JPH07175270A - Magnetic substance dispersed resin carrier - Google Patents

Magnetic substance dispersed resin carrier

Info

Publication number
JPH07175270A
JPH07175270A JP5344487A JP34448793A JPH07175270A JP H07175270 A JPH07175270 A JP H07175270A JP 5344487 A JP5344487 A JP 5344487A JP 34448793 A JP34448793 A JP 34448793A JP H07175270 A JPH07175270 A JP H07175270A
Authority
JP
Japan
Prior art keywords
carrier
magnetic
magnetic substance
resin
dispersed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5344487A
Other languages
Japanese (ja)
Inventor
Yasuko Amano
靖子 天野
Yoshinobu Baba
善信 馬場
Shinya Mayama
進也 間山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP5344487A priority Critical patent/JPH07175270A/en
Publication of JPH07175270A publication Critical patent/JPH07175270A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a carrier for an electrophotographic developer faithfully developing an electrostatic latent image and giving a faithful image of an original while preventing the sticking of the carrier to an electrostatic latent image carrier and excellent in resolution, highlight reproducibility and thin line reproducibility. CONSTITUTION:When fine particles of a magnetic substance are dispersed in a bonding resin to obtain a magnetic substance dispersed resin carrier, an oriented liq. crystal-like polymer is contained in the bonding resin and the fine particles are allowed to satisfy (major axis size)/(minor axis size) >1. The objective magnetic substance dispersed resin carrier is obtd.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、トナーと混合して静電
荷像現像剤を構成する電子写真用磁性体分散型樹脂キャ
リアに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic substance dispersion type resin carrier for electrophotography, which is mixed with a toner to form an electrostatic image developer.

【0002】[0002]

【従来の技術】電子写真法として米国特許第2,29
7,691号明細書、特公昭42−23,910号公報
及び特公昭43−24,748号公報等に種々の方法が
記載されている。これらの方法は、いずれも光導電層に
原稿に応じた光像を照射する事により静電潜像を形成
し、トナーと呼ばれる着色微粉末を用いて該静電潜像を
現像し、必要に応じて紙等の転写材にトナー画像を転写
した後、加熱、加圧或いは溶剤蒸気等により定着し複写
物を得るものである。
2. Description of the Related Art U.S. Pat. No. 2,29 as an electrophotographic method
Various methods are described in Japanese Patent No. 7,691, Japanese Patent Publication No. 42-23,910 and Japanese Patent Publication No. 43-24,748. In all of these methods, an electrostatic latent image is formed by irradiating the photoconductive layer with a light image corresponding to the original, and the electrostatic latent image is developed using colored fine powder called toner, and the necessary Accordingly, the toner image is transferred onto a transfer material such as paper and then fixed by heating, pressurizing, solvent vapor or the like to obtain a copy.

【0003】該静電潜像を現像する工程は、通常潜像と
は反対の極性に帯電せしめたトナー粒子を静電引力によ
り吸引せしめて静電潜像上に付着させるものであるが
(反転現像の場合は、潜像の電荷と同極性の摩擦電荷を
有するトナーを使用)、一般にかかる静電潜像をトナー
を用いて現像する方法としては、大別してトナーをキャ
リアと呼ばれる媒体に小量分散させたいわゆる二成分系
現像剤を用いる方法と、キャリアを用いる事なくトナー
単独のいわゆる一成分系現像剤を用いる方法とがある。
In the step of developing the electrostatic latent image, toner particles charged to a polarity opposite to that of the ordinary latent image are attracted by electrostatic attraction and attached to the electrostatic latent image (reversal). In the case of development, a toner having a triboelectric charge of the same polarity as the latent image charge is used.) Generally, the method of developing such an electrostatic latent image with toner is roughly classified into a small amount of toner on a medium called a carrier. There are a method of using a so-called two-component developer dispersed and a method of using a so-called one-component developer of toner alone without using a carrier.

【0004】電子写真法は文書複写としては一応満足出
来るレベルに達しているものの、コンピューター及びハ
イビジョンの発達等により要求されるフルカラー画像の
出力画像に対しては、デジタル画像処理及び現像時交番
電界印加等の種々の手法により、高画質化及び高品位化
が計られてきた。更に今後も更なる高画質化及び高品位
化が望まれる。
Although the electrophotographic method has reached a satisfactory level as a document copy, a digital image processing and an alternating electric field application at the time of development are applied to an output image of a full-color image required by the development of computers and high-definition. Various techniques have been used to achieve high image quality and high quality. Furthermore, further improvement in image quality and quality is desired in the future.

【0005】従来よりフルカラー画像を出力するには、
二成分系現像剤が用いられている。一般にかかる二成分
系現像剤を構成するキャリアは、鉄粉に代表される導電
性キャリアと鉄粉、ニッケル又はフェライト等の表面を
絶縁性樹脂により被覆する事により、或いは磁性体微粒
子を絶縁性樹脂中に分散させる事により高抵抗化させ
た、いわゆる絶縁性キャリアとに大別される。高画質化
を計る為に交番電界を印加する場合、現像剤中のキャリ
アの抵抗が低いと潜像電位をキャリアがリークし、良好
な画像を得られなくなる為、キャリアとしてはある程度
以上の抵抗が必要である。よってキャリアのコア材が導
電性の場合、絶縁性樹脂等により表面を被覆して用いる
のが好ましい。又、抵抗がある程度高いフェライト或い
は磁性体分散型樹脂微粒子がキャリアとして好ましく用
いられている。
Conventionally, to output a full-color image,
A two-component developer is used. In general, the carrier that constitutes such a two-component developer is a conductive carrier typified by iron powder and the surface of iron powder, nickel, ferrite, or the like is coated with an insulating resin, or magnetic fine particles are coated with an insulating resin. It is roughly classified into a so-called insulating carrier in which the resistance is increased by dispersing it inside. When an alternating electric field is applied to measure high image quality, if the resistance of the carrier in the developer is low, the carrier leaks the latent image potential and a good image cannot be obtained. is necessary. Therefore, when the core material of the carrier is conductive, it is preferable to cover the surface with an insulating resin or the like before use. In addition, ferrite or magnetic material-dispersed resin fine particles having a high resistance to some extent are preferably used as carriers.

【0006】一般に、鉄粉は高磁気力の為、鉄粉を現像
剤中のキャリアとして用いると、現像剤中のトナーが潜
像を現像する現像領域において、現像剤の磁気ブラシが
硬くなる為にハキ目を生じたり、ガサツキ等を生じる為
に高画質な画像を得る事が出来ない。そこで、キャリア
の磁気力を低くして高画質化を計る為にも、フェライト
や樹脂のキャリアが好ましく用いられる。高品位画像を
形成する為に、特開昭59−104,663号公報に
は、キャリアの飽和磁化の値を50emu/g以下にし
たフェライト粒子を用いる事でハキ目のない良好な画像
を得る事が出来ると提案されているが、飽和磁化の値を
小さくしたキャリアを用いると細線の再現性は良好にな
る反面、磁極から離れるに従って静電潜像担持体(例え
ば感光体ドラム)上にキャリアが付着する現象(キャリ
ア付着)が顕著になってくる。更に、磁性体分散型樹脂
キャリアの場合には、比重が小さい事がこのキャリア付
着においては不利になる。
In general, iron powder has a high magnetic force. When iron powder is used as a carrier in a developer, the magnetic brush of the developer becomes hard in the developing area where the toner in the developer develops a latent image. It is not possible to obtain a high-quality image because of the sharp edges and the sharpness. Therefore, in order to reduce the magnetic force of the carrier and achieve high image quality, a ferrite or resin carrier is preferably used. In order to form a high-quality image, in JP-A-59-104,663, ferrite particles having a saturation magnetization value of carrier of 50 emu / g or less are used to obtain a good image without peeling. Although it has been proposed that a carrier with a small saturation magnetization value can be used, the fine line reproducibility is improved, but as the distance from the magnetic pole increases, the carrier on the electrostatic latent image carrier (for example, photoconductor drum) is increased. The phenomenon in which is attached (attachment of carrier) becomes remarkable. Further, in the case of a magnetic substance dispersion type resin carrier, the fact that the specific gravity is small is disadvantageous in the carrier adhesion.

【0007】又、特公平4−3,868号公報には、保
磁力が300ガウス以上という、いわゆるハードフェラ
イトをキャリアとして用いる事が提案されている。しか
し、これは高保磁力であるハードフェライトをキャリア
として使いこなす為の系であり、装置の大型化が避けら
れない。小型高画質カラー複写機を実現する為には固定
磁心を用いた現像剤担持体を使用する事が好ましく、高
保磁力を有するハードフェライトのキャリアはその自己
凝集性の為、かえって現像剤の搬送性が悪くなる。
Further, Japanese Examined Patent Publication (Kokoku) No. 4-3868 discloses that a so-called hard ferrite having a coercive force of 300 gauss or more is used as a carrier. However, this is a system for making full use of hard ferrite having a high coercive force as a carrier, and an increase in the size of the device cannot be avoided. In order to realize a compact high-quality color copier, it is preferable to use a developer carrier that uses a fixed magnetic core, and the hard ferrite carrier with a high coercive force is rather self-aggregating, which makes it easier to transport the developer. Becomes worse.

【0008】更に、特開平2−88,429号公報にス
ピネル相及びランタノイド系元素を含むマグネットプラ
ンバイト相よりなるハードフェライトをキャリアとして
用いる事が提案されているが、これは上記問題に加え、
該ハードフェライトが導電性を有する為に、高画質画像
を得る為の交番電界による現像システムにおいては、電
荷がキャリアを通してリークする為に現像を乱すという
点で好ましくない。従って、交番電界による現像システ
ムに用いるキャリアは、ある程度以上の電気抵抗がある
事が必要である。以上の様に、静電潜像担持体へのキャ
リア付着を防止しつつ、高画質、特にハイライトの再現
性を同時に満足する様な現像剤キャリアは未だ十分なも
のが得られていない。
Further, JP-A-2-88,429 proposes to use a hard ferrite composed of a magnet-plumbite phase containing a spinel phase and a lanthanoid element as a carrier.
Since the hard ferrite has conductivity, it is not preferable in a developing system using an alternating electric field for obtaining a high-quality image because electric charge leaks through the carrier and disturbs the development. Therefore, the carrier used in the developing system using the alternating electric field needs to have an electric resistance of a certain level or more. As described above, sufficient developer carriers have not yet been obtained that can prevent carrier adhesion to the electrostatic latent image carrier while simultaneously satisfying high image quality, particularly highlight reproducibility.

