JPH07175026A - Laser beam phase modulator - Google Patents

Laser beam phase modulator

Info

Publication number
JPH07175026A
JPH07175026A JP32039093A JP32039093A JPH07175026A JP H07175026 A JPH07175026 A JP H07175026A JP 32039093 A JP32039093 A JP 32039093A JP 32039093 A JP32039093 A JP 32039093A JP H07175026 A JPH07175026 A JP H07175026A
Authority
JP
Japan
Prior art keywords
electro
laser light
optic crystal
laser beam
phase modulator
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32039093A
Other languages
Japanese (ja)
Inventor
Hironobu Kimura
博信 木村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
LASER NOSHUKU GIJUTSU KENKYU KUMIAI
Toshiba Corp
Original Assignee
LASER NOSHUKU GIJUTSU KENKYU KUMIAI
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by LASER NOSHUKU GIJUTSU KENKYU KUMIAI, Toshiba Corp filed Critical LASER NOSHUKU GIJUTSU KENKYU KUMIAI
Priority to JP32039093A priority Critical patent/JPH07175026A/en
Publication of JPH07175026A publication Critical patent/JPH07175026A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To efficiently execute phase modulation of a laser beam even when a low external applied voltage. CONSTITUTION:This laser beam phase modulator 1 is constituted by mounting paired electrodes 4 on an electro-optic crystal 2 so as to face each other and executes phase modulation of a laser beam by an electric resonance circuit 9 which is partly composed of the electrodes 4. This laser beam modulator is provided with a means for increasing the optical path length of the laser beam within the electro-optic crystal 2 without changing the length of the electro-optic crystal 2. This means is formed by subjecting the opposite surfaces of the electro-optic crystal 2 to mirror finishing to make the vertex of the opposed surfaces nearly a right angle so that the laser beam is totally reflected on the opposed surfaces.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、レーザ光位相変調器に
係り、特にレーザ光の位相変調が安定的にかつ効率よく
行なえるようにしたレーザ光位相変調器に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a laser light phase modulator, and more particularly to a laser light phase modulator capable of performing stable and efficient phase modulation of laser light.

【0002】[0002]

【従来の技術】レーザ光の位相変調は、通信技術分野の
みならずレーザ分光の分野にも広く用いられる。例え
ば、シングルモード発振の色素レーザ光を位相変調し、
時間とともに高速に波長をスキャンすることや希望する
スペクトル幅に電気的に制御することもできる。
2. Description of the Related Art Phase modulation of laser light is widely used not only in the field of communication technology but also in the field of laser spectroscopy. For example, phase modulation of single mode oscillation dye laser light,
It is also possible to scan the wavelength rapidly with time or to electronically control the desired spectral width.

【0003】ところで、従来の代表的なレーザ光位相変
調器には、電気光学効果を利用した電気光学結晶が用い
られている。この位相変調器には、電気光学結晶に外部
から電場(電圧)をかけつつ、内部を通過するレーザ光
の位相変調を行なうものである。
By the way, an electro-optic crystal utilizing the electro-optic effect is used in a typical conventional laser light phase modulator. In this phase modulator, the electric field (voltage) is applied to the electro-optic crystal from the outside, and the phase of the laser light passing through the inside is modulated.

【0004】一方、レーザ光位相変調器に用いられる誘
電体としての電気光学結晶は、電圧の印加により、電場
スペクトル方向の光の屈折率を変化させる(電気光学効
果)ものであるが、この誘電体に電圧を有効的にかける
ためには、電気共振回路(タンク回路)を組む必要があ
る。
On the other hand, an electro-optic crystal used as a dielectric in a laser light phase modulator changes the refractive index of light in the electric field spectrum direction by applying a voltage (electro-optic effect). In order to effectively apply a voltage to the body, it is necessary to form an electric resonance circuit (tank circuit).

【0005】電気共振回路の共振周波数fは、電気光学
結晶のキャパシタンスCcや電気光学結晶以外のキャパ
シタンスCv、インダクタンスコイルのインダクタンス
Lの回路定数により、
The resonance frequency f of the electric resonance circuit is determined by the circuit constants of the capacitance Cc of the electro-optic crystal, the capacitance Cv other than the electro-optic crystal, and the inductance L of the inductance coil.

