JPH07176916A - Waveguide and carbon based thin film generator - Google Patents

Waveguide and carbon based thin film generator

Info

Publication number
JPH07176916A
JPH07176916A JP5321950A JP32195093A JPH07176916A JP H07176916 A JPH07176916 A JP H07176916A JP 5321950 A JP5321950 A JP 5321950A JP 32195093 A JP32195093 A JP 32195093A JP H07176916 A JPH07176916 A JP H07176916A
Authority
JP
Japan
Prior art keywords
waveguide
carbon
thin film
gas
based thin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5321950A
Other languages
Japanese (ja)
Inventor
Koji Ito
孝治 伊藤
Izumi Hosogai
いずみ 細貝
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP5321950A priority Critical patent/JPH07176916A/en
Publication of JPH07176916A publication Critical patent/JPH07176916A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E30/00Energy generation of nuclear origin
    • Y02E30/10Nuclear fusion reactors

Landscapes

  • Chemical Vapour Deposition (AREA)
  • Waveguides (AREA)

Abstract

PURPOSE:To obtain the waveguide suitable for transmission and radiation of a large output microwave in which no multipactor discharge takes place by forming a gas plasma of a carbon compound comprising hydrogen and a gas in the inside of the waveguide through which an electromagnetic wave propagates and forming a carbon based thin film on the inner face by the chemical gas phase growing method. CONSTITUTION:After the inside of the waveguide 7 is exhausted, a gas including a carbon compound comprising hydrogen and gas is injected to the waveguide from a gas supply system and a pressure in the waveguide 7 is kept constant and a plasma is generated in the waveguide 7 by providing a microwave into the waveguide. The carbon of the carbon compound separated by the stimulating action of the plasma 4 is vapor-depositted on copper plating 7a applied to the inner face of the stainless-steel made waveguide 7 to form a carbon group thin film 13 by the chemical gas phase growing method. A secondary electron emission factor of the carbon based thin film 13 is one or below, no multipactor discharge takes place and a microwave is stably transmitted even when a large output microwave is propagated by forming the carbon based thin film 13 to the inner side of the waveguide 7 in this way.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は核融合装置のプラズマな
どの加熱を電磁波、例えばマイクロ波で行うための高周
波加熱装置に係り、特にマイクロ波の大電力伝送、放射
に適した導波管およびカーボン系薄膜生成装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-frequency heating device for heating plasma or the like of a nuclear fusion device with electromagnetic waves, for example, microwaves, and particularly to a waveguide suitable for high-power microwave transmission and radiation. The present invention relates to a carbon thin film generator.

【0002】[0002]

【従来の技術】核融合装置のプラズマを加熱する高周波
加熱装置には、使用する周波数によって各種の方式があ
り、その一つとしては使用周波数が数GHzの低域ハイ
ブリッド波帯高周波加熱装置がある。その一例を図5に
示す。
2. Description of the Related Art There are various types of high frequency heating apparatus for heating plasma of a nuclear fusion apparatus depending on the frequency used, and one of them is a low frequency hybrid wave high frequency heating apparatus whose operating frequency is several GHz. . An example thereof is shown in FIG.

【0003】すなわち、この高周波加熱装置は図5に示
すように、大出力のマイクロ波を発生し、これを増幅す
るマイクロ波発振器1と、このマイクロ波発振器1で発
生したマイクロ波を核融合装置2まで伝送するマイクロ
波伝送系3と、このマイクロ波伝送系3に接続されマイ
クロ波を真空容器8内のプラズマ4に放射する高周波結
合系5とを備えている。核融合装置2ではプラズマ4を
真空容器8内に閉じ込めるために、真空容器8の外周に
トロイダル磁場コイル9が設置されている。また、符号
6はマイクロ波伝送系3に設けられた真空封止窓であ
る。
That is, as shown in FIG. 5, this high-frequency heating apparatus generates a high-power microwave and a microwave oscillator 1 for amplifying the microwave, and a microwave generator 1 for generating a microwave. A microwave transmission system 3 for transmitting up to 2 and a high frequency coupling system 5 connected to the microwave transmission system 3 for radiating microwaves to the plasma 4 in the vacuum container 8 are provided. In the fusion device 2, a toroidal magnetic field coil 9 is installed on the outer circumference of the vacuum container 8 in order to confine the plasma 4 in the vacuum container 8. Reference numeral 6 is a vacuum sealing window provided in the microwave transmission system 3.