【0009】[0009]

【発明が解決しようとする問題点】従って本発明の目的
は、上述の如き従来の問題点を解決した電子写真用現像
剤キャリアを提供する事である。本発明の別の目的は、
静電潜像担持体へのキャリア付着を防止しつつ、原稿に
忠実、即ち、静電潜像を忠実に現像し、高解像性、高ハ
イライト再現性及び高細線再現性に優れた現像剤キャリ
アを提供する事にある。又、本発明の他の目的は、交番
電界の現像においても、潜像電位をキャリアがリークせ
ず、良好な現像画質を得る現像剤キャリアを提供する事
にある。又、本発明の他の目的は、高画質画像を得る為
の固定磁心系現像剤担持体を用いた小型現像器用の現像
剤キャリアを提供する事にある。更に本発明の他の目的
は、高画質を長期間に渡り維持し得る現像剤キャリアを
提供する事にある。
SUMMARY OF THE INVENTION Therefore, an object of the present invention is to provide an electrophotographic developer carrier which solves the above-mentioned conventional problems. Another object of the present invention is to
Development that is faithful to the original, that is, develops the electrostatic latent image faithfully while preventing the carrier from adhering to the electrostatic latent image carrier, and has excellent high resolution, high highlight reproducibility and high fine line reproducibility. It is to provide a drug carrier. Another object of the present invention is to provide a developer carrier which does not leak the latent image potential by the carrier even in the development of an alternating electric field and obtains a good developed image quality. Another object of the present invention is to provide a developer carrier for a small-sized developing device using a fixed magnetic core type developer carrying member for obtaining a high quality image. Still another object of the present invention is to provide a developer carrier capable of maintaining high image quality for a long period of time.

【0010】[0010]

【問題点を解決する為の手段】上記目的は、以下の本発
明によって達成される。即ち、本発明は、結着樹脂中に
磁性体微粒子を分散させてなる磁性体分散型キャリアで
あって、該キャリアの結着樹脂が配向された液晶性ポリ
マーを含有し、且つ上記磁性体微粒子として長軸/短軸
>1の磁性体が使用されていることを特徴とする磁性体
分散型樹脂キャリア、該磁性体分散型キャリアにおい
て、磁性体微粒子が少なくとも30%配向されており、
磁気的に飽和した後の磁場1,000エルステッドにお
ける磁化の強さ(σ1,000 )が30〜150emu/c
3 、磁場0エルステッドにおける磁化の強さ(残留
磁化:σr)が25emu/cm3 以上であり、保磁
力が300エルステッド未満であり、且つ更に磁化の強
さが下記式を満たす磁性体分散型樹脂キャリア、キャリ
ア粒子の平均粒径が5〜100μmであり、嵩密度が
3.0g/cm以下であり、磁性体分散型キャリアに
含有される磁性体の含有量が30〜99重量%である上
記の磁性体分散型樹脂キャリア、及びキャリアの比抵抗
が10〜1013Ω・cmである上記の磁性体分散型
樹脂キャリアである。
The above object can be achieved by the present invention described below. That is, the present invention is a magnetic substance-dispersed carrier obtained by dispersing magnetic fine particles in a binder resin, wherein the binder resin of the carrier contains an oriented liquid crystalline polymer, and the above magnetic fine particles are used. A magnetic substance-dispersed resin carrier characterized by using a magnetic substance having a major axis / minor axis> 1 as a magnetic substance dispersed particle carrier, wherein the magnetic substance fine particles are at least 30% oriented,
The magnetic intensity (σ 1,000 ) in the magnetic field of 1,000 oersted after magnetically saturated is 30 to 150 emu / c.
m 3 and magnetic field 0 oersted, the strength of magnetization (remanent magnetization: σr) is 25 emu / cm 3 or more, the coercive force is less than 300 oersted, and the strength of magnetization further satisfies the following formula: The average particle size of the resin carrier and carrier particles is 5 to 100 μm, the bulk density is 3.0 g / cm 3 or less, and the content of the magnetic substance contained in the magnetic substance dispersion type carrier is 30 to 99% by weight. The magnetic substance-dispersed resin carrier described above, and the magnetic substance-dispersed resin carrier having a specific resistance of 10 8 to 10 13 Ω · cm.

【数2】 [式中、σ1,000は、磁場1,000エルステッドにお
けるキャリアの磁化の強さ(emu/g)を示し、σ
300は、磁場300エルステッドにおけるキャリアの磁
化の強さ(emu/g)を示す。]
[Equation 2] [Wherein σ 1,000 represents the strength of carrier magnetization (emu / g) in a magnetic field of 1,000 oersteds, σ
300 indicates the strength (emu / g) of carrier magnetization in a magnetic field of 300 Oersted. ]

【0012】[0012]

【作用】本発明のキャリアが従来のキャリアの持つ諸欠
点を改善し、静電潜像担持体へのキャリア付着を防ぎつ
つ、原稿に忠実、即ち、静電潜像を忠実に現像し、なお
且つ高画質を長期間に渡り維持し得るのは、以下の理由
によると考えられる。
The carrier of the present invention improves the various drawbacks of the conventional carrier and prevents the carrier from adhering to the electrostatic latent image bearing member while faithfully developing the original, that is, developing the electrostatic latent image faithfully. It is considered that the high image quality can be maintained for a long period of time due to the following reasons.

【0013】潜像に対して忠実な現像を行う為には、現
像極での磁場においてキャリアの磁化の強さを弱くする
事が重要である。これはキャリアの磁化の強さが弱い事
で、現像剤キャリアの磁気ブラシが短く、密になり且つ
柔らかくなる事で潜像に対して忠実な現像が達成出来
る。この様に磁気ブラシが短く、密になり且つ柔らかく
なる事により、現像剤を振動させる交番電界を現像部に
印加する現像においては特に現像効率が上がり、又、よ
り高画質で忠実な現像が出来る。一般に現像極における
磁場の強さは1,000エルステッド程度であるので、
本発明のキャリアの磁気特性も、磁場1,000エルス
テッドにおける磁化の強さ(σ1,000 )を対象とし、そ
の値を30〜150emu/cm3と、好ましくは30
〜150emu/cm3した。
In order to faithfully develop the latent image, it is important to weaken the carrier magnetization in the magnetic field at the developing pole. This is because the magnetic strength of the carrier is weak, and the magnetic brush of the developer carrier is short, dense and soft, so that faithful development of the latent image can be achieved. By making the magnetic brush short, dense and soft in this way, the development efficiency is particularly improved in the development in which an alternating electric field that vibrates the developer is applied to the development section, and higher quality and faithful development can be performed. . Generally, the strength of the magnetic field at the developing pole is about 1,000 Oersted, so
The magnetic properties of the carrier of the present invention are also targeted for the strength of magnetization (σ 1,000 ) in a magnetic field of 1,000 oersted, and the value is 30 to 150 emu / cm 3 , preferably 30.
~150emu / cm 3 was.

【0014】又、本発明のもう一つの効果である、画質
の劣化を防止し初期の高画質画像を維持出来るのは、こ
の様な低磁気力のキャリアを用いる事で、固定磁石を内
包する現像剤担持体に二成分現像剤をコートする際、規
制部材付近での磁気ブラシとしてのキャリア相互の磁気
的な結合力が弱く、穂が柔らかい為にトナーに対してあ
まりシェアがかからないという事と、更に従来の鉄・フ
ェライト系キャリアに比べて樹脂キャリアは軽量である
為、現像器内での攪拌による負荷が小さく、現像剤の劣
化が大幅に削減され、高画質画像を長期にわたって維持
出来る。
Another advantage of the present invention is that the deterioration of the image quality can be prevented and the initial high quality image can be maintained, by using such a carrier having a low magnetic force, a fixed magnet is included. When a developer carrier is coated with a two-component developer, the magnetic coupling between the carriers as magnetic brushes in the vicinity of the regulation member is weak, and since the ears are soft, they do not share much with the toner. Further, since the resin carrier is lighter in weight than the conventional iron / ferrite carrier, the load due to stirring in the developing device is small, the deterioration of the developer is significantly reduced, and a high quality image can be maintained for a long time.

【0015】更に、詳細な検討を行ったところ、静電潜
像担持体へのキャリア付着は磁場の強さが0〜300エ
ルステッドにおいて生じ易く、その時のキャリアの磁化
の強さがある程度高い時には起こらないか、又は起こり
にくい事が判明した。又、静電潜像担持体へのキャリア
付着は現像のバイアス条件にも左右され、特に交番電界
による現像を行う場合、直流電界に比べ、キャリアが電
荷を有すると静電潜像担持体に移行し易くなり、キャリ
アを現像剤担持体に引き止めるには磁気力が必要とな
る。従って、静電潜像担持体へのキャリア付着を抑える
為には上記磁場における磁化のある程度の強さが必要で
あると考えられる。本発明のキャリアは、図2(針状の
粒子22が磁性体を示し、それが磁場の方向に対して配
向している様子を示している。又、配向度合を示す為の
角度±15°を図中に示してある。)に示す様に、キャ
リアの結着樹脂21中に分散した磁性体微粒子22を一
軸方向に30%以上配向させる処理を施す事により、残
留磁化の強さを強めた。これにより図1のヒステリシス
カーブに示される様に磁場1,000エルステッドでの
磁化の強さ(σ1,000 )が30〜150emu/cm3
と従来のキャリアに比べ小さいにも拘らず、0〜300
エルステッドでの磁化の強さの強い樹脂キャリアとな
り、高画質化と静電潜像担持体へのキャリア付着防止を
同時に達成し得た。
Further, as a result of a detailed study, carrier adhesion to the electrostatic latent image carrier is likely to occur when the magnetic field strength is 0 to 300 Oersted, and when the carrier magnetization strength is high to some extent. It turned out to be absent or unlikely. Further, the carrier adhesion to the electrostatic latent image carrier depends on the developing bias condition, and when developing by an alternating electric field, when the carrier has an electric charge, the carrier is transferred to the electrostatic latent image carrier as compared with the DC electric field. The magnetic force is required to hold the carrier on the developer carrying member. Therefore, in order to suppress the carrier adhesion to the electrostatic latent image carrier, it is considered necessary to have a certain degree of magnetization in the magnetic field. The carrier of the present invention is shown in FIG. 2 (the needle-shaped particles 22 show a magnetic substance and are oriented with respect to the direction of the magnetic field. Further, the angle ± 15 ° for showing the orientation degree is shown. Is shown in the figure), the strength of the residual magnetization is enhanced by performing a treatment for orienting 30% or more of the magnetic fine particles 22 dispersed in the binder resin 21 of the carrier in the uniaxial direction. It was As a result, as shown in the hysteresis curve of FIG. 1, the magnetization intensity (σ 1,000 ) in the magnetic field of 1,000 oersteds was 30 to 150 emu / cm 3.
And although it is smaller than the conventional carrier, 0-300
It became a resin carrier with strong magnetization in Oersted, and was able to achieve high image quality and prevention of carrier adhesion to the electrostatic latent image carrier at the same time.