【数1】 となる。そして、電気光学結晶の電圧は、共振周波数f
に大きく依存している。ここで、位相変調の大きさを表
わす指数δは、例えば代表的なLiTaO3 結晶の場
合、次式で表すことかできる。
[Equation 1] Becomes The voltage of the electro-optic crystal has a resonance frequency f
Heavily depends on. Here, the index δ representing the magnitude of the phase modulation can be represented by the following equation in the case of a typical LiTaO 3 crystal, for example.

【0006】[0006]

【数2】 e ,γ33は、LiTaO3 結晶による定数より、dが
一定のときは、上式は、レーザ光のLiTaO3 結晶内
の光路長lと外部印加電圧Vに依存し、また一般的に
は、レーザ光の結晶内の光路長lは、LiTaO3 結晶
の長さに等しいため定数となり、位相変調の大きさを表
わす指数δは、外部印加電圧に依存していた。
[Equation 2] From the constants of the LiTaO 3 crystal, n e and γ 33 depend on the optical path length 1 in the LiTaO 3 crystal of the laser light and the externally applied voltage V when d is constant, and in general, The optical path length l of the laser light in the crystal is constant because it is equal to the length of the LiTaO 3 crystal, and the index δ representing the magnitude of phase modulation depends on the externally applied voltage.

【0007】[0007]

【発明が解決しようとする課題】従来のレーザ光位相変
調器では、応答性に優れた電気光学結晶を用い、この電
気光学結晶に電気共振回路を通じて外部電圧を印加し
て、電気光学効果を利用して位相変調を行なうようにし
ている。
In the conventional laser optical phase modulator, an electro-optic crystal having excellent responsiveness is used, and an external voltage is applied to the electro-optic crystal through an electric resonance circuit to utilize the electro-optic effect. Then, phase modulation is performed.

【0008】しかし、変調の大きさを高めるため、例え
ば1KV/mm程度の高電圧をかけると、電気光学結晶中に
超音波が発生し、超音波による定在波によってレーザ光
の散逸現象が発生する。レーザ光の散逸現象を回避する
ためには、電気光学結晶の長さを大きくする手段が講じ
られているが、電気光学結晶製作の立場からは、限度
(100mm程度)が生じる。
However, when a high voltage of, for example, about 1 KV / mm is applied in order to increase the magnitude of modulation, ultrasonic waves are generated in the electro-optic crystal, and the dissipation wave of the laser light is generated by the standing wave generated by the ultrasonic waves. To do. In order to avoid the laser light dissipation phenomenon, a means for increasing the length of the electro-optic crystal has been taken, but from the standpoint of electro-optic crystal production, a limit (about 100 mm) occurs.

【0009】特に、これは低周波(〜10MHz)域の
変調においては顕著であることが、実験により明らかに
なっている。
Experiments have shown that this is particularly remarkable in low frequency (-10 MHz) modulation.

【0010】本発明は、上述した事情を考慮してなされ
たもので、低周波領域においても高電圧を印加せずに、
レーザ光の位相変調を効率よく行なうことができるよう
にしたレーザ光位相変調器を提供することを目的とす
る。
The present invention has been made in consideration of the above-mentioned circumstances, and in the low frequency region, a high voltage is not applied,
It is an object of the present invention to provide a laser light phase modulator capable of efficiently performing phase modulation of laser light.

【0011】[0011]

【課題を解決するための手段】上記目的を達成するた
め、本発明に係るレーザ光位相変調器は、請求項1に記
載したように、電気光学結晶に、対をなす電極を互いに
対向させて取り付け、これらの電極が1つの電気共振回
路の一部を構成してレーザ光の位相変調を行なうレーザ
光位相変調器において、電気光学結晶の長さを変えずに
電気光学結晶内でのレーザ光の光路長を増大させる手段
を設け、このレーザ光の光路長増大手段は電気光学結晶
の対向面を、レーザ光が全反射するように対向面の頂角
をほぼ直角に鏡面加工により形成したものである。
In order to achieve the above object, in a laser light phase modulator according to the present invention, as described in claim 1, a pair of electrodes are opposed to each other on an electro-optic crystal. In a laser light phase modulator in which these electrodes form a part of one electric resonance circuit and perform phase modulation of the laser light, the laser light in the electro-optic crystal is changed without changing the length of the electro-optic crystal. A means for increasing the optical path length of the laser light is provided, and the means for increasing the optical path length of the laser light is formed by mirror-finishing the facing surface of the electro-optic crystal so that the apex angle of the facing surface is substantially right angle so that the laser light is totally reflected. Is.

