JPH07176789A - Gallium phosphide green light emitting diode and its manufacture - Google Patents

Gallium phosphide green light emitting diode and its manufacture

Info

Publication number
JPH07176789A
JPH07176789A JP31993793A JP31993793A JPH07176789A JP H07176789 A JPH07176789 A JP H07176789A JP 31993793 A JP31993793 A JP 31993793A JP 31993793 A JP31993793 A JP 31993793A JP H07176789 A JPH07176789 A JP H07176789A
Authority
JP
Japan
Prior art keywords
layer
concentration
melt
concentration region
gallium phosphide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31993793A
Other languages
Japanese (ja)
Other versions
JP3326261B2 (en
Inventor
Shuji Katayama
修治 片山
Kenji Nakajima
健二 中島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Original Assignee
Tokyo Sanyo Electric Co Ltd
Tottori Sanyo Electric Co Ltd
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Sanyo Electric Co Ltd, Tottori Sanyo Electric Co Ltd, Sanyo Electric Co Ltd filed Critical Tokyo Sanyo Electric Co Ltd
Priority to JP31993793A priority Critical patent/JP3326261B2/en
Publication of JPH07176789A publication Critical patent/JPH07176789A/en
Application granted granted Critical
Publication of JP3326261B2 publication Critical patent/JP3326261B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Led Devices (AREA)

Abstract

PURPOSE:To provide a gallium phosphide green light emitting diode that emits green light of high luminance, and a method for its manufacture. CONSTITUTION:The gallium phosphide green light emitting diode consists of a n-type gallium phosphide substrate; a n-layer 4 that is formed on the substrate and that contains in proximity to its surface, positioned on the opposite side to the substrate, impurities of a concentration lower than that of impurities in the substrate; and a p-layer 8 that is formed on the n-layer 4. The p-layer 8 is formed so that it will includes a high concentration region 16 and a low concentration region 7. The high concentration region 6 contains impurities of a higher concentration in proximity to the p-n junction than in proximity to the surface of the n-layer 4. The low concentration region 7 contains impurities of a lower concentration on the side of its surface than that of impurities in the high concentration region 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は高輝度緑色発光をする燐
化ガリウム緑色発光ダイオードおよびその製造方法に関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gallium phosphide green light emitting diode which emits high brightness green light and a method for manufacturing the same.

【0002】[0002]

【従来の技術】従来、燐化ガリウム緑色発光ダイオード
は例えば特開昭59−80981号公報に示される様
に、図5の様な不純物濃度特性を示している。この図に
於て、n型の燐化ガリウム基板41上に高濃度の第1の
n層42と低濃度の第2のn層43と高濃度のp層44
が積層して形成されている。なお図の横軸は基板41の
底面からの各層の距離を示している。そして、pn接合
近傍の第2のn層43の不純物濃度を低くする事によ
り、輝度の向上を計っている。この様に従来、高輝度を
得るために、n層を多層にしたり不純物濃度の最適値を
見出す事が研究されている。
2. Description of the Related Art Conventionally, a gallium phosphide green light emitting diode has an impurity concentration characteristic as shown in FIG. 5, for example, as shown in JP-A-59-80981. In this figure, a high-concentration first n-layer 42, a low-concentration second n-layer 43, and a high-concentration p-layer 44 are formed on an n-type gallium phosphide substrate 41.
Are formed by stacking. The horizontal axis of the figure indicates the distance of each layer from the bottom surface of the substrate 41. The luminance is improved by reducing the impurity concentration of the second n layer 43 near the pn junction. As described above, in order to obtain high brightness, it has been studied to make the n-layer a multilayer and to find the optimum value of the impurity concentration.

【0003】[0003]

【発明が解決しようとする課題】しかし、上述の発光ダ
イオードを樹脂コーティングしない裸の状態で10mA
で駆動し輝度測定すると約1.1mcdであり、例えば
高輝度とされる砒化ガリウムアルミニウムからなる赤色
発光ダイオードの約2.3mcdと比べて、まだ輝度が
低い。そこで本発明者は更に高輝度を目指して、従来の
発光ダイオードの特にp層に着目して研究を行った。そ
の結果、第2のn層43と融液を接触させながら融液を
冷却してエピタキシャル成長させる、p層44の製造工
程に問題が有る事を究明した。
However, the above-mentioned light emitting diode is 10 mA in a bare state without resin coating.
The brightness is about 1.1 mcd when measured by driving at 1, and the brightness is still lower than, for example, about 2.3 mcd of the red light emitting diode made of gallium aluminum arsenide, which is considered to have high brightness. Therefore, the present inventor has conducted research aiming at higher brightness, focusing on the p-layer of the conventional light-emitting diode. As a result, it was found that there is a problem in the manufacturing process of the p layer 44, in which the melt is cooled and epitaxially grown while the second n layer 43 is in contact with the melt.

