JPH07177648A - Dc interrupting system for superconducting unit - Google Patents

Dc interrupting system for superconducting unit

Info

Publication number
JPH07177648A
JPH07177648A JP5321960A JP32196093A JPH07177648A JP H07177648 A JPH07177648 A JP H07177648A JP 5321960 A JP5321960 A JP 5321960A JP 32196093 A JP32196093 A JP 32196093A JP H07177648 A JPH07177648 A JP H07177648A
Authority
JP
Japan
Prior art keywords
current
commutation
main circuit
superconducting
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5321960A
Other languages
Japanese (ja)
Inventor
Kazuto Shimada
一人 島田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5321960A priority Critical patent/JPH07177648A/en
Publication of JPH07177648A publication Critical patent/JPH07177648A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/02Details
    • H01H33/59Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle
    • H01H33/596Circuit arrangements not adapted to a particular application of the switch and not otherwise provided for, e.g. for ensuring operation of the switch at a predetermined point in the ac cycle for interrupting dc
    • HELECTRICITY
    • H02GENERATION; CONVERSION OR DISTRIBUTION OF ELECTRIC POWER
    • H02HEMERGENCY PROTECTIVE CIRCUIT ARRANGEMENTS
    • H02H7/00Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions
    • H02H7/001Emergency protective circuit arrangements specially adapted for specific types of electric machines or apparatus or for sectionalised protection of cable or line systems, and effecting automatic switching in the event of an undesired change from normal working conditions for superconducting apparatus, e.g. coils, lines, machines
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E40/00Technologies for an efficient electrical power generation, transmission or distribution
    • Y02E40/60Superconducting electric elements or equipment; Power systems integrating superconducting elements or equipment

Landscapes

  • Protection Of Static Devices (AREA)

Abstract

PURPOSE:To interrupt a superconducting unit, where the current of main circuit varies with time, positively by detecting the current flowing through the main circuit and controlling the charging voltage of a commutation capacitor depending on the current thus detected. CONSTITUTION:A power supply 10 for charging a capacitor is provided with a circuit 12 for controlling the charging voltage of a commutation capacitor 7 based on the output from a detector 11 for detecting the current flowing through the main circuit. Charging voltage of the commutation capacitor 7 is controlled depending on the current flowing through the main circuit in order to optimize the commutation current at the time of interruption of the charging power supply 10. This constitution allows superposition of an optimal commutation current depending on the current flowing through the main circuit thus interrupting the main circuit positively at the time of abnormality and protecting a superconducting coil 1.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超電導コイルを保護す
るための直流しゃ断システムに関する。
FIELD OF THE INVENTION The present invention relates to a direct current interruption system for protecting a superconducting coil.

【0002】[0002]

【従来の技術】近年の、超電導技術の進歩は目ざまし
く、それに伴い超電導コイルも次第に大容量化する傾向
にある。図3に超電導応用装置の一構成例を示す。超電
導コイル1は直流しゃ断器2を介して励磁電源3に接続
されている。このシステムで異常が発生した場合は、超
電導コイル1と並列に接続されたスイッチ4を閉じ、直
流しゃ断器2を開くことによって電流を減衰抵抗5に転
流させて超電導コイルを保護するのが一般的である。こ
こで、超電導コイルの通電電流がしゃ断器の定格しゃ断
電流以下である場合は問題ないが、大電流になると、直
流しゃ断器2は複数のしゃ断器を並列に接続して構成す
る必要がある。このように並列運転を行うケースでは、
アーク電圧−電流特性より真空しゃ断器を適用するケー
スが多い。
2. Description of the Related Art In recent years, the progress of superconducting technology has been remarkable, and accordingly, the capacity of superconducting coils is gradually increasing. FIG. 3 shows an example of the configuration of the superconducting application device. The superconducting coil 1 is connected to an exciting power source 3 via a DC breaker 2. When an abnormality occurs in this system, it is common to close the switch 4 connected in parallel with the superconducting coil 1 and open the DC breaker 2 to divert a current to the damping resistor 5 to protect the superconducting coil. Target. Here, there is no problem when the energizing current of the superconducting coil is less than or equal to the rated breaking current of the breaker, but when the current becomes large, the DC breaker 2 needs to be configured by connecting a plurality of breakers in parallel. In the case of parallel operation like this,
Vacuum breakers are often applied because of the arc voltage-current characteristics.