【0016】本発明のキャリアの結着樹脂としては、固
体状態のみでなく溶融状態においても分子配向を示すい
わゆる液晶性を持った樹脂、即ち、液晶ポリマーを使用
する事を他の特徴とする。本発明の磁性体分散型樹脂キ
ャリアの結着樹脂に液晶ポリマーを使用する事によっ
て、より容易に射出成形若しくは磁場中での分子及び磁
性体の配向を行う事が出来る。この為、従来の結着樹脂
を用いた場合に比較して、より磁気特性の良好な磁性体
分散型樹脂キャリアを形成する事が可能となる。上述の
配向した液晶ポリマーである高分子マトリックスを結着
樹脂に使用することにより、そのバルクの弾性率を著し
く高められる為、高強度、高耐久且つ長寿命のキャリア
粒子及び現像剤組成物を提供する事が可能になる。更に
該結着樹脂は従来の樹脂樹脂に比較して耐溶剤性に優
れ、容易にキャリア被覆を行う事が出来、その結果、所
望の摩擦帯電水準を該キャリアに付与する事が出来る。
Another feature of the carrier binder resin of the present invention is that a resin having so-called liquid crystallinity, that is, a liquid crystal polymer that exhibits molecular orientation not only in the solid state but also in the molten state is used. By using a liquid crystal polymer as the binder resin of the magnetic substance-dispersed resin carrier of the present invention, it is possible to more easily perform injection molding or orient molecules and magnetic substances in a magnetic field. Therefore, it becomes possible to form a magnetic substance dispersion type resin carrier having better magnetic characteristics as compared with the case of using a conventional binder resin. By using the polymer matrix, which is the above-mentioned oriented liquid crystal polymer, as the binder resin, the bulk elastic modulus can be remarkably increased, and thus high-strength, highly durable and long-life carrier particles and a developer composition are provided. It becomes possible to do. Further, the binder resin has excellent solvent resistance as compared with conventional resin resins and can be easily coated with a carrier, and as a result, a desired triboelectric charge level can be imparted to the carrier.

【0017】一般に残留磁化の大きな磁性材料は保磁力
も大きく、いわゆる永久磁石の様なハードフェライトの
如きものとなる。即ち、キャリア中の磁性体に残留磁化
の大きな磁性材料を用いると、先述の様に自己凝集によ
るトナーとの混合性の不良や現像剤搬送性の不良が生じ
易い事から、回転磁心アプリケータの如き現像剤担持体
を持つ大型で特殊な現像器が必要となる。本発明は、そ
の様な一般的なハードフェライトの如き磁性材料をキャ
リア中の磁性体に用いるのではなく、保磁力が300エ
ルステッド未満となる様な低保磁力の磁性体微粒子を用
いる事により、固定磁心系現像剤担持体を用いた小型現
像器でも、トナーとの混合性及び現像剤搬送性の良好な
キャリアを提供するものである。
In general, a magnetic material having a large residual magnetization has a large coercive force and becomes a hard ferrite such as a so-called permanent magnet. That is, when a magnetic material having a large remanent magnetization is used for the magnetic substance in the carrier, as described above, a poor mixing property with the toner due to self-aggregation and a poor developer transporting property are likely to occur. A large and special developing device having such a developer carrying member is required. The present invention does not use such a general magnetic material such as hard ferrite for the magnetic substance in the carrier, but uses magnetic substance fine particles having a low coercive force such that the coercive force is less than 300 Oersted, Even a small-sized developing device using a fixed magnetic core type developer carrying member provides a carrier having a good mixing property with toner and a developer transporting property.

【0018】本発明のキャリア粒子の磁気特性は、以下
の様になる事が必要である。即ち、磁気的に飽和させた
後の磁場1,000エルステッドにおける磁化の強さ
(σ1,000 )が30〜150emu/cm3 、更に高画
質化を達成する為には、30〜100emu/cm3
ある事が好ましい。150emu/cm3 より大きい場
合には、現像極での現像剤キャリアの磁気ブラシの密度
が従来と変わらず、高画質な画像が得られにくくなる。
30emu/cm3 未満であると、磁気的な拘束力が減
少する為に静電潜像担持体へのキャリア付着を生じてし
まう。
The magnetic properties of the carrier particles of the present invention are required to be as follows. That is, the magnetization intensity (σ 1,000 ) in the magnetic field of 1,000 oersted after magnetically saturated is 30 to 150 emu / cm 3 , and in order to achieve higher image quality, it is 30 to 100 emu / cm 3 . Something is preferable. When it is higher than 150 emu / cm 3, the density of the magnetic brush of the developer carrier at the developing pole is the same as the conventional one, and it becomes difficult to obtain a high quality image.
If it is less than 30 emu / cm 3 , the magnetic restraining force is reduced, so that the carrier adheres to the electrostatic latent image carrier.

【0019】又、残留磁化の強さは、25emu/cm
3 以上である事が必要である。25emu/cm3 未満
であると、特に高画質化の為にコントラスト電位を大き
くとったり、又は振幅の大きい交番電界を用いる現像シ
ステムにおいて、静電潜像担持体へのキャリア付着が生
じ易くなり、現像後の転写プロセスにおいて該キャリア
付着部分が転写不良を起こす等により、高画質な画像が
得られにくくなる。
The strength of remanent magnetization is 25 emu / cm.
Must be 3 or higher. If it is less than 25 emu / cm 3 , in particular, in a developing system using a large contrast potential for high image quality or using an alternating electric field with a large amplitude, carrier adhesion to the electrostatic latent image bearing member is likely to occur, and development In the subsequent transfer process, the carrier-adhered portion causes a transfer failure, which makes it difficult to obtain a high-quality image.

【0020】更に、保磁力が300エルステッド未満で
ある事が必要である。300エルステッド以上であると
キャリア自体の自己凝集の為に、トナーとの混合性に劣
ったり、特に固定磁石を内包した現像剤担持体におい
て、キャリアが現像剤担持体上を容易に動く事が出来
ず、現像剤の搬送性が悪くなり、現像剤担持体上の現像
剤のコート状態が悪くなる為に高画質な画像が得られに
くい。
Further, it is necessary that the coercive force is less than 300 Oersted. When it is 300 oersteds or more, the carrier itself is self-aggregated, so that the mixing property with the toner is poor, and particularly in the developer carrier containing a fixed magnet, the carrier can easily move on the developer carrier. As a result, the transportability of the developer is deteriorated and the coat state of the developer on the developer carrier is deteriorated, so that it is difficult to obtain a high quality image.

【0021】更に本発明のキャリアにおいて重要な事
は、磁場0〜300エルステッド近傍における磁化の強
さである。即ち、本発明のキャリアの結着樹脂中に分散
された磁性体微粒子を30%以上配向させる処理を施
し、更に下記の式を満たす事である。
Further important in the carrier of the present invention is the strength of magnetization in the vicinity of a magnetic field of 0 to 300 Oersted. That is, it is necessary to perform a treatment for orienting 30% or more of the magnetic fine particles dispersed in the binder resin of the carrier of the present invention, and further satisfy the following formula.

【0022】[0022]

【数3】 [式中、σ1,000 は磁場1,000エルステッドにおけ
るキャリアの磁化の強さ(emu/g)を示し、σ300
は磁場300エルステッドにおけるキャリアの磁化の強
さ(emu/g)を示す。]
[Equation 3] [In the formula, σ 1,000 represents the strength of carrier magnetization (emu / g) in a magnetic field of 1,000 Oersted, and σ 300
Indicates the strength of carrier magnetization (emu / g) in a magnetic field of 300 Oersted. ]

【0023】上記式中の左辺の値が0.30以下である
のがより好ましい。ここで、図1のヒステリシスカーブ
をもって説明する。0.40を越えると、本発明の目的
の1つである、高画質化を計りつつ静電潜像担持体への
キャリア付着を防ぐ事が困難となる。即ち、σ1,000
満足する様な値を採ると高画質化が計れる反面、該キャ
リア付着を生じ易くなる。又、σ300 を満足する様な値
をとると該キャリア付着を防ぐ事が出来る反面、σ
1,000 の値が大きくなる事で本発明の様な高画質な画像
を得る事が困難になる。
It is more preferable that the value on the left side of the above formula is 0.30 or less. Here, the hysteresis curve of FIG. 1 will be described. When it exceeds 0.40, it is difficult to prevent carrier adhesion to the electrostatic latent image bearing member while achieving high image quality, which is one of the objects of the present invention. That is, if a value that satisfies σ 1,000 is taken, high image quality can be achieved, but the carrier adhesion is likely to occur. Further, if a value that satisfies σ 300 is taken, it is possible to prevent the carrier adhesion, but σ
When the value of 1,000 becomes large, it becomes difficult to obtain a high quality image as in the present invention.