【0004】すなわち、成長時に融液の温度が徐々に下
がる時、融液中の不純物としての亜鉛の蒸発量が少なく
なるので、融液中の亜鉛の濃度が上がり、図5の様にp
層44の表面側の不純物濃度が高くなる。そのため、p
層44の表面側での欠陥が増え、キャリアが発光に寄与
しない欠陥にトラップされる量が増えるので、高輝度が
得られない事が判った。故に本発明はこの様な従来の欠
点を考慮して、特にp層に着目してなされたものであ
り、高輝度緑色発光をする燐化ガリウム緑色発光ダイオ
ードおよびその製造方法を提供するものである。
That is, when the temperature of the melt gradually decreases during growth, the amount of zinc evaporated as an impurity in the melt decreases, so the concentration of zinc in the melt increases, and as shown in FIG.
The impurity concentration on the surface side of the layer 44 is increased. Therefore, p
It was found that high luminance cannot be obtained because defects increase on the surface side of the layer 44 and the amount of carriers trapped in defects that do not contribute to light emission increases. Therefore, the present invention has been made in view of the above-mentioned conventional drawbacks, particularly focusing on the p layer, and provides a gallium phosphide green light emitting diode which emits high brightness green light and a manufacturing method thereof. .

【0005】[0005]

【課題を解決するための手段】上述の課題を解決するた
めに第1の本発明は、n型の燐化ガリウム基板と、基板
上に形成されかつ少なくとも基板と反対側の表面近傍に
於て基板より低濃度の不純物を含むn層と、n層上に形
成されたp層とを備え、p層がpn接合近傍に於てn層
の表面近傍より高濃度の不純物を含む高濃度領域と、表
面側に於て高濃度領域より低濃度の不純物を含む低濃度
領域を有する様に設けるものである。
In order to solve the above-mentioned problems, a first aspect of the present invention provides an n-type gallium phosphide substrate and a surface formed on the substrate and at least near the surface opposite to the substrate. An n layer containing an impurity at a concentration lower than that of the substrate and a p layer formed on the n layer are provided, and the p layer has a high concentration region containing an impurity at a concentration higher than that near the surface of the n layer near the pn junction. The front surface side is provided with a low-concentration region containing a lower concentration of impurities than the high-concentration region.

【0006】また第2の本発明は、n型の燐化ガリウム
基板に融液を接触させn層を成長させる第1の工程と、
融液にp型の不純物を添加しn層上にp型の高濃度領域
を成長させる第2の工程と、融液を略一定温度に保持し
融液中の不純物を飛散させる第3の工程と、高濃度領域
に融液を接触させ高濃度領域上にp型の低濃度領域を成
長させる第4の工程とを設けるものである。
The second aspect of the present invention comprises a first step of growing a n-layer by bringing a melt into contact with an n-type gallium phosphide substrate.
A second step of adding a p-type impurity to the melt to grow a p-type high-concentration region on the n-layer, and a third step of keeping the melt at a substantially constant temperature and scattering the impurities in the melt. And a fourth step of bringing the melt into contact with the high concentration region and growing a p-type low concentration region on the high concentration region.

【0007】[0007]

【作用】上述の様に第1の本発明では、p層の高濃度領
域とn層の低濃度の表面近傍との間の大きいエネルギー
レベルの差により、キャリアの光閉じ込め量が多い発光
効率の高い光は、キャリアが発光に寄与しない欠陥にト
ラップされる量が少なく非発光再結合の割合が少ない、
欠陥の少ないp層の低濃度領域を通るので、発光効率の
減少が少なく、輝度の高いものとして放出される。
As described above, in the first aspect of the present invention, the large energy level difference between the high-concentration region of the p-layer and the vicinity of the low-concentration surface of the n-layer causes a large amount of carriers to be confined in light emission efficiency. High light has a small amount of carriers trapped in defects that do not contribute to light emission and has a low rate of non-radiative recombination.
Since the light passes through the low-concentration region of the p-layer with few defects, the emission efficiency is small and the light is emitted as high brightness.