【0003】図4に真空しゃ断器を並列接続して直流し
ゃ断器を構成する場合の直流しゃ断システムの一構成例
を示す。直流しゃ断器と並列に転流リアクトル6、転流
コンデンサ7、投入スイッチ8から成る強制転流回路が
接続されている。強制転流回路は、直流電流をしゃ断す
る際に発生するアークを消弧するために逆方向の振動電
流を重畳し、強制的に電流零点を形成する。なお、コン
デンサ充電電源9は転流コンデンサ7に所定の電荷を蓄
積するためのものである。
FIG. 4 shows an example of the configuration of a direct current circuit breaker system in which a vacuum circuit breaker is connected in parallel to form a direct current circuit breaker. A forced commutation circuit including a commutation reactor 6, a commutation capacitor 7, and a closing switch 8 is connected in parallel with the DC breaker. The forced commutation circuit superimposes an oscillating current in the opposite direction to extinguish the arc generated when the direct current is cut off, and forcibly forms a current zero point. The capacitor charging power source 9 is for accumulating a predetermined charge in the commutation capacitor 7.

【0004】[0004]

【発明が解決しようとする課題】ところで、このような
直流しゃ断システムでは、転流回路の定数が主回路の最
大しゃ断電流を基に決定され、かつ不変であるため、主
回路の通電電流が時間的に変化するような超電導応用装
置ではしゃ断が不確実になるという問題がある。主回路
に最大通電電流が流れている状態でしゃ断が行われる
時、しゃ断器を流れる電流の電流零点近傍の電流変化率
(di/dt値)は、しゃ断器の特性より定まるdi/
dt値以下となるように諸定数を決定しているため、主
回路電流のしゃ断は確実に行われる。しかし、転流コン
デンサ定数が同じ条件において通電電流が小さい場合
は、電流零点近傍のdi/dt値は厳しくなり、このd
i/dt値がしゃ断器の許容するdi/dt値を超える
と、しゃ断失敗となるケースが発生し、コイルの保護に
悪影響を及ぼすことになる。そこで本発明の目的は、し
ゃ断が確実な超電導応用装置の直流しゃ断システムを提
供することにある。
By the way, in such a DC interruption system, the constant current of the commutation circuit is determined based on the maximum interruption current of the main circuit and is invariable. There is a problem that the interruption becomes uncertain in a superconducting application device that changes dynamically. When the circuit is interrupted while the maximum current is flowing in the main circuit, the current change rate (di / dt value) of the current flowing through the circuit breaker near the current zero point is determined by the characteristic of the circuit breaker.
Since the constants are determined so as to be equal to or less than the dt value, the main circuit current can be cut off without fail. However, when the energizing current is small under the condition that the commutation capacitor constant is the same, the di / dt value near the current zero becomes severe.
If the i / dt value exceeds the di / dt value allowed by the circuit breaker, the case of failure of the circuit occurs, which adversely affects the protection of the coil. SUMMARY OF THE INVENTION An object of the present invention is to provide a DC cutoff system for a superconducting application device in which the cutoff is reliable.

【0005】[0005]

【課題を解決するための手段】本発明による超電導応用
装置の直流しゃ断システムは、上記の目的を達成するた
めに、主回路の通電電流を検出し、その通電電流に応じ
て転流コンデンサの充電電圧を制御する機能を備えた構
成とする。
SUMMARY OF THE INVENTION In order to achieve the above object, a direct current interruption system for a superconducting application device according to the present invention detects an energizing current of a main circuit and charges a commutation capacitor in accordance with the energizing current. The configuration has a function of controlling the voltage.