【0024】[0024]

【好ましい実施態様】次に好ましい実施態様を挙げて本
発明を更に詳しく説明する。本発明のキャリアの結着樹
脂中に分散される磁性体の配向度合は、本発明に用いら
れる形状異方性を有する磁性体の配向確率で定義され、
フィールドエミッション走査電子顕微鏡(FE−SE
M)S−800(日立製作所(株)製)を用いて、キャ
リア断面の磁性体微粒子の配向を統計処理する事により
測定した。具体的には、ランダムに抽出された10個の
キャリア断面写真の中から、本発明に用いられる、形状
異方性の磁性体を100個以上ランダムに抽出し、磁場
の方向と考えられる方向の±15°の範囲内を向いてい
るものの比率を計算した。キャリア断面のサンプルは、
平行磁場中でエポキシ樹脂中にキャリアを分散・固化さ
せた後、該プラスチック包理サンプルをミクロトームF
C4E(REICHERT−JUNG社製)にて切削す
る事により作成した。例えば、針状磁性体を分散させた
場合のキャリアの断面を模式的に示した例を図2に示
す。
BEST MODE FOR CARRYING OUT THE INVENTION The present invention will be described in more detail with reference to the preferred embodiments. The orientation degree of the magnetic substance dispersed in the binder resin of the carrier of the present invention is defined by the orientation probability of the magnetic substance having the shape anisotropy used in the present invention,
Field Emission Scanning Electron Microscope (FE-SE
M) S-800 (manufactured by Hitachi, Ltd.) was used to measure the orientation of the magnetic fine particles in the carrier cross section by statistically processing. Specifically, 100 or more shape-anisotropic magnetic materials used in the present invention are randomly extracted from 10 randomly extracted carrier cross-sectional photographs, and the magnetic field direction The ratio of those facing the range of ± 15 ° was calculated. The carrier cross section sample is
After the carrier is dispersed and solidified in the epoxy resin in a parallel magnetic field, the plastic embedding sample is microtome F.
It was created by cutting with C4E (manufactured by REICHERT-JUNG). For example, FIG. 2 shows an example schematically showing a cross section of a carrier in which a needle-shaped magnetic material is dispersed.

【0025】本発明におけるキャリアの磁気特性の測定
は、直流磁化B−H特性自動記録装置BHH−50[理
研電子(株)製]を用いて行う。一般に現像装置におけ
る現像極は1,000エルステッドの磁場であり、本発
明においてキャリアの磁気特性は10キロエルステッド
の磁場を作り、その時のキャリアのヒステリシスカーブ
より、磁場が1,000、300及び0エルステッドに
おけるキャリアの磁化の強さ(σ1,000 、σ300 及びσ
r)とキャリアの保磁力を求める。本発明における磁気
特性は、サンプルを円筒状のプラスチック容器にゆるく
入れた後、10キロエルステッドの磁場をかけた状態で
強くパッキングを行い、固定し、その状態での磁気特性
を測定する。この状態での測定値を、本発明の磁気特性
として用いる。その時のサンプルホルダーの容積は0.
332cm3 であり、これをもって単位体積当たりの磁
化の強さを求める。
The magnetic characteristics of the carrier in the present invention are measured using a DC magnetization BH characteristic automatic recording device BHH-50 (manufactured by Riken Denshi Co., Ltd.). Generally, the developing pole in the developing device has a magnetic field of 1,000 oersted, and in the present invention, the magnetic characteristic of the carrier is a magnetic field of 10 kilo-oersted. Carrier magnetization intensity at (σ 1,000 , σ 300 and σ
r) and the coercive force of the carrier are obtained. Regarding the magnetic characteristics in the present invention, after the sample is loosely put in a cylindrical plastic container, strong packing is performed in a state where a magnetic field of 10 kilo Oersted is applied and fixed, and the magnetic characteristics in that state are measured. The measured value in this state is used as the magnetic characteristic of the present invention. The volume of the sample holder at that time is 0.
It is 332 cm 3 , and the strength of magnetization per unit volume is obtained from this.

【0026】本発明のキャリアの特徴である前記の磁気
特性を達成する為に、キャリア中に分散させる磁性体と
して、1μm以下の金属酸化物磁性材料、例えば、Ba
系フェライト、Sr系フェライト及びPb系フェライト
等の六方晶の板状磁性体、或いはγ−Fe23 系、C
o系フェライト及び針状マグネタイト等の針状磁性体等
を単独で、これら形状異方性を持つ粒子同士の混合で、
或いは形状異方性を持つ粒子とソフトフェライトの如き
軟磁性材料とを混合して用いる事が出来る。該磁性体を
射出成形等によりキャリアの結着樹脂である液晶ポリマ
ーの分子配向に沿って、機械的或いは磁気的に配向させ
て製造する事が本発明の特徴の一つである。この際の配
向手段としては磁場中混練或いは射出成形の他、混練後
に磁場中で冷却する等の方法を挙げる事が出来、又、そ
れらを併用する事も出来る。
In order to achieve the above-mentioned magnetic characteristics which are the characteristics of the carrier of the present invention, a magnetic material dispersed in the carrier is a metal oxide magnetic material of 1 μm or less, for example, Ba.
Hexagonal plate-like magnetic material such as series ferrite, Sr series ferrite and Pb series ferrite, or γ-Fe 2 O 3 series, C
An acicular magnetic substance such as o-based ferrite and acicular magnetite alone is mixed, and particles having these shape anisotropies are mixed,
Alternatively, particles having shape anisotropy and a soft magnetic material such as soft ferrite can be mixed and used. It is one of the features of the present invention that the magnetic material is mechanically or magnetically oriented along the molecular orientation of the liquid crystal polymer which is the binder resin of the carrier by injection molding or the like. As the orientation means at this time, in addition to kneading in a magnetic field or injection molding, a method of cooling in a magnetic field after kneading can be mentioned, or they can be used in combination.

【0027】上記の様なキャリアの組成及びキャリア中
の磁性体の配向形態を採る事により、磁気的に飽和した
後の磁場1,000エルステッドにおける磁化の強さ
(σ1,000 )は30〜150emu/cm3 であり、残
留磁化σrが25emu/cm3 以上であり、且つ保磁
力が300エルステッド未満の磁気特性を有するキャリ
アを容易に得る事が出来る。本発明のキャリアの総量に
対する磁性体の含有量は30重量%〜99重量%であ
り、好ましくは50重量%以上である。30重量%未満
であるとキャリアとして上記の所望の各磁気特性が得ら
れなくなり、キャリアの比抵抗の制御も困難になってく
る。又、磁性体の含有量が99重量%を越えると磁性体
と結着樹脂との接着性が劣ってくる。
By taking the composition of the carrier and the orientation form of the magnetic substance in the carrier as described above, the magnetization intensity (σ 1,000 ) in the magnetic field of 1,000 oersted after magnetic saturation is 30 to 150 emu / It is possible to easily obtain a carrier having a magnetic property of cm 3 and a residual magnetization σr of 25 emu / cm 3 or more and a coercive force of less than 300 Oersted. The content of the magnetic substance with respect to the total amount of the carrier of the present invention is 30% by weight to 99% by weight, preferably 50% by weight or more. If it is less than 30% by weight, the above-mentioned desired magnetic properties as a carrier cannot be obtained, and it becomes difficult to control the specific resistance of the carrier. Further, if the content of the magnetic material exceeds 99% by weight, the adhesiveness between the magnetic material and the binder resin becomes poor.

【0028】又、本発明のキャリアは、磁気的に飽和さ
せた後に用いる事で本発明の特徴的な磁気特性を達成す
る事が容易となる。磁気的な飽和の方法として、直流の
電磁石により10キロエルステッドの磁場中にキャリア
粒子を曝露する事等が挙げられる。
Further, the carrier of the present invention can easily achieve the characteristic magnetic characteristics of the present invention by being used after being magnetically saturated. Examples of the magnetic saturation method include exposing carrier particles to a magnetic field of 10 kilo Oersted with a DC electromagnet.

【0029】本発明のキャリアの比抵抗は108 〜10
13Ω・cmの範囲にある事が好ましい。108 Ω・cm
未満では、バイアス電圧を印加する現像方法では現像領
域において現像剤担持体から感光体表面へと電流がリー
クし、良好な画像が得られ難い。又、1013Ω・cmを
越えると、低湿度の如き条件下でチャージアップ現象を
引き起こし、濃度薄、転写不良或いはカブリ等の画像劣
化の原因となり易い。
The specific resistance of the carrier of the present invention is 10 8 to 10
It is preferably in the range of 13 Ω · cm. 10 8 Ω · cm
When the amount is less than the above, a developing method in which a bias voltage is applied causes a current to leak from the developer carrying member to the surface of the photosensitive member in the developing region, and it is difficult to obtain a good image. On the other hand, if it exceeds 10 13 Ω · cm, a charge-up phenomenon is caused under a condition such as low humidity, which tends to cause image deterioration such as low density, poor transfer or fog.

【0030】尚、本発明のキャリアの比抵抗の測定に
は、図3に示す測定装置を用いた。即ち、測定しようと
するキャリアをセルCに充填し、該充填キャリア37に
接する様に電極31及び32を配し、該電極間に電圧を
印加し、その時流れる電流を電流計34により測定し、
その値から比抵抗を求めた。上記測定方法においては、
キャリアが粉末である為に充填率に変化が生じ、それに
伴い比抵抗が変化する場合があるので、注意を要する。
本発明における比抵抗の測定条件は、充填キャリアと電
極との接触面積を約2.3cm2 、厚み(d)を約1m
m、上部電極32の荷重を275g及び印加電圧を10
0Vとした。
The measuring device shown in FIG. 3 was used for measuring the specific resistance of the carrier of the present invention. That is, the cell C is filled with the carrier to be measured, the electrodes 31 and 32 are arranged in contact with the filled carrier 37, a voltage is applied between the electrodes, and the current flowing at that time is measured by the ammeter 34,
The specific resistance was calculated from the value. In the above measuring method,
Since the carrier is powder, the filling rate may change and the specific resistance may change accordingly, so caution is required.
The specific resistance measurement conditions in the present invention are as follows: the contact area between the filled carrier and the electrode is about 2.3 cm 2 , and the thickness (d) is about 1 m.
m, the load of the upper electrode 32 is 275 g, and the applied voltage is 10
It was set to 0V.