【0008】また第2の本発明では、高濃度領域を成長
させた後に融液を略一定温度に保持し融液中の不純物を
飛散させるので、融液中の不純物濃度が下がり、高濃度
領域上に低濃度領域が連続して形成される。
Further, in the second aspect of the present invention, after the high concentration region is grown, the melt is held at a substantially constant temperature to scatter the impurities in the melt, so that the impurity concentration in the melt is lowered and the high concentration region is increased. A low concentration region is continuously formed on the upper side.

【0009】[0009]

【実施例】次に本発明の実施例を図1に従い説明する。
図1は本実施例に係る燐化ガリウム緑色発光ダイオード
の断面図である。図1に於て、基板1は例えば厚さ約2
15μmのn型の燐化ガリウムからなり、不純物濃度は
1〜4×1017cm-3である。
EXAMPLE An example of the present invention will be described below with reference to FIG.
FIG. 1 is a sectional view of a gallium phosphide green light emitting diode according to this embodiment. In FIG. 1, the substrate 1 has, for example, a thickness of about 2
It is made of n-type gallium phosphide having a thickness of 15 μm and has an impurity concentration of 1 to 4 × 10 17 cm −3 .

【0010】第1のn層2は基板1上に形成され、例え
ば厚さ約30μmのn型燐化ガリウムからなり、不純物
濃度は約1018cm-3と比較的高濃度のものである。第
2のn層3は第1のn層2上に形成され、例えば厚さ約
15μmのn型燐化ガリウムからなり、不純物濃度は約
2〜5×1015cm-3と比較的低濃度のものである。こ
の様にn層4は第1のn層2と第2のn層3により構成
され、基板1と反対側の表面近傍に於て基板1より低濃
度不純物を含む様に設けられている。
The first n-layer 2 is formed on the substrate 1 and is made of, for example, n-type gallium phosphide having a thickness of about 30 μm and has a relatively high impurity concentration of about 10 18 cm -3 . The second n-layer 3 is formed on the first n-layer 2, is made of, for example, n-type gallium phosphide having a thickness of about 15 μm, and has an impurity concentration of about 2-5 × 10 15 cm −3, which is a relatively low concentration. belongs to. Thus, the n-layer 4 is composed of the first n-layer 2 and the second n-layer 3, and is provided in the vicinity of the surface on the opposite side of the substrate 1 so as to contain a lower concentration impurity than the substrate 1.

【0011】立上り領域5は第2のn層3上に形成さ
れ、例えば厚さ約2μmのp型燐化ガリウムからなる。
立上り領域5は第2のn層3との界面側に於て不純物濃
度が第2のn層3と同一であり、表面側に於て2〜5×
1017cm-3であり、表面に近い程、不純物濃度が徐々
に高くなる様に形成されている。
The rising region 5 is formed on the second n-layer 3 and is made of, for example, p-type gallium phosphide having a thickness of about 2 μm.
The rising region 5 has the same impurity concentration as that of the second n layer 3 on the interface side with the second n layer 3 and 2 to 5 × on the surface side.
It is 10 17 cm −3 , and the impurity concentration is gradually increased toward the surface.

【0012】高濃度領域6は立上り領域5上に形成さ
れ、例えば厚さ約4μmのp型燐化ガリウムからなり、
不純物濃度は約2〜5×1017cm-3である。低濃度領
域7は高濃度領域6上に形成され、例えば厚さ10〜1
5μmのp型燐化ガリウムからなる。低濃度領域7は高
濃度領域6との界面側に於て不純物濃度が高濃度領域6
と同一であり、表面側に於て0.6〜1.5×1017
-3の濃度である。
The high concentration region 6 is formed on the rising region 5 and is made of, for example, p-type gallium phosphide having a thickness of about 4 μm,
The impurity concentration is about 2 to 5 × 10 17 cm −3 . The low-concentration region 7 is formed on the high-concentration region 6 and has, for example, a thickness of 10 to 1
It is composed of 5 μm of p-type gallium phosphide. The low-concentration region 7 has a high impurity-concentration region 6 on the interface side with the high-concentration region 6.
The same as the above, and 0.6 to 1.5 × 10 17 c on the surface side
The concentration is m -3 .