【0006】[0006]

【作用】本発明によれば、主回路の通電電流に応じて転
流コンデンサの充電電圧を制御することにより、最適な
転流電流を重畳することができ、しゃ断を確実に行うこ
とができる。
According to the present invention, the optimum commutation current can be superimposed by controlling the charging voltage of the commutation capacitor in accordance with the current flowing through the main circuit, and the cutoff can be surely performed.

【0007】[0007]

【実施例】以下、本発明の超電導応用装置の直流しゃ断
システムの一実施例を、図1及び図2を参照して説明す
る。図1において図3と同じ部分には、同一の符号を付
けてその説明は省略する。図1で図3と異なる点は、コ
ンデンサ充電電源10の内部に、主回路の通電電流を検出
するための検出器11からの出力を基に転流コンデンサ7
の充電電圧を制御する制御回路12を備えたことである。
図2は、主回路の通電電流と転流電流と転流電流を重畳
したときのしゃ断電流の関係を表した図である。従来の
ように充電電圧を制御しない場合は、転流電流は最大通
電電流を基に決定され、不変である。しゃ断時に主回路
の通電電流が変化して小さい場合は、図2に示すように
しゃ断器を流れる電流が零点を横切る近傍のdi/dt
値が大きくなるため、しゃ断は不確実になる。しかし、
主回路の通電電流を検出し、その値に応じて転流コンデ
ンサの充電電圧を制御すれば、電流零点近傍のdi/d
t値は、しゃ断器の許容するdi/dt値に抑えること
が可能となる。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of a DC cutoff system for a superconducting application device according to the present invention will be described below with reference to FIGS. In FIG. 1, the same parts as those in FIG. 3 are designated by the same reference numerals and the description thereof will be omitted. The difference between FIG. 1 and FIG. 3 is that the commutation capacitor 7 is provided inside the capacitor charging power source 10 on the basis of the output from the detector 11 for detecting the energizing current of the main circuit.
That is, the control circuit 12 for controlling the charging voltage of is provided.
FIG. 2 is a diagram showing the relationship between the conduction current of the main circuit, the commutation current, and the breaking current when the commutation current is superimposed. When the charging voltage is not controlled as in the conventional case, the commutation current is determined based on the maximum energizing current and is unchanged. When the current flowing through the main circuit changes and is small at the time of interruption, di / dt near the point where the current flowing through the interrupter crosses the zero point
The higher the value, the more uncertain the interruption. But,
If the energizing current of the main circuit is detected and the charging voltage of the commutation capacitor is controlled according to the value, di / d near the current zero point
The t value can be suppressed to the di / dt value allowed by the circuit breaker.

【0008】転流コンデンサ充電電源10は、しゃ断時の
転流電流を最適な値にするために、主回路の通電電流に
対応させて転流コンデンサの充電電圧を制御する。例え
ば、充電電源を順変換装置及び逆変換装置から構成する
ことにより、主回路の通電電流の減少時には逆変換装置
により転流コンデンサを放電し、増加時には、順変換装
置により充電することで、転流コンデンサ充電電圧を最
適な値に制御することが可能となる。
The commutation capacitor charging power supply 10 controls the charging voltage of the commutation capacitor in accordance with the energizing current of the main circuit in order to make the commutation current at the time of interruption an optimum value. For example, by configuring the charging power source with a forward conversion device and a reverse conversion device, the reverse conversion device discharges the commutation capacitor when the energizing current of the main circuit decreases, and when it increases, the forward conversion device charges the commutation capacitor to convert the current. It is possible to control the charging voltage of the flow capacitor to an optimum value.

【0009】なお、充電電源の構成としては、順変換装
置と放電抵抗により構成し、コンデンサ充電電圧を制御
しても同様の効果が期待できる。また、転流コンデンサ
の容量または転流リアクトルの容量を可変にしてこれら
を制御しても同様の効果が期待できる。
It should be noted that the same effect can be expected if the charging power source is composed of a forward converter and a discharge resistor and the capacitor charging voltage is controlled. Further, the same effect can be expected by varying the capacity of the commutation condenser or the capacity of the commutation reactor to control them.