【0031】本発明のキャリア粒子の平均粒径は、5〜
100μmの範囲が好ましく、更に好ましくは20〜8
0μmである。5μmより小さいと静電潜像担持体への
キャリア付着が生じ易くなる。又、100μmを越える
と現像極におけるキャリアの磁気ブラシが粗になり高画
質画像を得ることが難しい。尚、本発明のキャリアの粒
径は、光学顕微鏡によりランダムに300個以上抽出
し、画像処理解析装置Luzex3(ニレコ社製)によ
り測定した水平方向フェレ径をもってキャリア粒子の粒
径とした。
The average particle size of the carrier particles of the present invention is 5 to
The range is preferably 100 μm, more preferably 20 to 8
It is 0 μm. If it is less than 5 μm, the carrier tends to adhere to the electrostatic latent image carrier. On the other hand, when the thickness exceeds 100 μm, the magnetic brush of the carrier at the developing pole becomes coarse, and it is difficult to obtain a high quality image. The particle size of the carrier of the present invention was determined by randomly extracting 300 or more particles with an optical microscope and measuring the horizontal Feret diameter measured by an image processing analyzer Luzex3 (manufactured by Nireco) as the particle size of the carrier particles.

【0032】本発明のキャリアの嵩密度は、3.0g/
cm3 以下が好ましい。3.0g/cm3 を越えると現
像剤担持体の回転により、キャリアが該担持体上に磁気
的に保持される力に比べ、各キャリア粒子にかかる遠心
力が大きくなり、キャリア飛散を生じ易くなる。尚、本
発明のキャリアの嵩密度の測定は、JIS−Z−250
4に記載の方法に準じて行った。
The bulk density of the carrier of the present invention is 3.0 g /
cm 3 or less is preferable. When it exceeds 3.0 g / cm 3 , the rotation of the developer carrier causes the centrifugal force applied to each carrier particle to be larger than the force of magnetically retaining the carrier on the carrier, and carrier scattering is likely to occur. Become. The bulk density of the carrier of the present invention is measured according to JIS-Z-250.
According to the method described in 4.

【0033】本発明のキャリアのコア材に用いられる結
着樹脂としては、例えば、主鎖型液晶ポリマー、側鎖型
液晶ポリマー或いは複合型液晶ポリマー等、一般に知ら
れる全ての液晶ポリマーが挙げられる。ここで言う主鎖
型液晶ポリマーとしては、例えば、全芳香族ポリエステ
ルがある。全芳香族ポリエステルに使われるモノマーと
しては、例えば、芳香族ジオールとして下記構造式
(1)〜(8)、芳香族ジカルボン酸として下記構造式
(9)〜(15)、ヒドロキシカルボン酸として下記構
造式(16)〜(20)及びそれらの酸ハライド等があ
り、これらモノマーの内1種類又は2種類以上を重合し
て用いる事が出来る。側鎖型液晶ポリマーとしては、例
えば、メソゲン基を持つビニル型ポリマー、ポリシロキ
サン、ポリペプチド、ポリホスファゼン或いはポリエチ
ルイミンが挙げられる。複合型液晶ポリマーとしては、
例えば、上記の主鎖型液晶ポリマーのメソゲン基或いは
屈曲鎖に、更にメソゲン基を結合して得られる。
Examples of the binder resin used as the core material of the carrier of the present invention include all commonly known liquid crystal polymers such as a main chain type liquid crystal polymer, a side chain type liquid crystal polymer and a composite type liquid crystal polymer. Examples of the main chain type liquid crystal polymer mentioned here include wholly aromatic polyester. Examples of the monomer used for the wholly aromatic polyester include the following structural formulas (1) to (8) as an aromatic diol, the following structural formulas (9) to (15) as an aromatic dicarboxylic acid, and the following structural formulas as a hydroxycarboxylic acid. There are formulas (16) to (20) and their acid halides, and one or more of these monomers can be polymerized and used. Examples of the side chain type liquid crystal polymer include a vinyl type polymer having a mesogen group, polysiloxane, polypeptide, polyphosphazene or polyethylimine. As a composite type liquid crystal polymer,
For example, it can be obtained by further bonding a mesogenic group to the mesogenic group or the bent chain of the above main chain type liquid crystal polymer.

【0034】[0034]

【化1】 [上記構造式中Rは炭素原子1個から10個の直鎖若し
くは分枝鎖のアルキレン基、O原子、S原子、アリーレ
ン基又はハロゲン化アルキレン基を表し、X及びYはハ
ロゲン原子又はアルキル基を表し、X’は水素原子、ハ
ロゲン原子又はアルキル基を表し、Zは水酸基又はハロ
ゲン原子を表す。]
[Chemical 1] [Wherein R represents a linear or branched alkylene group having 1 to 10 carbon atoms, an O atom, an S atom, an arylene group or a halogenated alkylene group, and X and Y represent a halogen atom or an alkyl group. X'represents a hydrogen atom, a halogen atom or an alkyl group, and Z represents a hydroxyl group or a halogen atom. ]

【0035】本発明のキャリアの球形度は2以下が好ま
しい。即ち、本発明のキャリアが樹脂キャリアであるが
故に軽く、現像剤にかかるシェアが軽減される為、現像
剤の劣化が抑制されて高画質を長期にわたって維持出来
るという本発明の一つの効果は、キャリアの形状が球形
に近いものほど有利に発現する。更に球形に近いキャリ
ア程、現像剤としての流動性を向上させる傾向があり、
他の現像特性も優れる。従って、高画質化を達成し、維
持し得るという現像剤においてはキャリアの球形度が上
記の値を有する事が好ましい。
The sphericity of the carrier of the present invention is preferably 2 or less. That is, since the carrier of the present invention is a resin carrier, it is light, and since the share of the developer is reduced, one effect of the present invention is that deterioration of the developer is suppressed and high image quality can be maintained for a long period of time. The closer the carrier shape is to the spherical shape, the more advantageous the expression. Further, the closer the carrier is to the spherical shape, the more it tends to improve the fluidity as a developer.
Other development characteristics are also excellent. Therefore, in the developer capable of achieving and maintaining high image quality, it is preferable that the sphericity of the carrier has the above value.

【0036】本発明のキャリアの球形度の測定は、フィ
ールドエミッション走査電子顕微鏡(FE−SEM)S
−800[日立製作所(株)製]によりキャリアをラン
ダムに300個以上抽出し、画像処理解析装置Luze
x3(ニレコ社製)を用いて、次式によって導かれる形
状係数を求める事で行う。
The sphericity of the carrier of the present invention is measured by the field emission scanning electron microscope (FE-SEM) S.
-800 [Hitachi, Ltd.] randomly extracts 300 or more carriers, and image processing analysis device Luze
x3 (manufactured by Nireco Corp.) is used to obtain the shape factor derived by the following equation.

【0037】[0037]

【数4】 [式中、MX LNGとはキャリアの最大径を表し、A
REAとはキャリアの投影面積を表す。] ここで球形度は、1に近いほど球形に近い事を意味して
いる。
[Equation 4] [In the formula, MX LNG represents the maximum diameter of the carrier, and A
REA represents the projected area of the carrier. ] Here, the sphericity means that the closer it is to 1, the closer it is to a sphere.

【0038】本発明のキャリアの製造方法としては、前
記結着樹脂と磁性体微粒子とを所望の量比で混合し、例
えば、3本ロール又は押出機等の加熱溶融混合装置を用
いて適当な温度で混練し、射出成形時に磁性体微粒子を
機械的に、磁気的に、或いはそれらを組み合わせて配向
させる。上記混練物を冷却後、粉砕及び分級した後に得
られた粒子を高速で板に衝突させ、そのエネルギーで表
面を熱溶解させ球形化処理を施す。この様な球形化処理
を行う事で、上記の様なキャリアの球形度を満足する事
が出来る。
As a method for producing the carrier of the present invention, the binder resin and the magnetic fine particles are mixed in a desired quantitative ratio and, for example, a heating and melting mixing device such as a three-roll or an extruder is used. The mixture is kneaded at a temperature and the magnetic fine particles are oriented mechanically, magnetically or in combination during injection molding. After cooling the kneaded product, the particles obtained after pulverization and classification are collided with a plate at a high speed, and the surface is heat-melted by the energy to perform a spheroidizing treatment. By carrying out such a spheroidizing treatment, the sphericity of the carrier as described above can be satisfied.

【0039】又、本発明のキャリアは、比抵抗コントロ
ールを行ったり、或いは耐久性を向上させる為に、必要
に応じてキャリア粒子の表面を任意の樹脂で被覆して用
いる事が出来る。被覆する樹脂としては、公知の適当な
樹脂を用いる事が出来る。例えば、アクリル系樹脂、フ
ッ素系樹脂或いはシリコン系樹脂等で被覆して用いる事
が出来る。本発明のキャリアのコア材を樹脂被覆する方
法としては、該コア材が樹脂より構成されている事を考
慮すると、コア材同士が接着しない様に被覆樹脂が迅速
に被覆される処理法が好ましい。即ち、該被覆樹脂を溶
解する溶剤の選択、処理温度或いは処理時間等の条件を
十分に制御し、且つコア材を常に流動せしめる様な方法
で被覆と乾燥を同時に進行させる処理方法が好ましい。
Further, the carrier of the present invention may be used by coating the surface of carrier particles with an arbitrary resin, if necessary, in order to control the specific resistance or improve the durability. As the resin to be coated, a known appropriate resin can be used. For example, it can be used by coating with an acrylic resin, a fluorine resin, a silicon resin, or the like. As a method of resin-coating the core material of the carrier of the present invention, considering that the core material is made of resin, a treatment method in which the coating resin is rapidly coated so that the core materials do not adhere to each other is preferable. . That is, a treatment method is preferred in which conditions such as selection of a solvent that dissolves the coating resin, treatment temperature and treatment time are sufficiently controlled, and coating and drying are simultaneously performed in such a manner that the core material is always allowed to flow.

【0040】本発明のキャリアと共に使用されるトナー
としては、より高画質画像を得る為に重量平均粒径が1
〜20μmであることが好ましく、より好ましくは4〜
10μmである。尚、トナーの重量平均粒径の測定は、
種々の方法によって行う事が出来るが、本発明において
はコールターカウンターにて行う。
The toner used with the carrier of the present invention has a weight average particle size of 1 in order to obtain a higher quality image.
˜20 μm, more preferably 4˜
It is 10 μm. The weight average particle diameter of the toner is measured by
It can be carried out by various methods, but in the present invention, it is carried out by a Coulter counter.