【0013】この様にp層8は立上り領域5と高濃度領
域6と低濃度領域7とで構成され、高濃度領域6はn層
4の表面近傍より高濃度の不純物を有している。そして
p層8は、表面側がpn接合9の近傍の高濃度領域6よ
りも、不純物濃度が低くなる様に形成されている。そし
て基板1の裏面にn側電極10と、低濃度領域7の表面
にp側電極が形成され、これらの各層により本実施例の
燐化ガリウム緑色発光ダイオード12が構成されてい
る。
As described above, the p-layer 8 is composed of the rising region 5, the high-concentration region 6 and the low-concentration region 7, and the high-concentration region 6 has a higher concentration of impurities than the vicinity of the surface of the n-layer 4. The p layer 8 is formed such that the surface side has a lower impurity concentration than the high concentration region 6 near the pn junction 9. Then, an n-side electrode 10 is formed on the back surface of the substrate 1, and a p-side electrode is formed on the surface of the low-concentration region 7, and these layers constitute the gallium phosphide green light emitting diode 12 of this embodiment.

【0014】この発光ダイオード12を樹脂コーティン
グしない裸の状態で10mAで駆動し輝度測定すると、
約2.2mcdであり、従来の発光ダイオードに比べて
約2倍の高輝度が得られ、砒化ガリウムアルミニウムの
赤色発光ダイオードと略同じ程度の輝度が得られる。
When the light emitting diode 12 is driven at 10 mA in a bare state without resin coating and the luminance is measured,
The brightness is about 2.2 mcd, which is about twice as high as that of the conventional light emitting diode, and about the same as the brightness of the red light emitting diode of gallium aluminum arsenide.

【0015】この様に高輝度が得られる理由は上述の様
に、高濃度領域6の不純物濃度2〜5×1017cm-3
対して、低濃度領域7の表面側の濃度を0.6〜1.5
×1017cm-3と低くしたため、p層8での非発光再結
合の割合いが減ったためである。
As described above, the reason why such high brightness is obtained is that the impurity concentration in the high concentration region 6 is 2 to 5 × 10 17 cm −3 , and the concentration on the surface side of the low concentration region 7 is 0. 6-1.5
This is because the ratio of non-radiative recombination in the p-layer 8 is reduced because it is as low as × 10 17 cm −3 .

【0016】本発明者の実験によると、非発光再結合の
割合いを減らすには、低濃度領域7の濃度勾配が重要な
因子である事が判った。濃度勾配とは、低濃度領域7の
高濃度領域6との界面での濃度を表面での濃度で割った
値を低濃度領域7の層厚で割ったものである。実験によ
ると、この濃度勾配が0.15/μm以上の場合、約
2.2mcd以上の高輝度が得られるが、0.15/μ
m未満の場合、急峻に輝度が低下する事が判った。
According to the experiments of the present inventor, it was found that the concentration gradient in the low concentration region 7 is an important factor in reducing the rate of non-radiative recombination. The concentration gradient is a value obtained by dividing the concentration at the interface between the low concentration region 7 and the high concentration region 6 by the concentration on the surface, divided by the layer thickness of the low concentration region 7. According to the experiment, when the concentration gradient is 0.15 / μm or more, a high brightness of about 2.2 mcd or more can be obtained.
It was found that when it was less than m, the brightness was sharply reduced.

【0017】更に、立上り領域5の濃度勾配も輝度にと
って重要な因子である事が判った。この濃度勾配とは、
立上り領域5の高濃度領域6との界面での濃度を第2の
n層3との界面での濃度で割った値を立上り領域5の層
厚で割ったものである。実験の結果、この濃度勾配が1
000/μm以下の場合、約2.2mcd以上の高輝度
が得られ、1000/μmを越えると、急峻に輝度が低
下する。この濃度勾配を緩やかにする事により、pn接
合9から上方に出た光がp層8内で反射されたり吸収さ
れる量が減るためと考えられる。
Further, it has been found that the density gradient in the rising region 5 is also an important factor for brightness. What is this concentration gradient?
The value obtained by dividing the concentration at the interface of the rising region 5 with the high concentration region 6 by the concentration at the interface with the second n layer 3 is divided by the layer thickness of the rising region 5. As a result of the experiment, this concentration gradient is 1
When it is 000 / μm or less, a high brightness of about 2.2 mcd or more is obtained, and when it exceeds 1000 / μm, the brightness sharply decreases. It is considered that by making this concentration gradient gentle, the amount of light emitted upward from the pn junction 9 is reflected or absorbed in the p layer 8 is reduced.