【0004】なお、マイクロ波伝送系3や高周波結合系
5は、図6に示す導波管7を複数本束にしたものが使用
されており、高周波結合系5は真空中で使用されるた
め、一般に導波管7の材質がステンレス鋼からなり、そ
の内面にはマイクロ波の管壁損失を軽減するために銅メ
ッキ7aが施されている。
As the microwave transmission system 3 and the high frequency coupling system 5, a bundle of a plurality of waveguides 7 shown in FIG. 6 is used, and the high frequency coupling system 5 is used in vacuum. Generally, the material of the waveguide 7 is made of stainless steel, and the inner surface thereof is plated with copper 7a to reduce the loss of the microwave tube wall.

【0005】[0005]

【発明が解決しようとする課題】ところで、高周波結合
系5など大出力マイクロ波の伝送を真空中で導波管7を
用いて行う場合、マイクロ波電界によって電子が加速さ
れ、加速された電子が壁面を叩いて2次電子を放出し、
マルチパクタ放電を起こす。特に、核融合装置2ではト
ロイダル磁場コイル9が作る磁場が電子の共鳴磁場にな
る領域部の導波管7でマルチパクタ放電が起き易い。
By the way, when high-power microwaves such as the high-frequency coupling system 5 are transmitted using the waveguide 7 in vacuum, the electrons are accelerated by the microwave electric field, and the accelerated electrons are generated. Hit the wall to emit secondary electrons,
Causes multipactor discharge. Particularly, in the nuclear fusion device 2, multipactor discharge is likely to occur in the waveguide 7 in the region where the magnetic field created by the toroidal magnetic field coil 9 becomes the resonance magnetic field of electrons.

【0006】このマルチパクタ放電を防止するには、2
次電子放出係数が1以下の材料を導波管7の内面に薄く
コーティングするのが有効である。2次電子放出係数が
1以下の材料の一つにカーボンがあり、従来ではカーボ
ンのコロイド液を塗布、吹付け、浸漬などをして導波管
7の内面にカーボンを付着させている。
To prevent this multipactor discharge, 2
It is effective to thinly coat the inner surface of the waveguide 7 with a material having a secondary electron emission coefficient of 1 or less. Carbon is one of the materials having a secondary electron emission coefficient of 1 or less. Conventionally, carbon is adhered to the inner surface of the waveguide 7 by coating, spraying, dipping or the like with a carbon colloid liquid.

【0007】しかし、このような方法では付着力が弱
く、熱膨張などで剥離したり、コロイド液の溶媒液など
の放出ガスで放電を起こしたりして核融合装置2のプラ
ズマ4に不純物が混入するおそれがあった。付着力の強
いカーボン膜を得るには物理的気相成長(PVD)装置
や化学的気相成長(CVD)装置などによる蒸着による
方法があるが、長い導波管7の内面に一様にカーボン膜
を付着するには、一般的なPVD装置やCVD装置では
困難である。
However, in such a method, the adhesive force is weak, and the plasma 4 of the nuclear fusion device 2 is contaminated with impurities by peeling due to thermal expansion or the like, or by causing discharge by a released gas such as a solvent solution of a colloid solution. There was a risk of There is a method of vapor deposition using a physical vapor deposition (PVD) apparatus, a chemical vapor deposition (CVD) apparatus, or the like to obtain a carbon film having a strong adhesive force, but the carbon is uniformly applied to the inner surface of the long waveguide 7. It is difficult to deposit a film using a general PVD apparatus or a CVD apparatus.