【0012】[0012]

【作用】上記のように構成した本発明によれば、電気光
学結晶の長さを変えずに結晶内でのレーザ光の光路長を
増大させる手段を設けることによって、外部印加電圧が
低い場合でも充分大きな変調効果が得られるようにした
ものである。
According to the present invention constructed as described above, by providing means for increasing the optical path length of the laser light in the crystal without changing the length of the electro-optic crystal, even when the externally applied voltage is low. It is designed to obtain a sufficiently large modulation effect.

【0013】[0013]

【実施例】以下、本発明に係るレーザ光位相変調器の一
実施例について、添付図面を参照して説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the laser light phase modulator according to the present invention will be described below with reference to the accompanying drawings.

【0014】図1は、本発明に係るレーザ光位相変調器
の実施例を示すもので、この位相変調器1には、電界印
加方向に薄く、電界印加方向と直交する方向には長い電
気光学結晶2が備えられている。この電気光学結晶2
は、ケース(図示せず)等によって覆われている。
FIG. 1 shows an embodiment of a laser light phase modulator according to the present invention. This phase modulator 1 has an electro-optical structure that is thin in the electric field application direction and long in the direction orthogonal to the electric field application direction. A crystal 2 is provided. This electro-optic crystal 2
Are covered with a case (not shown) or the like.

【0015】また電気光学結晶2内において、レーザ光
3の光路長を増大させるため、対向する2面の頂角が図
2に示すように、正確に90度になるようなプリズム状
の鏡面加工がジクザグ状に施してあり、入射したレーザ
光3は、各プリズム状頂角で屈折され、180度方向を
変換するように走査され、進行せしめられる。
Further, in order to increase the optical path length of the laser light 3 in the electro-optic crystal 2, prism-shaped mirror surface processing is performed so that the apex angle of the two surfaces facing each other becomes exactly 90 degrees as shown in FIG. The zigzag shape is applied, and the incident laser light 3 is refracted at each prism-shaped apex angle, scanned so as to change the direction by 180 degrees, and is advanced.

【0016】また、電気光学結晶2として通常使用され
るLiTaO3 またはLiNbO3は屈折率nがほぼ2
と高いため、電気光学結晶2内で45度程度の入射角で
入射されたレーザ光3は、全反射し、損失がほとんどな
い。
Further, LiTaO 3 or LiNbO 3 usually used as the electro-optic crystal 2 has a refractive index n of about 2.
Therefore, the laser light 3 incident on the electro-optic crystal 2 at an incident angle of about 45 degrees is totally reflected and has almost no loss.

【0017】電気光学光路2内に入射されたレーザ光3
は、ほとんど損失なしに電気光学結晶2内で多数回18
0度方向に反射される。このため、レーザ光3の光路長
は、単一長尺結晶に比較して、飛躍的に増大する。この
電気光学結晶2には、互いに対向する位置に電極4が蒸
着などの方法により取り付けられる。この電極4には、
リード線5が接続され、可変コンデンサ6、インダクタ
ンスコイル7、外部印加電圧8を有する電気共振回路9
を形成する。このとき電気共振回路9の共振条件は、前
述した式(1)で表わされ、また位相変調の大きさを表
わす指数は、式(2)で表わされる。
Laser light 3 incident on the electro-optical optical path 2
Is a large number of times 18 in the electro-optic crystal 2 with almost no loss.
It is reflected in the 0 degree direction. Therefore, the optical path length of the laser light 3 is dramatically increased as compared with the single long crystal. Electrodes 4 are attached to the electro-optic crystal 2 at positions facing each other by a method such as vapor deposition. In this electrode 4,
An electric resonance circuit 9 to which the lead wire 5 is connected and which has a variable capacitor 6, an inductance coil 7, and an externally applied voltage 8.
To form. At this time, the resonance condition of the electric resonance circuit 9 is expressed by the above-described formula (1), and the index indicating the magnitude of the phase modulation is expressed by the formula (2).