【0018】次に本実施例の燐化ガリウム緑色発光ダイ
オード12の製造方法を説明する。最初に製造装置13
を図2の模式図に従い概略説明する。この図に於て、石
英等からなる反応炉14の中にカーボン等からなる基台
15が配置されている。燐化ガリウム単結晶基板16が
基台15の凹部17に収納されている。摺動自在の融液
溜18が基台15の表面上に配置されている。融液溜1
8には、基台15の表面を底面とする透孔19が設けら
れており、エピタキシャル成長用の融液20が入れてあ
る。エピタキシャル成長の工程に於て、最初に融液20
と単結晶基板16は完全に分離した状態で昇温し、その
後融液溜18を摺動させて融液21と単結晶基板16を
接触させている。
Next, a method of manufacturing the gallium phosphide green light emitting diode 12 of this embodiment will be described. First manufacturing equipment 13
Will be briefly described with reference to the schematic diagram of FIG. In this figure, a base 15 made of carbon or the like is arranged in a reaction furnace 14 made of quartz or the like. The gallium phosphide single crystal substrate 16 is housed in the recess 17 of the base 15. A slidable melt reservoir 18 is arranged on the surface of the base 15. Melt reservoir 1
8 is provided with a through hole 19 whose bottom surface is the surface of the base 15, and contains a melt 20 for epitaxial growth. In the process of epitaxial growth, first melt 20
The temperature of the single crystal substrate 16 is raised in a completely separated state, and then the melt reservoir 18 is slid to bring the melt 21 into contact with the single crystal substrate 16.

【0019】ヒータ22は反応炉14の側面に設けられ
ており、ヒータ22への電流を制御する事により、融液
21の温度が制御されている。ガス供給口23と不純物
供給口24を通じて各々ガス及び不純物としての亜鉛の
粉末が、反応炉14内に供給される。必要に応じてガス
排出口25を通じて内部のガスが排出される。
The heater 22 is provided on the side surface of the reaction furnace 14, and the temperature of the melt 21 is controlled by controlling the current to the heater 22. Gas and zinc powder as impurities are supplied into the reaction furnace 14 through the gas supply port 23 and the impurity supply port 24, respectively. Internal gas is discharged through the gas discharge port 25 as needed.

【0020】更に、この燐化ガリウム緑色発光ダイオー
ド12の製造方法を図2と図3と図4に従い説明する。
図3はその製造方法を説明するための液相エピタキシャ
ル成長の温度工程図であり、図4はそのようにして製造
された燐化ガリウム緑色発光ダイオード12の不純物濃
度図である。まず工程26に示す様に、融液21を約1
030℃に維持しながら、反応炉14中に水素を供給
し、その後に硫化水素(H2S)を約1分間水素に混ぜ
て、融液21中に主ドナー不純物となる硫黄を導入す
る。
Further, a method of manufacturing the gallium phosphide green light emitting diode 12 will be described with reference to FIGS. 2, 3 and 4.
FIG. 3 is a temperature step diagram of liquid phase epitaxial growth for explaining the manufacturing method, and FIG. 4 is an impurity concentration diagram of the gallium phosphide green light emitting diode 12 thus manufactured. First, as shown in step 26, about 1 of the melt 21 is added.
While maintaining the temperature at 030 ° C., hydrogen is supplied into the reaction furnace 14, and then hydrogen sulfide (H 2 S) is mixed with hydrogen for about 1 minute to introduce sulfur as a main donor impurity into the melt 21.

【0021】その後に工程27に示す様に融液21を約
2.5℃/分の割合いで降温させる事により、n型の燐
化ガリウム基板1上に第1のn層2をエピタキシャル成
長させる。この時形成された第1のn層2は不純物濃度
が約1018cm-3で、厚さは約30μmである。
After that, as shown in step 27, the melt 21 is cooled at a rate of about 2.5 ° C./min to epitaxially grow the first n-layer 2 on the n-type gallium phosphide substrate 1. The first n-layer 2 formed at this time has an impurity concentration of about 10 18 cm −3 and a thickness of about 30 μm.

【0022】その後工程28に示す様に、融液21を長
時間保持するが、その前半に於て工程26で導入した硫
黄が飛散し、後半の最初に於てアンモニアガス(N
3)を5cm3/分の割合で反応炉14中に導入する。
その結果、融液21中にシリコン窒化物(Si34)が
析出して、融液21の硫黄濃度とシリコン濃度が低下す
る。
Thereafter, as shown in step 28, the melt 21 is held for a long time, but the sulfur introduced in step 26 is scattered in the first half, and the ammonia gas (N
H 3 ) is introduced into the reaction furnace 14 at a rate of 5 cm 3 / min.
As a result, silicon nitride (Si 3 N 4 ) is precipitated in the melt 21, and the sulfur concentration and silicon concentration of the melt 21 are reduced.