【0008】本発明は上述した事情を考慮してなされた
もので、マルチパクタ放電が起きにくい、大出力マイク
ロ波伝送・放射に適した導波管を提供するとともに、導
波管の内面に付着力の強いカーボン薄膜を形成すること
のできるカーボン系薄膜生成装置を提供することを目的
とする。
The present invention has been made in view of the above circumstances, and provides a waveguide suitable for high-power microwave transmission / radiation in which multipactor discharge is unlikely to occur, and also has an adhesive force on the inner surface of the waveguide. An object of the present invention is to provide a carbon-based thin film generation apparatus capable of forming a strong carbon thin film.

【0009】[0009]

【課題を解決するための手段】本発明に係る導波管は、
上述した課題を解決するために、請求項1に記載したよ
うに、電磁波を伝送し、放射する導波管において、上記
電磁波を伝搬する内部に水素および気体の炭素化合物の
ガスプラズマを作り、内面に化学的気相成長法でカーボ
ン系薄膜を形成したものである。
The waveguide according to the present invention comprises:
In order to solve the above-mentioned problems, as described in claim 1, in a waveguide that transmits and radiates electromagnetic waves, a gas plasma of hydrogen and a gas carbon compound is formed inside the propagating electromagnetic waves to form an inner surface. The carbon thin film is formed by chemical vapor deposition.

【0010】請求項2は、請求項1のカーボン系薄膜
が、カーボン,グラファイト,ダイヤモンドおよびダイ
ヤモンドライクカーボンから選択される少なくとも一種
であることを特徴とする。
A second aspect of the present invention is characterized in that the carbon-based thin film of the first aspect is at least one selected from carbon, graphite, diamond and diamond-like carbon.

【0011】本発明に係るカーボン系薄膜生成装置は、
上述した課題を解決するために、請求項3に記載したよ
うに、導波管の一端に真空封止窓を介して接続されたマ
イクロ波発振器と、上記導波管の他端に接続された真空
排気装置と、上記導波管内に水素および気体の炭素化合
物を含む気体を注入するガス供給系とを備えたものであ
る。
The carbon thin film forming apparatus according to the present invention is
In order to solve the above-mentioned problem, as described in claim 3, a microwave oscillator connected to one end of a waveguide through a vacuum sealing window and another end of the waveguide are connected. A vacuum pumping apparatus and a gas supply system for injecting a gas containing hydrogen and a gaseous carbon compound into the waveguide are provided.

【0012】請求項4は、請求項3記載の導波管の外周
にソレノイドコイルが設置され、上記導波管内に電子共
鳴磁場領域を作ったことを特徴とする。請求項5は、請
求項4記載のソレノイドコイルが、上記導波管の軸方向
に移動可能に設置されたことを特徴とする。
A fourth aspect of the present invention is characterized in that a solenoid coil is installed on the outer circumference of the waveguide according to the third aspect, and an electron resonance magnetic field region is formed in the waveguide. A fifth aspect of the present invention is characterized in that the solenoid coil according to the fourth aspect is installed so as to be movable in the axial direction of the waveguide.

【0013】[0013]

【作用】上記の構成を有する本発明に係るカーボン系薄
膜生成装置においては、導波管内を真空排気後、ガス供
給系から水素および気体の炭素化合物を含む気体を注入
して導波管内圧力を一定に保ち、マイクロ波発振器から
マイクロ波を出力すると、導波管内にプラズマができ
る。このプラズマの励起作用によって炭素化合物の炭素
が導波管内面に蒸着してカーボン系薄膜を形成する。
In the carbon-based thin film generator having the above-described structure, the inside of the waveguide is evacuated, and then a gas containing hydrogen and a gaseous carbon compound is injected from the gas supply system to reduce the pressure inside the waveguide. When the microwave is output from the microwave oscillator while keeping it constant, plasma is generated in the waveguide. Due to the exciting action of this plasma, carbon of a carbon compound is deposited on the inner surface of the waveguide to form a carbon-based thin film.