【0041】より高画質画像を得る為に、本発明のキャ
リアと共に使用されるトナーの凝集度は低い方が好まし
く、30%以下が好ましい。尚、本発明に用いられる凝
集度の測定は以下の方法にて行う。パウダーテスター
[細川ミクロン(株)製]に、上から60メッシュ、1
00メッシュ及び200メッシュの順でフルイを3段重
ねてセットし、秤取した該トナー5gを静かにフルイ上
にのせ、電圧17Vで振動を15秒間与え、各フルイ上
に残ったトナーの重さを測定し、下式に従って凝集度を
算出する。
In order to obtain a higher quality image, the cohesion of the toner used with the carrier of the present invention is preferably low, preferably 30% or less. The measurement of the degree of aggregation used in the present invention is performed by the following method. Powder tester [manufactured by Hosokawa Micron Co., Ltd.], 60 mesh from the top, 1
Three sieves were set in order of 00 mesh and 200 mesh, 5 g of the weighed toner was gently placed on the sieve, and vibration was applied for 15 seconds at a voltage of 17 V to weigh the toner remaining on each sieve. Is measured and the degree of aggregation is calculated according to the following formula.

【0042】[0042]

【数5】 [Equation 5]

【0043】トナーの凝集度を下げる為に、該トナーに
シリカ、酸化チタン或いはアルミナ等の流動性向上剤を
内添又は外添して用いる事が好ましく、疎水性を有する
流動性向上剤を外添する事がより好ましい。
In order to reduce the degree of aggregation of the toner, it is preferable to use a fluidity improver such as silica, titanium oxide or alumina internally or externally added to the toner, and a fluidity improver having hydrophobicity is added to the outside. It is more preferable to add.

【0044】[0044]

【実施例】次に実施例及び比較例を挙げて本発明を更に
詳しく説明する。これらは本発明を何ら限定するもので
はない。尚、以下の配合における%及び部は、特に断り
のない限り重量%及び重量部を示す。
EXAMPLES The present invention will be described in more detail with reference to Examples and Comparative Examples. These do not limit the invention in any way. In addition,% and parts in the following formulations represent% by weight and parts by weight, unless otherwise specified.

【0045】実施例1Example 1

【化2】 上記構造単位を有するポリマー 30% 3%Znドープγ−Fe23 70% (水平方向フェレ径:長軸=1.0μm、短軸=0.1
4μm)
[Chemical 2] Polymer having the above structural unit 30% 3% Zn-doped γ-Fe 2 O 3 70% (horizontal ferret diameter: major axis = 1.0 μm, minor axis = 0.1
4 μm)

【0046】上記材料をヘンシェルミキサーにより十分
予備混合を行った後、3本ロールミルで溶融混練し、射
出成形機によって結着樹脂中の磁性体を配向させ、更に
磁場中で徐冷し、冷却後粉砕し、直径約2mmの粉体を
得た。次いでエアージェット方式による微粉砕機で粒径
約50μmに微粉砕した。更に、得られた微粉砕物をメ
カノミルMM−10(岡田精工社製)に投入し、機械的
に球形化した。球形化を施した微粉砕粒子を更に分級し
て磁性体分散樹脂キャリアのコア材を得た。得られたコ
ア材の粒径は42μmであり、比抵抗は3.0×1010
Ω・cmであった。FE−SEMによる断面観察の結
果、磁性体微粒子の配向度は78%であった。上記磁性
体分散樹脂キャリアのコア材の表面をスチレン−メタク
リル酸−2−エチルヘキシル(50/50)共重合体で
流動層式コート方法により被覆して、本発明の磁性体分
散樹脂キャリアを得た。得られたキャリアの各物性を表
1にまとめて示す。
The above materials were sufficiently premixed with a Henschel mixer, melt-kneaded with a three-roll mill, the magnetic material in the binder resin was oriented by an injection molding machine, and further slowly cooled in a magnetic field, and after cooling. It was crushed to obtain a powder having a diameter of about 2 mm. Then, it was pulverized to a particle size of about 50 μm by an air jet pulverizer. Further, the obtained finely pulverized product was put into MechanoMill MM-10 (manufactured by Okada Seiko Co., Ltd.) and mechanically spheroidized. The pulverized finely pulverized particles were further classified to obtain a core material of a magnetic material-dispersed resin carrier. The particle diameter of the obtained core material is 42 μm, and the specific resistance is 3.0 × 10 10.
It was Ω · cm. As a result of cross-section observation by FE-SEM, the degree of orientation of the magnetic fine particles was 78%. The surface of the core material of the above magnetic substance-dispersed resin carrier was coated with a styrene-2-ethylhexyl methacrylate (50/50) copolymer by a fluidized bed coating method to obtain a magnetic substance-dispersed resin carrier of the present invention. . Table 1 collectively shows each physical property of the obtained carrier.

【0047】一方、 プロポキシ化ビスフェノールとフマル酸を縮合 して得られたポリエステル樹脂 100部 フタロシアニン顔料 5部 ジ−tert−ブチルサリチル酸のクロム錯塩 4部 上記材料をヘンシェルミキサーにより十分予備混合を行
った後、3本ロールミルで3回溶融混練し、冷却後ハン
マーミルを用いて粒径約1〜2mm程度に粗粉砕した。
次いでエアージェット方式による微粉砕機で微粉砕し
た。更に、得られた微粉砕物を分級して重量平均径が
8.2μmである負帯電性のシアン色の粉体(トナー)
を得た。上記シアントナー100部と、ヘキサメチルジ
ンラザンで疎水化処理したシリカ微粉体0.4部とをヘ
ンシェルミキサーにより混合して、トナー粒子表面にシ
リカ微粉体を有するシアントナーを調製した。
On the other hand, polyester resin obtained by condensing propoxylated bisphenol and fumaric acid 100 parts Phthalocyanine pigment 5 parts Di-tert-butylsalicylic acid chromium complex salt 4 parts After sufficiently pre-mixing the above materials with a Henschel mixer The mixture was melt-kneaded three times with a three-roll mill, cooled, and coarsely pulverized with a hammer mill to a particle size of about 1 to 2 mm.
Then, it was pulverized by an air jet pulverizer. Further, the obtained finely pulverized product was classified to have a negatively chargeable cyan powder (toner) having a weight average diameter of 8.2 μm.
Got 100 parts of the cyan toner and 0.4 part of silica fine powder hydrophobized with hexamethylzinlazan were mixed by a Henschel mixer to prepare a cyan toner having silica fine powder on the toner particle surface.

【0048】上記キャリアを10キロエルステッドの磁
場で磁化した後、上記シアントナーとN/N環境下でト
ナー濃度5%で混合し、現像剤を作成した。該現像剤を
用いてフルカラーレーザー複写機CLC−500(キャ
ノン社製)改造機にて、画像出し試験を行った。この時
の現像器及び感光体ドラムの現像領域部分の模式図を図
4に示す。現像剤担持体42と現像剤規制部材44との
距離は400μmであり、プロセススピードは350m
m/sec、現像剤担持体42と感光体ドラム40との
周速比が1.4:1であり、現像剤担持体42と感光体
ドラム40との距離は500μmとした。更に現像条件
は、現像極の磁場の強さ1,000エルステッド、交番
電界2,000VP-P 及び周波数3,000Hzとし
た。
The carrier was magnetized in a magnetic field of 10 kilo Oersted and then mixed with the cyan toner in an N / N environment at a toner concentration of 5% to prepare a developer. An image output test was carried out using a modified machine of the full-color laser copying machine CLC-500 (manufactured by Canon Inc.) using the developer. FIG. 4 is a schematic diagram of the developing area portion of the developing device and the photoconductor drum at this time. The distance between the developer carrying member 42 and the developer regulating member 44 is 400 μm, and the process speed is 350 m.
m / sec, the peripheral speed ratio between the developer carrying member 42 and the photosensitive drum 40 was 1.4: 1, and the distance between the developer carrying member 42 and the photosensitive drum 40 was 500 μm. Further, the developing conditions were a magnetic field strength of the developing electrode of 1,000 oersted, an alternating electric field of 2,000 V PP and a frequency of 3,000 Hz.

【0049】画像出し試験の結果、ベタ画像の濃度が
1.50と高く、ガサつきもなく、ハーフトーン部及び
ライン画像部の再現性も良好であった。又、現像剤担持
体が高速回転であるにも拘らず、キャリア飛散及びキャ
リアが現像される等による静電画像部或いは非静電画像
部へのキャリア付着は認められなかった。更に、現像器
を200rpmのスピードで空回転を30分間行った
後、画像出し試験を行った。その結果、空回転後の画質
についても特に問題はなく、画像部及び非画像部共にキ
ャリア付着は認められなかった。現像剤キャリアの磁気
ブラシの穂は密であり、ベタ部濃度、ハーフトーン部及
びライン画像部の再現性も良好であった。以上の試験結
果を表2にまとめて示す。
As a result of the image output test, the density of the solid image was as high as 1.50, there was no roughness, and the reproducibility of the halftone portion and the line image portion was good. Further, despite the high speed rotation of the developer bearing member, carrier adhesion to the electrostatic image portion or non-electrostatic image portion due to carrier scattering and carrier development was not recognized. Further, after the developing device was idly rotated at a speed of 200 rpm for 30 minutes, an image forming test was conducted. As a result, there was no particular problem with the image quality after idling, and no carrier adhesion was observed in the image area and non-image area. The ears of the magnetic brush of the developer carrier were dense, and the reproducibility of solid area density, halftone area and line image area was good. The above test results are summarized in Table 2.