【0023】次に工程29に示す様に、融液21を約
2.5℃/分の割合いで降温させる事により、第1のn
層上に第3のn層3aをエピタキシャル成長させる。こ
の時形成された第3のn層3aは不純物濃度が2〜5×
1015cm-3で、厚さは約17μmである。これらの工
程27、28、29により第1の工程が構成される。
Next, as shown in step 29, the melt 21 is cooled at a rate of about 2.5 ° C./min, so that the first n
A third n-layer 3a is epitaxially grown on the layer. The third n layer 3a formed at this time has an impurity concentration of 2 to 5 ×.
At 10 15 cm -3 , the thickness is about 17 μm. These steps 27, 28 and 29 constitute the first step.

【0024】その後工程30に示す様に、反応炉14内
に亜鉛(Zn)の粉末を導入しながら、融液21を長時
間保持する。その後第2の工程31に示す様に、融液2
1を約2.5℃/分の割合いで降温させる事により、第
3のn層3a上にp型の高濃度領域6をエピタキシャル
成長させる。この高濃度領域6は不純物濃度が2〜5×
1017cm-3で、厚さは約4μmである。
Thereafter, as shown in step 30, the melt 21 is held for a long time while introducing zinc (Zn) powder into the reaction furnace 14. Then, as shown in the second step 31, the melt 2
By lowering the temperature of 1 at a rate of about 2.5 ° C./min, the p-type high concentration region 6 is epitaxially grown on the third n layer 3a. The high concentration region 6 has an impurity concentration of 2 to 5 ×.
At 10 17 cm −3 , the thickness is about 4 μm.

【0025】次に第3の工程32に示す様に、融液21
を約885℃に約3時間保持する。この時、第3のn層
3aの表面近傍の内部は隣接する高濃度領域6内の亜鉛
が移動し拡散される。その結果、第3のn層3aは第2
のn層3と、その上に形成されたp型の立上がり領域5
に変化する。
Next, as shown in the third step 32, the melt 21
At about 885 ° C for about 3 hours. At this time, zinc in the adjacent high concentration region 6 moves and diffuses inside the surface of the third n-layer 3a. As a result, the third n-layer 3a becomes the second
N layer 3 and a p-type rising region 5 formed thereon
Changes to.

【0026】即ち、第2のn層3はpn接合の上に形成
され、不純物濃度が2〜5×1015cm-3で、厚さが約
15μmのものである。そしてp型の立上がり領域5
は、第2のn層3の表面上に形成され、その厚さは約2
μmであり、裏面が第2のn層3と同じ濃度2〜5×1
15cm-3から、表面が高濃度領域6と同じ濃度2〜5
×1017cm-3になる様に、濃度が連続的に増加する。
また、この様に第2の工程31でp型の高濃度領域6を
形成した後に、第3の工程32により高温(約885
℃)かつ長時間(約3時間)融液21を保持する事によ
り、融液21内の亜鉛が飛散するので、融液21内の亜
鉛濃度は徐々に低下する。
That is, the second n layer 3 is formed on the pn junction and has an impurity concentration of 2 to 5 × 10 15 cm -3 and a thickness of about 15 μm. And the p-type rising region 5
Is formed on the surface of the second n-layer 3 and has a thickness of about 2
μm and the back surface has the same concentration as that of the second n layer 3 of 2 to 5 × 1.
From 0 15 cm -3 , the surface has the same density as that of the high-concentration region 6 2-5.
The concentration continuously increases so that the concentration becomes × 10 17 cm -3 .
Further, after the p-type high concentration region 6 is formed in the second step 31 in this manner, a high temperature (about 885) is set in the third step 32.
By holding the melt 21 for a long time (about 3 hours), zinc in the melt 21 scatters, so that the zinc concentration in the melt 21 gradually decreases.

【0027】その後に第4の工程33に示す様に、融液
21を約2.5℃/分の割合いで約885℃から約75
0℃に到るまで降温させる事により、高濃度領域6上に
p型の低濃度領域7を形成する。低濃度領域7は厚さが
約10〜15μmである。この様に、低濃度領域7は裏
面が高濃度領域6と同じ濃度2〜5×1017cm-3
ら、表面が濃度約0.6〜1.5×1017cm-3となる
様に、濃度が連続的に減少する。これによりエピタキシ
ャル成長を完了する。
Thereafter, as shown in the fourth step 33, the melt 21 is melted at a rate of about 2.5 ° C./minute from about 885 ° C. to about 75 ° C.
By decreasing the temperature to 0 ° C., the p-type low concentration region 7 is formed on the high concentration region 6. The low concentration region 7 has a thickness of about 10 to 15 μm. Thus, in the low-concentration region 7, the back surface has the same concentration of 2 to 5 × 10 17 cm −3 as the high-concentration region 6, and the front surface has a concentration of about 0.6 to 1.5 × 10 17 cm −3 . , The concentration decreases continuously. This completes the epitaxial growth.