【0014】また、本発明に係る導波管においては、カ
ーボン系薄膜の2次電子放出係数が1以下であるので、
大出力マイクロ波を伝送しても、マルチパクタ放電は起
こらず、安定してマイクロ波を伝送できる。
Further, in the waveguide according to the present invention, since the secondary electron emission coefficient of the carbon-based thin film is 1 or less,
Even if a high-power microwave is transmitted, the multipactor discharge does not occur, and the microwave can be stably transmitted.

【0015】[0015]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。図1は本発明に係る本発明に係るカーボン系薄膜
生成装置の第1実施例を示す構成図である。なお、従来
の構成と同一または対応する部分には図5および図6と
同一の符号を用いて説明する。図1に示すように、電磁
波を伝送し、放射する導波管7の一端には真空封止窓6
を介してマイクロ波発振器1が接続されるとともに、導
波管7の他端には真空排気装置10が接続されている。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a configuration diagram showing a first embodiment of a carbon-based thin film production apparatus according to the present invention. The same or corresponding portions as those of the conventional configuration will be described using the same reference numerals as those in FIGS. 5 and 6. As shown in FIG. 1, a vacuum sealing window 6 is provided at one end of a waveguide 7 for transmitting and radiating electromagnetic waves.
The microwave oscillator 1 is connected via the, and the vacuum exhaust device 10 is connected to the other end of the waveguide 7.

【0016】また、カーボン系薄膜を形成させる導波管
7の真空封止窓6側には、水素11aおよび気体の炭素
化合物11bを含む気体を注入するガス供給系11が弁
12を介して取り付けられている。
Further, a gas supply system 11 for injecting a gas containing hydrogen 11a and a gaseous carbon compound 11b is attached via a valve 12 to the vacuum sealing window 6 side of the waveguide 7 for forming a carbon thin film. Has been.

【0017】次に、本実施例のカーボン系薄膜生成装置
の作用について説明する。弁12を閉にして真空排気装
置10で導波管7内を10-5〜10-7Torrまで排気後、
弁12を開にしてガス供給系11から水素11aおよび
気体の炭素化合物11bを含む気体(CH4 などの炭化
水素やCO,CO2 )を注入して導波管7内の圧力を一
定に保ち、マイクロ波発振器1からマイクロ波を出力す
ると、導波管7内にプラズマ4が生成される。
Next, the operation of the carbon thin film forming apparatus of this embodiment will be described. After the valve 12 is closed and the inside of the waveguide 7 is evacuated to 10 -5 to 10 -7 Torr by the vacuum exhaust device 10,
The valve 12 is opened to inject a gas (hydrocarbon such as CH 4 or CO, CO 2 ) containing hydrogen 11a and a gaseous carbon compound 11b from the gas supply system 11 to keep the pressure in the waveguide 7 constant. When microwaves are output from the microwave oscillator 1, plasma 4 is generated in the waveguide 7.

【0018】このプラズマ4の励起作用で解離した炭素
化合物11bの炭素が導波管7の内面に蒸着してカーボ
ン系薄膜13が形成される。すなわち、図2に示すよう
に導波管7の材質がステンレス鋼からなり、その内面に
はマイクロ波の管壁損失を軽減するために銅メッキ7a
が施され、その銅メッキ7a上に化学的気相成長法によ
るカーボン系薄膜13が形成される。このカーボン系薄
膜13はプラズマ4の状態に起因する炭素の結合状態に
よってカーボン,グラファイト,ダイヤモンドおよびダ
イヤモンドライクカーボンから選択される少なくとも一
種になる。
The carbon of the carbon compound 11b dissociated by the exciting action of the plasma 4 is vapor-deposited on the inner surface of the waveguide 7 to form the carbon-based thin film 13. That is, as shown in FIG. 2, the material of the waveguide 7 is made of stainless steel, and the inner surface of the waveguide 7 is copper-plated 7a in order to reduce the microwave tube wall loss.
The carbon-based thin film 13 is formed on the copper plating 7a by the chemical vapor deposition method. The carbon-based thin film 13 is at least one selected from carbon, graphite, diamond, and diamond-like carbon depending on the bonding state of carbon resulting from the state of plasma 4.