【0018】次に、レーザ光位相変調器の作用について
説明する。
Next, the operation of the laser light phase modulator will be described.

【0019】レーザ光位相変調器1の電気光学結晶2
に、例えば、
Electro-optic crystal 2 of laser light phase modulator 1
For example,

【数3】V(t)=asin 2πft ……(3) の如く理想的な正弦波の電圧を印加すると、時間tの正
弦波に比例したレーザ光の位相変調が起こる。
## EQU3 ## When an ideal sinusoidal voltage is applied as in V (t) = asin 2πft (3), phase modulation of laser light occurs in proportion to the sinusoidal wave at time t.

【0020】一般的にレーザ光の電場強度ψ(t)は、Generally, the electric field intensity ψ (t) of laser light is

【数4】 で表わされる。[Equation 4] It is represented by.

【0021】式(3)を式(4)に代入すると、Substituting equation (3) into equation (4),

【数5】 となり、電場強度ψ(t)の瞬間周波数は、[Equation 5] And the instantaneous frequency of the electric field strength ψ (t) is

【数6】 となる。[Equation 6] Becomes

【0022】この式(6)からω0 の入射レーザ光の周
波数は時間tの余弦関数で示される周波数偏位(変動)
を生じる。
From the equation (6), the frequency of the incident laser light of ω 0 is the frequency deviation (fluctuation) represented by the cosine function of the time t.
Cause

【0023】ここで、式(2)より、電気光学結晶電場
が一定(V/d=一定)ならば、変調の大きさδは、レ
ーザ光の電気光学結晶2内の光路長lに比例する。
From the equation (2), if the electric field of the electro-optic crystal is constant (V / d = constant), the modulation magnitude δ is proportional to the optical path length 1 of the laser light in the electro-optic crystal 2. .

【0024】従来タイプのレーザ光位相変調器では、レ
ーザ光の電気光学結晶2内の光路長lは、電気光学結晶
2の長さに等しかったため、電気光学結晶2の長さが決
まると、外部印加電圧8を上げることで変調の大きさを
増大してきた。
In the conventional type laser light phase modulator, the optical path length 1 of the laser light in the electro-optic crystal 2 is equal to the length of the electro-optic crystal 2. Therefore, when the length of the electro-optic crystal 2 is determined, The magnitude of modulation has been increased by increasing the applied voltage 8.

【0025】ところが、低周波(〜10MHz)域の変
調の場合、レーザ光逸脱現象が外部印加電圧8に比例し
て増大し、外部印加電圧8を上げるだけでは不都合が生
じていた。しかし上記実施例を用いることによって電気
光学結晶内光路長lを飛躍的に増大させることができる
ので、変調の大きさδを大きくとることができ、低い外
部印加電圧8でも充分な変調を得ることができる。
However, in the case of modulation in the low frequency (-10 MHz) range, the laser beam deviation phenomenon increases in proportion to the externally applied voltage 8, and there is a problem only by increasing the externally applied voltage 8. However, since the optical path length 1 in the electro-optic crystal can be remarkably increased by using the above-mentioned embodiment, the modulation magnitude δ can be made large, and sufficient modulation can be obtained even with a low external applied voltage 8. You can

【0026】[0026]

【発明の効果】以上述べたように本発明に係るレーザ光
位相変調器によれば、低周波領域において変調の大きさ
を高める場合でも、外部印加電圧を高くすることなし
に、電気光学結晶内のレーザ光の光路長を増大させる手
段を設けることによって、低い外部印加電圧においても
変調の大きさを高めることができ、効率良いレーザ光の
位相変調を行うことができるといった効果がある。
As described above, according to the laser light phase modulator of the present invention, even when the magnitude of modulation is increased in the low frequency region, the electro-optic crystal can be formed without increasing the externally applied voltage. By providing the means for increasing the optical path length of the laser light, there is an effect that the magnitude of the modulation can be increased even with a low externally applied voltage, and the phase modulation of the laser light can be efficiently performed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るレーザ光位相変調器の一実施例を
示す構成図。
FIG. 1 is a configuration diagram showing an embodiment of a laser light phase modulator according to the present invention.