【0028】その後に工程34に示す様に、亜鉛の供給
を停止し、水素ガスをアルゴン(Ar)ガスに切替え、
ヒータ22の供給を停止し自然冷却する事により、反応
炉14内での作業を完了する。
Thereafter, as shown in step 34, the supply of zinc is stopped and the hydrogen gas is switched to argon (Ar) gas,
The work in the reaction furnace 14 is completed by stopping the supply of the heater 22 and naturally cooling it.

【0029】その後に上述の基板上にエピタキシャル成
長したウエハの表面と裏面に各々電極を形成し、ダイシ
ングする事により、上述の燐化ガリウム緑色発光ダイオ
ード12が得られる。
Thereafter, electrodes are formed on the front surface and the back surface of the wafer epitaxially grown on the above-mentioned substrate, respectively, and dicing is performed to obtain the above-mentioned gallium phosphide green light-emitting diode 12.

【0030】[0030]

【発明の効果】上述の様に第1の本発明では、p層の高
濃度領域とn層の低濃度の表面近傍との間の大きいエネ
ルギーレベルの差により、キャリアの光閉じ込め量が多
い発光効率の高い光は、キャリアが発光に寄与しない欠
陥にトラップされる量が少なく非発光再結合の割合が少
ない、欠陥の少ないp層の低濃度領域を通るので、発光
効率の減少が少なく、輝度の高いものとして放出され
る。
As described above, in the first aspect of the present invention, due to the large energy level difference between the high-concentration region of the p-layer and the vicinity of the low-concentration surface of the n-layer, light emission in which a large amount of carriers are confined in the light is emitted. Highly efficient light passes through the low concentration region of the p layer with few defects, in which the amount of carriers trapped in defects that do not contribute to light emission is small and the ratio of non-radiative recombination is small. Released as high.

【0031】また第2の本発明では、高濃度領域を成長
させた後に融液を略一定温度に保持し融液中の不純物を
飛散させるので、融液中の不純物濃度が下がり、高濃度
領域上に低濃度領域が連続して形成される。
Further, in the second aspect of the present invention, after the high concentration region is grown, the melt is held at a substantially constant temperature to scatter the impurities in the melt, so that the impurity concentration in the melt is lowered and the high concentration region is increased. A low concentration region is continuously formed on the upper side.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例に係る燐化ガリウム緑色発光ダ
イオードの断面図である。
FIG. 1 is a cross-sectional view of a gallium phosphide green light emitting diode according to an embodiment of the present invention.

【図2】本発明の実施例に係る燐化ガリウム緑色発光ダ
イオードを製造するための装置の模式図である。
FIG. 2 is a schematic view of an apparatus for manufacturing a gallium phosphide green light emitting diode according to an embodiment of the present invention.

【図3】本発明の実施例に係る燐化ガリウム緑色発光ダ
イオードを製造するための温度工程図である。
FIG. 3 is a temperature process diagram for manufacturing a gallium phosphide green light emitting diode according to an embodiment of the present invention.

【図4】本発明の実施例に係る燐化ガリウム緑色発光ダ
イオードに於ける不純物濃度図である。
FIG. 4 is a diagram of impurity concentration in a gallium phosphide green light emitting diode according to an embodiment of the present invention.

【図5】従来の燐化ガリウム緑色発光ダイオードの不純
物濃度図である。
FIG. 5 is an impurity concentration diagram of a conventional gallium phosphide green light emitting diode.

【符号の説明】[Explanation of symbols]

1 基板 4 n層 5 立上り領域 6 高濃度領域 7 低濃度領域 8 p層 1 substrate 4 n layer 5 rising region 6 high concentration region 7 low concentration region 8 p layer