【0010】[0010]

【発明の効果】本発明によれば、主回路の通電電流に対
応して転流コンデンサ充電電圧を制御できるので、主回
路の通電電流に応じた最適な転流電流を重畳することが
でき、異常時に主回路を確実にしゃ断し、コイルを保護
することができる。
According to the present invention, since the commutation capacitor charging voltage can be controlled according to the energizing current of the main circuit, it is possible to superimpose an optimum commutating current according to the energizing current of the main circuit. When abnormal, the main circuit can be cut off surely and the coil can be protected.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示す超電導応用装置の構成
図。
FIG. 1 is a configuration diagram of a superconducting application device showing an embodiment of the present invention.

【図2】主回路通電電流と転流電流としゃ断器の通電電
流の関係を示す図。
FIG. 2 is a diagram showing a relationship between a main circuit energization current, a commutation current, and an energization current of a circuit breaker.

【図3】従来の超電導応用装置の一実施例を示す構成
図。
FIG. 3 is a configuration diagram showing an embodiment of a conventional superconducting application device.

【図4】従来の直流しゃ断器の一実施例を示す構成図。FIG. 4 is a configuration diagram showing an embodiment of a conventional DC breaker.

【符号の説明】[Explanation of symbols]

1…超電導コイル、2…直流しゃ断器、3…励磁電源、
4…スイッチ、5…減衰抵抗、6…転流リアクトル、7
…転流コンデンサ、8…投入スイッチ、9…コンデンサ
充電電源、10…コンデンサ充電電源、11…検出器、12…
制御回路。
1 ... Superconducting coil, 2 ... DC breaker, 3 ... Excitation power supply,
4 ... switch, 5 ... damping resistance, 6 ... commutation reactor, 7
... commutation capacitor, 8 ... closing switch, 9 ... capacitor charging power supply, 10 ... capacitor charging power supply, 11 ... detector, 12 ...
Control circuit.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 超電導コイルと、この超電導コイルを励
磁する励磁電源と、前記超電導コイルと前記励磁電源の
間に介在し主回路電流をしゃ断する機能を有するしゃ断
器と、前記しゃ断器に並列に接続され、主回路電流をし
ゃ断する際にしゃ断器の接点間に逆方向電流を重畳する
転流コンデンサとを有する強制転流回路と、前記転流コ
ンデンサに電荷を蓄積する充電電源と、転流コンデンサ
の充電電圧を主回路電流に応じて制御する制御回路とを
備えたことを特徴とする超電導応用装置の直流しゃ断シ
ステム。
1. A superconducting coil, an exciting power source for exciting the superconducting coil, a breaker interposed between the superconducting coil and the exciting power source to cut off a main circuit current, and in parallel with the breaker. A forced commutation circuit that is connected and that has a commutation capacitor that superimposes a reverse current between the contacts of the circuit breaker when cutting off the main circuit current; a charging power supply that accumulates charges in the commutation capacitor; A DC cutoff system for a superconducting application device, comprising: a control circuit for controlling a charging voltage of a capacitor according to a main circuit current.
【請求項2】 転流コンデンサの充電電圧の制御回路
を、順変換装置及び逆変換装置で構成することを特徴と
する請求項1記載の超電導応用装置の直流しゃ断システ
ム。
2. The DC cutoff system for a superconducting application apparatus according to claim 1, wherein the control circuit for controlling the charging voltage of the commutation capacitor comprises a forward converter and an inverse converter.
【請求項3】 転流コンデンサの充電電圧の制御回路
を、順変換器及び放電抵抗で構成することを特徴とする
請求項1記載の超電導応用装置の直流しゃ断システム。
3. The DC cutoff system for a superconducting application device according to claim 1, wherein the control circuit for controlling the charging voltage of the commutation capacitor comprises a forward converter and a discharge resistor.
【請求項4】 制御回路は、主回路電流に応じて転流コ
ンデンサ容量を制御することを特徴とする請求項1記載
の超電導応用装置の直流しゃ断システム。
4. The DC cutoff system for a superconducting application device according to claim 1, wherein the control circuit controls the capacity of the commutation capacitor according to the main circuit current.
【請求項5】 制御回路が、主回路電流に応じて転流リ
アクトル容量を制御することを特徴とする請求項1記載
の超電導応用装置の直流しゃ断システム。
5. The DC cutoff system for a superconducting application apparatus according to claim 1, wherein the control circuit controls the commutation reactor capacity according to the main circuit current.
JP5321960A 1993-12-21 1993-12-21 Dc interrupting system for superconducting unit Pending JPH07177648A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321960A JPH07177648A (en) 1993-12-21 1993-12-21 Dc interrupting system for superconducting unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5321960A JPH07177648A (en) 1993-12-21 1993-12-21 Dc interrupting system for superconducting unit