【0019】このように導波管7の内面にカーボン系薄
膜13を形成すると、大出力マイクロ波を伝送しても、
カーボン系薄膜13の2次電子放出係数が1以下である
ので、マルチパクタ放電は起こらず、安定してマイクロ
波を伝送できる。
When the carbon thin film 13 is formed on the inner surface of the waveguide 7 as described above, even if a high power microwave is transmitted,
Since the secondary electron emission coefficient of the carbon-based thin film 13 is 1 or less, multipactor discharge does not occur and microwaves can be stably transmitted.

【0020】図3は本発明に係る本発明に係るカーボン
系薄膜生成装置の第2実施例を示す構成図である。前記
第1実施例と同一の部分には同一の符号を付して説明す
る。この実施例では導波管7の外周にソレノイドコイル
14を配置し、このソレノイドコイル14に通電して導
波管7内に電子共鳴プラズマを作る。これにより、プラ
ズマの励起作用が活発になり、高品質膜を形成すること
ができる。その他の構成および作用は前記第1実施例と
同一であるのでその説明を省略する。
FIG. 3 is a block diagram showing a second embodiment of the carbon thin film forming apparatus according to the present invention. The same parts as those of the first embodiment are designated by the same reference numerals and described. In this embodiment, a solenoid coil 14 is arranged on the outer circumference of the waveguide 7, and the solenoid coil 14 is energized to generate electron resonance plasma in the waveguide 7. As a result, the plasma exciting action becomes active, and a high quality film can be formed. The rest of the configuration and operation are the same as in the first embodiment, so a description thereof will be omitted.

【0021】図4は本発明に係る本発明に係るカーボン
系薄膜生成装置の第3実施例を示す構成図である。前記
第1実施例と同一の部分には同一の符号を付して説明す
る。この実施例ではソレノイドコイル14を短尺にして
電子共鳴プラズマの領域部を狭くすると、局部的に一段
と強いプラズマを作ることができる。
FIG. 4 is a block diagram showing a third embodiment of the carbon thin film forming apparatus according to the present invention. The same parts as those of the first embodiment are designated by the same reference numerals and described. In this embodiment, if the solenoid coil 14 is made short and the region of electron resonance plasma is narrowed, a stronger plasma can be locally produced.

【0022】この場合には、ソレノイドコイル14を駆
動機構15で軸方向に移動可能に構成することで、導波
管7の全長に渡って高品質膜を形成することができる。
その他の構成および作用は前記第1実施例と同一である
のでその説明を省略する。
In this case, the solenoid coil 14 is configured to be movable in the axial direction by the drive mechanism 15, so that a high quality film can be formed over the entire length of the waveguide 7.
The rest of the configuration and operation are the same as in the first embodiment, so a description thereof will be omitted.

【0023】[0023]

【発明の効果】以上説明したように、本発明に係る導波
管によれば、電磁波を伝送し、放射する導波管におい
て、上記電磁波を伝搬する内部に水素および気体の炭素
化合物のガスプラズマを作り、内面に化学的気相成長法
でカーボン系薄膜を形成したことにより、マルチパクタ
放電が起こらない、大出力マイクロ波伝送・放射に適し
た導波管を提供することができる。
As described above, according to the waveguide of the present invention, in the waveguide that transmits and radiates electromagnetic waves, gas plasma of hydrogen and a gas carbon compound is propagated inside the electromagnetic waves. By forming a carbon-based thin film on the inner surface by chemical vapor deposition, it is possible to provide a waveguide suitable for high-power microwave transmission / radiation in which multipactor discharge does not occur.