【0050】実施例2Example 2

【化3】 上記構造単位を有するポリマー 30% γ−Fe23 70% (水平方向フェレ径 長軸0.9μm 単軸 0.12
μm)
[Chemical 3] Polymer having the above structural unit 30% γ-Fe 2 O 3 70% (horizontal ferret diameter major axis 0.9 μm uniaxial 0.12
μm)

【0051】上記材料を実施例1と同様に造粒し、磁性
体分散型キャリアのコア材を得た。得られたコア材の平
均粒径は41μmであり、比抵抗は2.0×109 Ω・
cmであった。該コア材に実施例1と同じ樹脂を実施例
1と同様に被覆して、本発明の磁性体分散型樹脂キャリ
アを得た。得られたキャリアの各物性を表1に示す。該
キャリアについて実施例1と同様な試験を行ったとこ
ろ、実施例1と同様に良好な結果を得た。以上の試験結
果を表2にまとめて示す。
The above materials were granulated in the same manner as in Example 1 to obtain a core material of a magnetic material dispersed carrier. The average particle diameter of the obtained core material was 41 μm, and the specific resistance was 2.0 × 10 9 Ω.
It was cm. The core material was coated with the same resin as in Example 1 in the same manner as in Example 1 to obtain a magnetic substance-dispersed resin carrier of the present invention. Table 1 shows each physical property of the obtained carrier. When the carrier was tested in the same manner as in Example 1, good results were obtained as in Example 1. The above test results are summarized in Table 2.

【0052】実施例3Example 3

【化4】 上記構造単位を有するポリマー 30% 3%Znトープγ−Fe23 70% (水平方向フェレ径 長軸=1.0μm、単軸=0.1
4μm)
[Chemical 4] Polymer having the above structural unit 30% 3% Zn taup γ-Fe 2 O 3 70% (horizontal ferret diameter major axis = 1.0 μm, uniaxial = 0.1
4 μm)

【0053】上記材料を実施例1と同様に溶融混練した
後、射出成形機によって機械的に磁性体を配向させ、冷
却後、実施例1と同様に粉砕、分級及び球径化処理を行
い、磁性体分散型キャリアのコア材を得た。得られたコ
ア材の平均粒径は45μmであり、比抵抗は1.2×1
9 Ω・cmであった。該コア材に実施例1と同じ樹脂
を実施例1と同様に被覆して、本発明の磁性体分散型樹
脂キャリアを得た。得られたキャリアの各物性を表1に
示す。該キャリアについて実施例1と同様な試験を行っ
たところ、実施例1と同様に良好な結果を得た。以上の
試験結果を表2にまとめて示す。
The above materials were melt-kneaded in the same manner as in Example 1, the magnetic material was mechanically oriented by an injection molding machine, and after cooling, pulverization, classification and spheronization were performed in the same manner as in Example 1, A core material of a magnetic material dispersed carrier was obtained. The average particle diameter of the obtained core material is 45 μm, and the specific resistance is 1.2 × 1.
It was 09 Ω · cm. The core material was coated with the same resin as in Example 1 in the same manner as in Example 1 to obtain a magnetic substance-dispersed resin carrier of the present invention. Table 1 shows each physical property of the obtained carrier. When the carrier was tested in the same manner as in Example 1, good results were obtained as in Example 1. The above test results are summarized in Table 2.

【0054】比較例1 Fe23 50モル% ZnO 25モル% CuO 25モル%Comparative Example 1 Fe 2 O 3 50 mol% ZnO 25 mol% CuO 25 mol%

【0055】上記材料を秤量し、ボールミルを用いて混
合を行った。混合粉を仮焼し、その後粉砕した。粉砕し
た試料をスラリー状にし、そのスラリーをスプレードラ
イヤーにて造粒し、造粒粉の焼結を行った。得られた焼
結粉末を風力分級機により分級し、平均粒径が48μm
のキャリアのコア材を得た。得られたコア材はほぼ球形
をしており、比抵抗は5.2×109 Ω・cmであっ
た。該コア材に実施例1と同じ樹脂を実施例1と同様に
被覆して、比較例のキャリアを得た。得られたキャリア
の各物性を表1に示す。上記キャリアを用いて実施例1
と同様の試験を行ったところ、静電画像部或いは非静電
画像部のキャリア付着は生じなかったが、現像剤キャリ
アの磁気ブラシの穂立ちが粗く、初期画像においてハー
フトーン部のガサツキ及びラインの乱れを生じた。又、
30分間耐久試験後の画像劣化が見られた。以上の試験
結果を表2にまとめて示す。
The above materials were weighed and mixed using a ball mill. The mixed powder was calcined and then ground. The crushed sample was made into a slurry, and the slurry was granulated with a spray dryer to sinter the granulated powder. The obtained sintered powder is classified by an air classifier, and the average particle size is 48 μm.
The carrier core material was obtained. The obtained core material had a substantially spherical shape, and the specific resistance was 5.2 × 10 9 Ω · cm. The core material was coated with the same resin as in Example 1 in the same manner as in Example 1 to obtain a carrier of Comparative Example. Table 1 shows each physical property of the obtained carrier. Example 1 using the above carrier
As a result of the same test as the above, no carrier adhesion on the electrostatic image part or the non-electrostatic image part occurred, but the spikes of the magnetic brush of the developer carrier were rough, and the initial image had rough lines and lines on the halftone part. Caused a disturbance. or,
Image deterioration was observed after the 30-minute durability test. The above test results are summarized in Table 2.

【0056】実施例4Example 4

【化5】 上記構造単位を有するポリマー 30% Baフェライト(偏平状) 25% (モル% Fe23 :ZnO:BaO=70:15:
15) (水平方向フェレ径:1.2μm 厚み方向0.1μ
m) Cu−Znフェライト 40% (モル% Fe23 :CuO:ZnO=60:20:
20) (水平方向フェレ径:1.4μm)
[Chemical 5] Polymer having the above structural unit 30% Ba ferrite (flat) 25% (mol% Fe 2 O 3 : ZnO: BaO = 70: 15:
15) (Ferre diameter in horizontal direction: 1.2 μm, thickness direction: 0.1 μm)
m) Cu-Zn ferrite of 40% (mol% Fe 2 O 3: CuO: ZnO = 60: 20:
20) (Horizontal ferret diameter: 1.4 μm)

【0057】上記材料を用いて、実施例1と同様に溶融
混練した後、射出成形を行って溶融物を金型に流し込
み、磁場中に暴露させる事により、バインダー中の磁性
体粒子を磁気的に配向させ、冷却後、実施例1と同様に
粉砕、分級及び球形化処理を行い、磁性体分散型キャリ
アのコア材を得た。得られたコア材の平均粒径は46μ
mであり、比抵抗は9.7×109 Ω・cmであった。
該コア材に実施例1と同じ樹脂を実施例1と同様に被覆
して、本発明の磁性体分散型樹脂キャリアを得た。得ら
れたキャリアの物性を表1に示す。該キャリアについて
実施例1と同様な試験を行ったところ、実施例1と同様
に良好な結果を得た。以上の試験結果を表2にまとめて
示す。
The above materials were melt-kneaded in the same manner as in Example 1, injection-molded, the melt was poured into a mold, and exposed to a magnetic field to magnetically separate the magnetic particles in the binder. After being oriented to, and cooled, pulverization, classification and spheronization were carried out in the same manner as in Example 1 to obtain a core material of a magnetic substance dispersion type carrier. The average particle size of the obtained core material is 46μ.
m, and the specific resistance was 9.7 × 10 9 Ω · cm.
The core material was coated with the same resin as in Example 1 in the same manner as in Example 1 to obtain a magnetic substance-dispersed resin carrier of the present invention. Table 1 shows the physical properties of the obtained carrier. When the carrier was tested in the same manner as in Example 1, good results were obtained as in Example 1. The above test results are summarized in Table 2.

【0058】実施例5Example 5

【化6】 上記構造単位を有するポリマー 30% Srフェライト(板状) 15% (モル比 Fe23 :SrO:CaO=80:17:
3) (水平方向フェレ径: 1.1μm 厚み方向0.1μ
m) Cu−Znフェライト 55% (モル比 Fe23 :CuO:ZnO=60:15:
25) (水平方向フェレ径: 1.3μm)
[Chemical 6] Polymer having the above structural unit 30% Sr ferrite (plate-like) 15% (molar ratio Fe 2 O 3 : SrO: CaO = 80: 17:
3) (Ferre diameter in horizontal direction: 1.1 μm, thickness direction: 0.1 μm)
m) Cu-Zn ferrite of 55% (molar ratio Fe 2 O 3: CuO: ZnO = 60: 15:
25) (Ferre diameter in the horizontal direction: 1.3 μm)

【0059】上記材料を実施例1と同様に溶融混練した
後、実施例4と同様に造粒して、磁性体分散型キャリア
のコア材を得た。得られたコア材の平均粒径は47μm
であり、比抵抗は1.4×1010Ω・cmであった。該
コア材に実施例1と同じ樹脂を実施例1と同様に被覆し
て、本発明の磁性体分散型樹脂キャリアを得た。得られ
たキャリアの物性を表1に示す。該キャリアついて実施
例1と同様な試験を行ったところ、実施例1と同様に良
好な結果を得た。以上の試験結果を表2にまとめて示
す。
The above materials were melt-kneaded in the same manner as in Example 1 and then granulated in the same manner as in Example 4 to obtain a core material of a magnetic material dispersed carrier. The average particle size of the obtained core material is 47 μm.
And the specific resistance was 1.4 × 10 10 Ω · cm. The core material was coated with the same resin as in Example 1 in the same manner as in Example 1 to obtain a magnetic substance-dispersed resin carrier of the present invention. Table 1 shows the physical properties of the obtained carrier. When the carrier was tested in the same manner as in Example 1, good results were obtained as in Example 1. The above test results are summarized in Table 2.

【0060】実施例6Example 6

【化7】 上記構造単位を有するポリマー 30% 3%Znドープγ−Fe23 70%[Chemical 7] Polymer having the above structural unit 30% 3% Zn-doped γ-Fe 2 O 3 70%

【0061】上記材料を実施例1と同様に溶融混練した
後、実施例4と同様に造粒して、磁性体分散型樹脂キャ
リアを得た。得られたキャリアの平均粒径は46μmで
あり、比抵抗は2.6×1010Ω・cmであった。又、
FE−SEMによる断面観察の結果、配向度は73%で
あった。該キャリアの物性を表1に示す。該キャリアに
ついて実施例1と同様な試験を行ったところ、実施例1
と同様に良好な結果を得た。以上の試験結果を表2にま
とめて示す。
The above materials were melt-kneaded in the same manner as in Example 1 and then granulated in the same manner as in Example 4 to obtain a magnetic material-dispersed resin carrier. The average particle size of the obtained carrier was 46 μm, and the specific resistance was 2.6 × 10 10 Ω · cm. or,
As a result of cross-section observation by FE-SEM, the degree of orientation was 73%. Table 1 shows the physical properties of the carrier. When the same test as in Example 1 was performed on the carrier, Example 1 was performed.
Good results were obtained as well. The above test results are summarized in Table 2.