Publications (1)

Publication Number Publication Date
JPH07177648A true JPH07177648A (en) 1995-07-14

Family

ID=18138353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321960A Pending JPH07177648A (en) 1993-12-21 1993-12-21 Dc interrupting system for superconducting unit

Country Status (1)

Country Link
JP (1) JPH07177648A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205887A (en) * 2010-03-25 2011-10-13 Abb Schweiz Ag Bridging unit
CN105244219A (en) * 2014-07-02 2016-01-13 株式会社日立制作所 Commutation type direct current breaker and monitoring method of the same
EP3739706A4 (en) * 2018-09-12 2021-06-16 Shandong Power Equipment Co., Ltd. Control and protection system for mechanical high-voltage direct current circuit breaker, and control method for same
WO2022218575A1 (en) * 2021-04-17 2022-10-20 Eaton Intelligent Power Limited Direct current quenching at a disconnector switch

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011205887A (en) * 2010-03-25 2011-10-13 Abb Schweiz Ag Bridging unit
CN105244219A (en) * 2014-07-02 2016-01-13 株式会社日立制作所 Commutation type direct current breaker and monitoring method of the same
CN105244219B (en) * 2014-07-02 2017-09-19 株式会社日立产机系统 Commutation type DC breaker and its monitoring method
EP3739706A4 (en) * 2018-09-12 2021-06-16 Shandong Power Equipment Co., Ltd. Control and protection system for mechanical high-voltage direct current circuit breaker, and control method for same
WO2022218575A1 (en) * 2021-04-17 2022-10-20 Eaton Intelligent Power Limited Direct current quenching at a disconnector switch

Similar Documents

Publication Publication Date Title
US5617012A (en) Power converter protecting apparatus for electric power system
EP0474186B1 (en) Protection of an electrical power distribution system
US6067217A (en) Current limiter
JP3965037B2 (en) DC vacuum interrupter
JPH07177648A (en) Dc interrupting system for superconducting unit
JPH06233452A (en) Current limiting device and current limiting control method
JP3245716B2 (en) Current interrupter
JP2004248345A (en) Distributed power source system
EP3966934B1 (en) Thyristor circuit and thyristor protection method
KR101999334B1 (en) N-phase AC Solid-State Circuit Breaker and Circuit thereof
JP6365724B1 (en) DC breaker
JPH10309034A (en) Current-limiting breaker
JP3585792B2 (en) Power converter
JP3968660B2 (en) Short-circuit current supply device
JPH027900A (en) Excitation control device of synchronous generator
WO2018198552A1 (en) Direct current shut-down device
JP2002093291A (en) Semiconductor switch and its control method
JP2001251884A (en) Operation control unit of induction motor
JP2002208334A (en) Dc cut-off system
JPS59198023A (en) Overcurrent protection device of transistor
JPH10228849A (en) D.c. breaker device, and d.c. power transmission system using it
JPH0513222A (en) Superconducting coil device
JPH04125057A (en) Gate drive for gate turn-off thyristor
JPH08194550A (en) Power source unit
JPH04183222A (en) Secondary overvoltage protective unit for ac-excited synchronous machine