【0024】また、本発明に係るカーボン系薄膜生成装
置によれば、導波管の一端に真空封止窓を介して接続さ
れたマイクロ波発振器と、上記導波管の他端に接続され
た真空排気装置と、上記導波管内に水素および気体の炭
素化合物を含む気体を注入するガス供給系とを備えたこ
とにより、別のCVDを用いることなく、導波管の内面
に付着力の強いカーボン薄膜を形成することができる。
Further, according to the carbon thin film generator of the present invention, the microwave oscillator connected to one end of the waveguide through the vacuum sealing window and the other end of the waveguide are connected. By providing a vacuum exhaust device and a gas supply system for injecting a gas containing hydrogen and a carbon compound of a gas into the waveguide, it is possible to strongly adhere to the inner surface of the waveguide without using another CVD. A carbon thin film can be formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るカーボン系薄膜生成装置の第1実
施例を示す構成図。
FIG. 1 is a configuration diagram showing a first embodiment of a carbon-based thin film production apparatus according to the present invention.

【図2】第1実施例のカーボン系薄膜生成装置にてカー
ボン系薄膜を形成した導波管を示す斜視図。
FIG. 2 is a perspective view showing a waveguide in which a carbon-based thin film is formed by the carbon-based thin film generation device of the first embodiment.

【図3】本発明に係るカーボン系薄膜生成装置の第2実
施例を示す構成図。
FIG. 3 is a configuration diagram showing a second embodiment of a carbon-based thin film generation apparatus according to the present invention.

【図4】本発明に係るカーボン系薄膜生成装置の第3実
施例を示す構成図。
FIG. 4 is a configuration diagram showing a third embodiment of a carbon-based thin film generator according to the present invention.

【図5】一般の高周波加熱装置の全体構成を示す概略構
成図。
FIG. 5 is a schematic configuration diagram showing an overall configuration of a general high-frequency heating device.

【図6】従来の導波管を示す斜視図。FIG. 6 is a perspective view showing a conventional waveguide.

【符号の説明】 1 マイクロ波発振器 4 プラズマ 7 導波管 7a 銅メッキ 10 真空排気装置 11 ガス供給系 11a 水素 11b 炭素化合物 12 弁 13 カーボン系薄膜 14 ソレノイドコイル[Explanation of Codes] 1 Microwave oscillator 4 Plasma 7 Waveguide 7a Copper plating 10 Vacuum exhaust device 11 Gas supply system 11a Hydrogen 11b Carbon compound 12 Valve 13 Carbon thin film 14 Solenoid coil

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 電磁波を伝送し、放射する導波管におい
て、上記電磁波を伝搬する内部に水素および気体の炭素
化合物のガスプラズマを作り、内面に化学的気相成長法
でカーボン系薄膜を形成したことを特徴とする導波管。
1. In a waveguide for transmitting and radiating an electromagnetic wave, a gas plasma of hydrogen and a carbon compound of a gas is created inside the electromagnetic wave propagating inside, and a carbon-based thin film is formed on the inner surface by a chemical vapor deposition method. A waveguide characterized in that
【請求項2】 カーボン系薄膜は、カーボン,グラファ
イト,ダイヤモンドおよびダイヤモンドライクカーボン
から選択される少なくとも一種であることを特徴とする
請求項1記載の導波管。
2. The waveguide according to claim 1, wherein the carbon-based thin film is at least one selected from carbon, graphite, diamond and diamond-like carbon.
【請求項3】 導波管の一端に真空封止窓を介して接続
されたマイクロ波発振器と、上記導波管の他端に接続さ
れた真空排気装置と、上記導波管内に水素および気体の
炭素化合物を含む気体を注入するガス供給系とを備えた
ことを特徴とするカーボン系薄膜生成装置。
3. A microwave oscillator connected to one end of the waveguide through a vacuum sealing window, a vacuum exhaust device connected to the other end of the waveguide, and hydrogen and gas in the waveguide. And a gas supply system for injecting a gas containing the carbon compound as described above.
【請求項4】 上記導波管の外周には、ソレノイドコイ
ルが設置され、上記導波管内に電子共鳴磁場領域を作っ
たことを特徴とする請求項3記載のカーボン系薄膜生成
装置。
4. The carbon-based thin film generator according to claim 3, wherein a solenoid coil is installed on the outer periphery of the waveguide to create an electron resonance magnetic field region in the waveguide.
【請求項5】 上記ソレノイドコイルは、上記導波管の
軸方向に移動可能に設置したことを特徴とする請求項4
記載のカーボン系薄膜生成装置。
5. The solenoid coil is installed so as to be movable in the axial direction of the waveguide.
The carbon-based thin film generator described.
JP5321950A 1993-12-21 1993-12-21 Waveguide and carbon based thin film generator Pending JPH07176916A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5321950A JPH07176916A (en) 1993-12-21 1993-12-21 Waveguide and carbon based thin film generator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5321950A JPH07176916A (en) 1993-12-21 1993-12-21 Waveguide and carbon based thin film generator

Publications (1)

Publication Number Publication Date
JPH07176916A true JPH07176916A (en) 1995-07-14

Family

ID=18138246

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5321950A Pending JPH07176916A (en) 1993-12-21 1993-12-21 Waveguide and carbon based thin film generator

Country Status (1)

Country Link
JP (1) JPH07176916A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041177A3 (en) * 1999-12-03 2001-12-13 Com Dev Ltd Production of a microwave device by applying a coating of yttrium-iron-garnet to the surface of the device to suppress secondary electron emission
JP2011035327A (en) * 2009-08-05 2011-02-17 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus
CN114439957A (en) * 2020-11-06 2022-05-06 新奥科技发展有限公司 Gate valve, microwave transmission device with same and microwave heating system
CN116631655A (en) * 2023-07-25 2023-08-22 中国科学院合肥物质科学研究院 Megawatt steady-state high-power conical water load

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001041177A3 (en) * 1999-12-03 2001-12-13 Com Dev Ltd Production of a microwave device by applying a coating of yttrium-iron-garnet to the surface of the device to suppress secondary electron emission
JP2011035327A (en) * 2009-08-05 2011-02-17 Mitsubishi Heavy Ind Ltd Vacuum processing apparatus
CN114439957A (en) * 2020-11-06 2022-05-06 新奥科技发展有限公司 Gate valve, microwave transmission device with same and microwave heating system
CN114439957B (en) * 2020-11-06 2024-04-09 新奥科技发展有限公司 Gate valve, microwave transmission device with same and microwave heating system
CN116631655A (en) * 2023-07-25 2023-08-22 中国科学院合肥物质科学研究院 Megawatt steady-state high-power conical water load

Similar Documents

Publication Publication Date Title
JPH0243368A (en) Method and apparatus for pcvd-coating of the inner swrface with use of microwave plasma
US6838126B2 (en) Method for forming I-carbon film
US5203959A (en) Microwave plasma etching and deposition method employing first and second magnetic fields
US4973883A (en) Plasma processing apparatus with a lisitano coil
JPH03260065A (en) Method for coating inner periphery of cylindrical body
JPH08506924A (en) Linear microwave source for plasma surface treatment
JP2005528755A (en) Sheet plasma generator
JPH07176916A (en) Waveguide and carbon based thin film generator
JPH0436465A (en) Microwave plasma generator
JPH09241406A (en) Apparatus for forming membrane and membrane formation
JPH07135094A (en) Material supply method and device for microwave induction plasma
JPS63227777A (en) Device for forming thin film
JP2913736B2 (en) CVD equipment
JPS6139730B2 (en)
JPH084039B2 (en) Plasma generation method and thin film deposition method
JPH08315998A (en) Microwave plasma treatment device
JP3010333B2 (en) Film forming method and film forming apparatus
JPS59103340A (en) Plasma processing apparatus
JPS59103331A (en) Plasma processing apparatus
JP2000008161A (en) Film producing device
JP2995705B2 (en) Hard carbon film forming method
JP2548785B2 (en) Electron cyclotron resonance plasma chemical vapor deposition equipment
JPH0331480A (en) Plasma treating device by microwave
JP2548786B2 (en) Electron cyclotron resonance plasma chemical vapor deposition equipment
JPS63240013A (en) Reaction device