【0062】[0062]

【表1】−その1 [Table 1] -Part 1

【0063】[0063]

【表1】−その2 [Table 1] -Part 2

【0064】[0064]

【表1】−その3 [Table 1] -Part 3

【0065】[0065]

【表2】 優 :◎ 良 :○ 可 :△ 不可:×[Table 2] Excellent: ◎ Good: ○ Acceptable: △ Not acceptable: ×

【0066】[0066]

【発明の効果】以上の様に本発明によれば、現像極にお
けるキャリアの磁化の強さを弱くし、且つ該キャリアの
結着樹脂として分子が一様に配向した高次構造を持つ液
晶性を示す樹脂を用いる事により、キャリアの機械的強
度を増すと同時にキャリア中に分散される磁性体をより
配向させ、その結果残留磁化を上げ、更に保磁力を大き
くしない事により、高画質でハーフトーン部及びライン
画像部の再現性の良好な磁性体分散型樹脂キャリアを得
る事が出来た。又、樹脂キャリアの特徴である軽負荷に
よる高耐久性に加え、静電潜像担持体へのキャリア付着
のないキャリアを得る事が出来た。
As described above, according to the present invention, the strength of the magnetization of the carrier at the developing pole is weakened, and the liquid crystallinity having a higher order structure in which the molecules of the carrier are uniformly aligned as the binder resin of the carrier. By using a resin that exhibits a high mechanical strength of the carrier and at the same time more orienting the magnetic substance dispersed in the carrier, as a result, the remanent magnetization is raised and the coercive force is not increased, resulting in high image quality at half It was possible to obtain a magnetic substance-dispersed resin carrier having good reproducibility of the tone portion and the line image portion. Further, in addition to the high durability due to the light load, which is a characteristic of the resin carrier, it was possible to obtain a carrier that does not adhere to the electrostatic latent image carrier.

【0067】[0067]

【図面の簡単な説明】[Brief description of drawings]

【図1】磁気特性カーブ(ヒステリシスカーブ)を模式
的に示した概略図である。なお図中、枠内に示される数
値は、(σ1000−σ300 )/σ1000の値である。
FIG. 1 is a schematic diagram schematically showing a magnetic characteristic curve (hysteresis curve). In the figure, the numerical value shown in the frame is the value of (σ 1000 −σ 300 ) / σ 1000 .

【図2】本発明のキャリアの断面を模式的に示した概略
図である。
FIG. 2 is a schematic view schematically showing a cross section of a carrier of the present invention.

【図3】電気抵抗の測定装置を模式的に示した概略図で
ある。
FIG. 3 is a schematic view schematically showing an electric resistance measuring device.

【図4】現像装置及び感光体ドラムを模式的に示した概
略図である。
FIG. 4 is a schematic view schematically showing a developing device and a photosensitive drum.

【0068】[0068]

【符号の説明】[Explanation of symbols]

21:結着樹脂 22:針状磁性体 31:下部電極 32:上部電極 33:絶縁物 34:電流計 35:電圧計 36:定電圧装置 37:キャリア 38:ガイドリング 21: Binder resin 22: Needle-like magnetic material 31: Lower electrode 32: Upper electrode 33: Insulator 34: Ammeter 35: Voltmeter 36: Constant voltage device 37: Carrier 38: Guide ring

【0069】40:感光体ドラム 41:現像容器 42:現像剤担持体 43:固定磁芯 43a〜e:磁極 44:現像剤規制部材 45:キャリア返し部材 46:トナー 47:現像剤 48:トナー補給ローラー 49:現像剤搬送ローラー 50:現像剤攪拌ローラー40: photosensitive drum 41: developing container 42: developer carrier 43: fixed magnetic core 43a to e: magnetic pole 44: developer regulating member 45: carrier returning member 46: toner 47: developer 48: toner replenishment Roller 49: Developer transport roller 50: Developer stirring roller

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 結着樹脂中に磁性体微粒子を分散させて
なる磁性体分散型キャリアであって、該キャリアの結着
樹脂が配向された液晶性ポリマーを含有し、且つ上記磁
性体微粒子として長軸/短軸>1の磁性体が使用されて
いることを特徴とする磁性体分散型樹脂キャリア。
1. A magnetic substance-dispersed carrier in which magnetic fine particles are dispersed in a binder resin, wherein the binder resin of the carrier contains an oriented liquid crystalline polymer, and the magnetic fine particles are used as the magnetic fine particles. A magnetic substance-dispersed resin carrier, wherein a magnetic substance having a major axis / minor axis> 1 is used.
【請求項2】 磁性体分散型キャリアにおいて、磁性体
微粒子が少なくとも30%配向されており、磁気的に飽
和した後の磁場1,000エルステッドにおける磁化の
強さ(σ1,000 )が30〜150emu/cm3 、磁場
0エルステッドにおける磁化の強さ(残留磁化:σr)
が25emu/cm3 以上であり、保磁力が300エル
ステッド未満であり、且つ更に磁化の強さが下記式を満
たす請求項1に記載の磁性体分散型樹脂キャリア。 【数1】 [式中、σ1,000 は、磁場1,000エルステッドにお
けるキャリアの磁化の強さ(emu/g)を示し、σ
300 は、磁場300エルステッドにおけるキャリアの磁
化の強さ(emu/g)を示す。]
2. In a magnetic substance dispersion type carrier, at least 30% of magnetic substance fine particles are oriented, and the magnetic strength (σ 1,000 ) in a magnetic field of 1,000 oersted after magnetic saturation is 30 to 150 emu / cm 3 , magnetic strength at 0 oersted magnetic field (remanent magnetization: σr)
Is 25 emu / cm 3 or more, the coercive force is less than 300 Oersted, and the strength of magnetization further satisfies the following formula: The magnetic material-dispersed resin carrier according to claim 1. [Equation 1] [Wherein σ 1,000 represents the strength of carrier magnetization (emu / g) in a magnetic field of 1,000 oersteds, σ
300 indicates the strength (emu / g) of carrier magnetization in a magnetic field of 300 Oersted. ]
【請求項3】 キャリア粒子の平均粒径が5〜100μ
mであり、嵩密度が3.0g/cm以下であり、磁性
体分散型キャリアに含有される磁性体の含有量が30〜
99重量%である請求項1又は2に記載の磁性体分散型
樹脂キャリア。
3. The carrier particles have an average particle diameter of 5 to 100 μm.
m, the bulk density is 3.0 g / cm 3 or less, and the content of the magnetic substance contained in the magnetic substance-dispersed carrier is 30 to
The magnetic substance-dispersed resin carrier according to claim 1, which is 99% by weight.
【請求項4】 キャリアの比抵抗が108〜1013Ω・
cmである請求項1〜3に記載の磁性体分散型樹脂キャ
リア。
4. The carrier has a specific resistance of 10 8 to 10 13 Ω.
The magnetic substance-dispersed resin carrier according to claim 1, which has a size of cm.
JP5344487A 1993-12-20 1993-12-20 Magnetic substance dispersed resin carrier Pending JPH07175270A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344487A JPH07175270A (en) 1993-12-20 1993-12-20 Magnetic substance dispersed resin carrier

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344487A JPH07175270A (en) 1993-12-20 1993-12-20 Magnetic substance dispersed resin carrier

Publications (1)

Publication Number Publication Date
JPH07175270A true JPH07175270A (en) 1995-07-14

Family

ID=18369648

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344487A Pending JPH07175270A (en) 1993-12-20 1993-12-20 Magnetic substance dispersed resin carrier

Country Status (1)

Country Link
JP (1) JPH07175270A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163708A (en) * 2011-02-04 2012-08-30 Ricoh Co Ltd Anisotropic magnetic material dispersion type resin carrier, developer for electrophotography, and developing device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012163708A (en) * 2011-02-04 2012-08-30 Ricoh Co Ltd Anisotropic magnetic material dispersion type resin carrier, developer for electrophotography, and developing device

Similar Documents

Publication Publication Date Title
US5576133A (en) Carrier for use in electrophotography, two component-type developer and image forming method
JP3397483B2 (en) Electrophotographic carrier, manufacturing method thereof, two-component developer, and image forming method
US5494770A (en) Image forming method using magnetic brush and specific carrier
US6589703B2 (en) Electrographic methods using hard magnetic carrier particles
JP2004077568A (en) Electrophotographic developer, carrier for electrophotographic developer and manufacture method for carrier
JP2004061730A (en) Developer for electrophotographic development, and electrophotographic developing method using developer for electrophotographic development, and method for electrophotographic development used for developer manufacturing carrier for electrophotographic development used for developer for electrophotographic development
JP3333260B2 (en) Magnetic carrier particles
US5374978A (en) Developing method
JP3005120B2 (en) Electrophotographic carrier
JP3431952B2 (en) Electrophotographic carrier
JPH08292607A (en) Two-component developer
JPH07175270A (en) Magnetic substance dispersed resin carrier
JP3044429B2 (en) Electrophotographic carrier
JP2984471B2 (en) Electrophotographic carrier
JP3005119B2 (en) Magnetic material dispersed resin carrier
JP2887027B2 (en) Carrier for electrophotography
JPH08227225A (en) Two-component dveloper, developing method and image forming method
JP3005128B2 (en) Electrophotographic carrier
JP2887026B2 (en) Magnetic material dispersed resin carrier
EP0559250B1 (en) Magnetic carrier particles
JPH11282213A (en) Carrier
JP3109937B2 (en) Magnetic material dispersed resin carrier
JPH06308776A (en) Electrophotographic carrier
JPH07181723A (en) Electrostatic charge image developer
JPH07271106A (en) Electrophotographic carrier, its production and two-component developer using that carrier