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 n型の燐化ガリウム基板と、その基板上
に形成されかつ少なくとも基板と反対側の表面近傍に於
て基板より低濃度の不純物を含むn層と、そのn層上に
形成されたp層とを備え、前記p層はpn接合近傍に於
て前記n層の表面近傍より高濃度の不純物を含む高濃度
領域と、その表面側に於て前記高濃度領域より低濃度の
不純物を含む低濃度領域を有する事を特徴とする燐化ガ
リウム緑色発光ダイオード。
1. An n-type gallium phosphide substrate, an n layer formed on the substrate and containing an impurity at a concentration lower than that of the substrate at least in the vicinity of the surface opposite to the substrate, and formed on the n layer. A high-concentration region containing impurities of a higher concentration than the vicinity of the surface of the n-layer near the pn junction and a lower concentration than the high-concentration region on the surface side. A gallium phosphide green light-emitting diode characterized by having a low-concentration region containing impurities.
【請求項2】 n型の燐化ガリウム基板に融液を接触さ
せn層を成長させる第1の工程と、前記融液にp型の不
純物を添加し前記n層上にp型の高濃度領域を成長させ
る第2の工程と、前記融液を略一定温度に保持し前記融
液中の不純物を飛散させる第3の工程と、前記高濃度領
域に前記融液を接触させ前記高濃度領域上にp型の低濃
度領域を成長させる第4の工程とを具備した事を特徴と
する燐化ガリウム緑色発光ダイオードの製造方法。
2. A first step of growing a n-layer by bringing a melt into contact with an n-type gallium phosphide substrate, and adding a p-type impurity to the melt to form a p-type high concentration on the n-layer. A second step of growing a region, a third step of keeping the melt at a substantially constant temperature to scatter impurities in the melt, and a step of bringing the melt into contact with the high concentration region and the high concentration region And a fourth step of growing a p-type low-concentration region on the top surface of the gallium phosphide green light emitting diode.
JP31993793A 1993-12-20 1993-12-20 Gallium phosphide green light emitting diode and method of manufacturing the same Expired - Fee Related JP3326261B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31993793A JP3326261B2 (en) 1993-12-20 1993-12-20 Gallium phosphide green light emitting diode and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31993793A JP3326261B2 (en) 1993-12-20 1993-12-20 Gallium phosphide green light emitting diode and method of manufacturing the same

Publications (2)

Publication Number Publication Date
JPH07176789A true JPH07176789A (en) 1995-07-14
JP3326261B2 JP3326261B2 (en) 2002-09-17

Family

ID=18115910

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31993793A Expired - Fee Related JP3326261B2 (en) 1993-12-20 1993-12-20 Gallium phosphide green light emitting diode and method of manufacturing the same

Country Status (1)

Country Link
JP (1) JP3326261B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035350A (en) * 2009-08-06 2011-02-17 Shin Etsu Handotai Co Ltd Epitaxial wafer, and light emitting diode

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011035350A (en) * 2009-08-06 2011-02-17 Shin Etsu Handotai Co Ltd Epitaxial wafer, and light emitting diode

Also Published As

Publication number Publication date
JP3326261B2 (en) 2002-09-17

Similar Documents

Publication Publication Date Title
US6445127B1 (en) Light-emitting device comprising gallium-nitride-group compound-semiconductor and method of manufacturing the same
JPS5863183A (en) 2-6 group compound semiconductor device
US5529938A (en) Method for producing light-emitting diode
JP2579326B2 (en) Epitaxial wafer and light emitting diode
JP3792817B2 (en) GaAsP epitaxial wafer and manufacturing method thereof
WO2001033642A1 (en) Gallium phosphide luminescent device
JP3326261B2 (en) Gallium phosphide green light emitting diode and method of manufacturing the same
JP3436379B2 (en) Gallium arsenide arsenide epitaxial wafer
JP2817577B2 (en) GaP pure green light emitting element substrate
JP4946247B2 (en) Epitaxial substrate and liquid phase epitaxial growth method
JP3104218B2 (en) Method for growing nitrogen-doped GaP epitaxial layer
JP3633806B2 (en) Epitaxial wafer and light-emitting diode manufactured using the same
JP3523412B2 (en) Manufacturing method of GaP: N light emitting diode
JPH0220077A (en) Manufacture of green-light emitting diode
JP2666525B2 (en) GaAs light emitting diode and method of manufacturing the same
JPH1065211A (en) Light-emitting diode
US6433365B1 (en) Epitaxial wafer and light emitting diode
JP3042566B2 (en) Manufacturing method of GaP-based light emitting device substrate
KR820001725B1 (en) Method of manufacturing a gallium phosphide light-emitting device
JPH04328878A (en) Manufacture of light emitting diode epitaxial wafer
KR820002001B1 (en) Method of manufacturing a galium phosphide light emitting device
JPH0547996B2 (en)
JPS599983A (en) Manufacture of gallium phosphide green light emitting diode
JPS5994479A (en) Blue color light emitting element
JPH10173218A (en) Epitaxial wafer for gap pure green light emitting diode

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080705

Year of fee payment: 6

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090705

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees