大学 Wet desulfurization synergized fine particle and SO3 acid mist removing method and device
CN108722102A (en) * 2018-07-27 2018-11-02 双良节能系统股份有限公司 A kind of desulfurizer and water balance control method with flue gas condensing function in tower
CN111185072A (en) * 2020-03-12 2020-05-22 北京中航天业科技有限公司 Flue gas desulfurization device and flue gas desulfurization method

Similar Documents

Publication Publication Date Title
JP2000325742A (en) Method and apparatus for removing dust and recovering water or steam from outlet gas of desurfurization equipment
JP2013006125A (en) Wet flue gas desulfurization apparatus, and wet flue gas desulfurization method
JPS62197130A (en) Method for treating exhaust gas
JPH07178314A (en) Wet desulfurizer and desulfurization method
JPH0760107A (en) Spray tower for cooling, humidifying and cleaning gas and its method
JPH078748A (en) Wet process flue gas desulfurization and device using desulfurization method
JP2001025626A (en) Apparatus and method for dust removing treatment of exhaust gas
JPS62121687A (en) Apparatus for treating waste water from wet wast gas desulfurizing method for forming gypsum as byproduct
JP2001170444A (en) Wet stack gas desulfurizing device
JPH0780243A (en) Desulfurization method and apparatus by desulfurizing agent slurry with high concentration
CA1251723A (en) Method of and apparatus for the discharge of a flue gas into the atmosphere
JP2001120948A (en) Wet stack gas desulfurizing device
JP2002248318A (en) Wet flue gas desulfurizing apparatus
CN105396451B (en) Caustic dip efficient removal SO in a kind of spray desulfurizing tower3Technique
JP3380046B2 (en) Wet exhaust gas desulfurization method and apparatus
JPH06343824A (en) Wet flue gas desulfurizer and its method
JPH09187615A (en) Steam condensation dust collecting device and method therefor
KR200167349Y1 (en) Desulphurizing apparatus of waste gas
JPH10230128A (en) Flue gas desulfurization method and flue gas desulfurizing device
JP2001017827A (en) Double-chamber wet type flue gas desulfurization apparatus and method
JPH0929059A (en) Flue gas desulfurization and device therefor
JPH10202051A (en) Stack gas desulfurizing method and stack gas desulfurizer
JPH06114233A (en) Wet stack gas desulfurizer and method thereof
JPH06319940A (en) Method and apparatus for exhaust desulfurization in wet process
JP3285639B2 (en) High-performance flue gas desulfurization method