【図2】本発明に係るレーザ光位相変調器の電気光学結
晶内におけるレーザ光の走査状態を表す図。
FIG. 2 is a diagram showing a scanning state of laser light in an electro-optic crystal of a laser light phase modulator according to the present invention.

【符号の説明】[Explanation of symbols]

1 レーザ光位相変調器 2 電気光学結晶 3 レーザ光 4 電極 5 リード線 6 可変コンデンサ 7 インダクタンスコイル 8 外部印加電圧 9 電気共振回路 1 Laser Light Phase Modulator 2 Electro Optical Crystal 3 Laser Light 4 Electrode 5 Lead Wire 6 Variable Capacitor 7 Inductance Coil 8 Externally Applied Voltage 9 Electrical Resonance Circuit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 電気光学結晶に、対をなす電極を互いに
対向させて取り付け、これらの電極が1つの電気共振回
路の一部を構成してレーザ光の位相変調を行なうレーザ
光位相変調器において、電気光学結晶の長さを変えずに
電気光学結晶内でのレーザ光の光路長を増大させる手段
を設け、このレーザ光の光路長増大手段は電気光学結晶
の対向面を、レーザ光が全反射するように対向面の頂角
をほぼ直角に鏡面加工により形成したことを特徴とする
レーザ光位相変調器。
1. A laser light phase modulator for mounting a pair of electrodes on an electro-optic crystal so as to face each other and forming a part of one electric resonance circuit to perform phase modulation of laser light. , Means for increasing the optical path length of the laser light in the electro-optic crystal without changing the length of the electro-optic crystal is provided. A laser light phase modulator characterized in that the apex angle of the opposing surface is formed by mirror-finishing so as to be almost perpendicular so as to be reflected.
JP32039093A 1993-12-20 1993-12-20 Laser beam phase modulator Pending JPH07175026A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32039093A JPH07175026A (en) 1993-12-20 1993-12-20 Laser beam phase modulator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32039093A JPH07175026A (en) 1993-12-20 1993-12-20 Laser beam phase modulator

Publications (1)

Publication Number Publication Date
JPH07175026A true JPH07175026A (en) 1995-07-14

Family

ID=18120939

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32039093A Pending JPH07175026A (en) 1993-12-20 1993-12-20 Laser beam phase modulator

Country Status (1)

Country Link
JP (1) JPH07175026A (en)

Similar Documents

Publication Publication Date Title
US4866406A (en) Wide-band optical modulator
CN100410732C (en) Optical modulator
US11215654B2 (en) Measuring device, measuring system, and measuring method for liquid crystal dielectric constant
EP0695963A1 (en) Acousto-optical tunable filter and a laser tuned by it
US5483374A (en) Wavelength conversion device using an external unstable cavity
JP2010026079A (en) Optical device
EP0590474B1 (en) Optical modulation device and method of driving the same
US7283689B1 (en) Optical waveguide having high dielectric constant contrast between cladding and core
Tien et al. Light beam scanning and deflection in epitaxial LiNbO3 electro‐optic waveguides
JP3250712B2 (en) Polarization independent light control element
JPH07175026A (en) Laser beam phase modulator
Zolotov et al. Integrated optical Mach–Zehnder modulator with a linearized modulation characteristic
US5530777A (en) Optical modulation device
US5657152A (en) Acoustooptic device
JPH08286160A (en) Acoustooptic filter
JPH07335959A (en) Laser beam phase modulator
CN110376592B (en) Acousto-optic regulation and control optical phased array laser radar
Lee Scanning acousto‐electro‐optic light deflector with uniform intensity response
JPH10307307A (en) Optical deflector
JPS635327A (en) Fabry-perot resonator
CN111999886B (en) Reflective optical deflector
JPH04242716A (en) Laser beam phase modulator
JPS6214124A (en) Optical wavelength converter
SU744422A1 (en) Method of correcting bregg angle in ultrasonic deflector of light beam
JPH06118358A (en) Optical modulation element and driving method therefor