JPH07174786A - Semiconductor acceleration sensor - Google Patents

Semiconductor acceleration sensor

Info

Publication number
JPH07174786A
JPH07174786A JP5344907A JP34490793A JPH07174786A JP H07174786 A JPH07174786 A JP H07174786A JP 5344907 A JP5344907 A JP 5344907A JP 34490793 A JP34490793 A JP 34490793A JP H07174786 A JPH07174786 A JP H07174786A
Authority
JP
Japan
Prior art keywords
acceleration sensor
bottom plate
weight body
pedestal
joined
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5344907A
Other languages
Japanese (ja)
Inventor
Isao Takizawa
功 滝沢
Atsushi Washitani
篤 鷲谷
Akio Shimomura
昭夫 下村
Hitoshi Nishimura
仁 西村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP5344907A priority Critical patent/JPH07174786A/en
Publication of JPH07174786A publication Critical patent/JPH07174786A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01PMEASURING LINEAR OR ANGULAR SPEED, ACCELERATION, DECELERATION, OR SHOCK; INDICATING PRESENCE, ABSENCE, OR DIRECTION, OF MOVEMENT
    • G01P15/00Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration
    • G01P15/02Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses
    • G01P15/08Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values
    • G01P2015/0805Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration
    • G01P2015/0822Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass
    • G01P2015/084Measuring acceleration; Measuring deceleration; Measuring shock, i.e. sudden change of acceleration by making use of inertia forces using solid seismic masses with conversion into electric or magnetic values being provided with a particular type of spring-mass-system for defining the displacement of a seismic mass due to an external acceleration for defining out-of-plane movement of the mass the mass being suspended at more than one of its sides, e.g. membrane-type suspension, so as to permit multi-axis movement of the mass

Abstract

PURPOSE:To provide a semiconductor acceleration sensor with an improved yield. CONSTITUTION:An acceleration sensor substrate 1 is obtained by forming a surrounding fixed part 11 by machining silicon, an operation part 12 receiving force due to the acceleration at the center, and a thin flexible part 13 for connecting the fixed part 11 and the operation part 12, and by forming diffusion resistors Rx1-Rx4, Ry1-Ry4, and Rz1-Rz4 on the surface of the flexible part 13. A weight body 3 is connected to the operation part of the acceleration sensor substrate 1 and a pedestal 2 is joined to the fixed part 11 and further the pedestal 2 is joined to a bottom plate 4. A conductor film 31 is formed in advance on a surface opposing to the bottom plate 4 of the weight body 3 by metallization.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、半導体加速度センサに
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a semiconductor acceleration sensor.

【0002】[0002]

【従来の技術】加速度センサは、自動車のエアバックシ
ステムの衝突検知や、各種機器の姿勢制御、産業用ロボ
ット等、様々な用途において加速度検知のために用いら
れている。加速度センサのうち、シリコン単結晶基板を
用いてピエゾ抵抗効果を有する拡散抵抗(ゲージ抵抗)
を形成して構成される半導体加速度センサは、半導体セ
ンサの製造技術を応用して、優れた生産性をもって量産
することができる。半導体加速度センサチップは、半導
体基板が、周辺の固定部と、中央の加速度により力を受
ける作用部と、これら固定部と作用部の間を連結する薄
肉の可撓部とに加工され、その可撓部の表面に所定パタ
ーンをもって複数の拡散抵抗が形成される。
2. Description of the Related Art Acceleration sensors are used for acceleration detection in various applications such as collision detection of air bag systems of automobiles, attitude control of various devices, and industrial robots. Among accelerometers, diffusion resistance (gauge resistance) with piezoresistive effect using silicon single crystal substrate
The semiconductor acceleration sensor formed by forming can be mass-produced with excellent productivity by applying the manufacturing technology of the semiconductor sensor. In a semiconductor acceleration sensor chip, a semiconductor substrate is processed into a peripheral fixed portion, a central action portion that receives a force by acceleration, and a thin flexible portion that connects the fixed portion and the action portion. A plurality of diffusion resistors are formed in a predetermined pattern on the surface of the flexible portion.

【0003】半導体加速度センサチップの作用部底面に
は重錘体が接合され、周辺の固定部底面は台座が接合さ
れてこの台座を介して底板に接合される。重錘体と台座
とは例えば1枚のガラス基板を加工して得られる。ガラ
ス基板は表面に予め重錘体部と台座部を分離するための
溝を加工しておき、これを半導体加速度センサ基板の底
面に接合した後に裏面から切断加工して、重錘体部と台
座部とを完全に分離する(例えば、特開平3−2535
号公報参照)。
A weight body is joined to the bottom surface of the working portion of the semiconductor acceleration sensor chip, and a pedestal is joined to the bottom surface of the peripheral fixing portion and is joined to the bottom plate through this pedestal. The weight body and the pedestal are obtained, for example, by processing one glass substrate. A groove is formed on the surface of the glass substrate in advance to separate the weight body part and the pedestal part, and this is joined to the bottom surface of the semiconductor acceleration sensor substrate and then cut from the back surface to form the weight body part and the pedestal part. Completely separated from each other (for example, Japanese Laid-Open Patent Publication No. 3-25535).
(See the official gazette).

【0004】このような半導体加速度センサでは、加速
度が加わったとき重錘体に外力が作用してこれが作用部
に伝達され、可撓部の機械的変形をもたらす。従って重
錘体は宙づりの状態であることが必要で、底板との間に
は所定のギャップが設けられる。また底板は、重錘体が
変位する際のストッパともなる。従って重錘体と底板と
の間のギャップは、重錘体の必要な動きを許容できる範
囲で、且つ大きな衝撃に対してセンサチップの破壊を防
止できるように、その幅が設定される。低い重力加速度
測定用には、例えば10μm あるいはそれ以下という小
さいギャップをもつものが望まれる。
In such a semiconductor acceleration sensor, when an acceleration is applied, an external force acts on the weight body and is transmitted to the acting portion, causing mechanical deformation of the flexible portion. Therefore, the weight body needs to be in a suspended state, and a predetermined gap is provided between the weight body and the bottom plate. The bottom plate also serves as a stopper when the weight body is displaced. Therefore, the width of the gap between the weight body and the bottom plate is set within a range in which the necessary movement of the weight body can be allowed and in which the sensor chip can be prevented from being destroyed by a large impact. For low gravitational acceleration measurements, those with small gaps, eg 10 μm or less, are desired.

【0005】[0005]

【発明が解決しようとする課題】しかし、上述した従来
の半導体加速度センサでは、重錘体と底板との間のギャ
ップが小さくなると、加速度センサ基板を台座を介して
底板に接合する工程で、重錘体底部が同時に底板に強固
に接合してしまうという不良が発生する。これは、ギャ
ップが小さいことに加えて、接合工程でクーロン力が発
生することが一つの理由になっていると思われる。即ち
加速度センサ基板を台座を介して底板に接合するには、
センサ基板と底板の間に直流電圧を印加し、温度と圧力
をかけるいわゆる陽極接合が用いられる。この陽極接合
の工程で通常ガラス基板により作られる重錘体の底部に
は静電荷が発生し、この静電荷に起因して重錘体底部が
底板に密着し、更に温度と圧力が印加されるため固定的
に接合されてしまう。これは特に、小さい加速度測定用
の半導体加速度センサの製造歩留まり低下の大きな原因
となっている。
However, in the above-described conventional semiconductor acceleration sensor, when the gap between the weight body and the bottom plate becomes small, the weight of the acceleration sensor substrate is increased in the step of joining the acceleration sensor substrate to the bottom plate through the pedestal. At the same time, the bottom of the weight body is firmly joined to the bottom plate, which causes a defect. This is considered to be because the Coulomb force is generated in the joining process in addition to the small gap. That is, to join the acceleration sensor board to the bottom plate via the pedestal,
A so-called anodic bonding is used in which a DC voltage is applied between the sensor substrate and the bottom plate to apply temperature and pressure. In this anodic bonding process, an electrostatic charge is generated at the bottom of the weight body that is usually made of a glass substrate, and due to this electrostatic charge, the bottom of the weight body adheres to the bottom plate, and further temperature and pressure are applied. Therefore, they are fixedly joined. This is a major cause of reduction in manufacturing yield of semiconductor acceleration sensors for measuring small accelerations.

【0006】本発明は、上記事情を考慮してなされたも
ので、歩留まり向上を可能とした半導体加速度センサを
提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and an object thereof is to provide a semiconductor acceleration sensor capable of improving yield.

【0007】[0007]

【課題を解決するための手段】本発明にかかる半導体加
速度センサは、半導体基板が周辺の固定部と、中央の加
速度により力を受ける作用部と、これら固定部と作用部
の間を連結する薄肉の可撓部とに加工され、前記可撓部
の表面に拡散抵抗が形成された加速度センサ基板と、こ
の加速度センサ基板の固定部底面が台座を介して接合さ
れた底板と、前記加速度センサ基板の作用部底面に前記
底板との間に微小ギャップを保って接合され、底板に対
向する面に導体が形成された重錘体とを備えたことを特
徴とする。
In a semiconductor acceleration sensor according to the present invention, a semiconductor substrate has a peripheral fixed portion, a working portion that receives a force due to central acceleration, and a thin wall connecting the fixed portion and the working portion. And a bottom plate in which a bottom surface of a fixed portion of the acceleration sensor substrate is joined via a pedestal, and the acceleration sensor substrate. And a weight body having a conductor formed on the surface facing the bottom plate.

【0008】[0008]

【作用】本発明によると、加速度センサ基板の作用部底
面に接合される重錘体の底板に対向する面に導体を形成
することにより、台座の陽極接合の工程で重錘体が底板
に接合固定されるという不具合が防止される。これは重
錘体の底面に設けられた導体が帯電防止膜として作用す
るためと考えられる。従って本発明によれば、重錘体と
底板との間に設けるギャップを小さくした、低加速度測
定用のセンサを歩留まりよく作ることができる。
According to the present invention, the conductor is formed on the surface of the weight body joined to the bottom surface of the working portion of the acceleration sensor substrate, the surface facing the bottom plate, so that the weight body is joined to the bottom plate in the step of anodic joining the pedestal. The problem of being fixed is prevented. It is considered that this is because the conductor provided on the bottom surface of the weight body acts as an antistatic film. Therefore, according to the present invention, it is possible to manufacture a sensor for low acceleration measurement, which has a small gap provided between the weight body and the bottom plate, with good yield.

【0009】[0009]

【実施例】以下、図面を参照しながら本発明の実施例を
説明する。図1(a)(b)は、本発明の一実施例に係
る半導体加速度センサの平面図とそのA−A′断面図で
ある。加速度センサ基板1はシリコン単結晶ウェハを加
工して、周辺に厚肉の固定部11、中央部に厚肉の作用
部12、これら固定部11と作用部12の間に薄肉の可
撓部13が形成されている。可撓部13は、作用部12
が加速度による外力を受けることにより機械的変形を生
じる部分である。
Embodiments of the present invention will be described below with reference to the drawings. 1A and 1B are a plan view and a sectional view taken along the line AA 'of a semiconductor acceleration sensor according to an embodiment of the present invention. The acceleration sensor substrate 1 is formed by processing a silicon single crystal wafer, and has a thick fixing portion 11 in the periphery, a thick acting portion 12 in the center, and a thin flexible portion 13 between the fixing portion 11 and the acting portion 12. Are formed. The flexible portion 13 is the action portion 12
Is a part that undergoes mechanical deformation when it receives an external force due to acceleration.

【0010】可撓部13の表面には、x方向の力成分を
検出するための拡散抵抗Rx1〜Rx4、y方向の力成分を
検出するための拡散抵抗Ry1〜Ry4、z方向の力成分を
検出するための拡散抵抗Rz1〜Rz4が図示のようなパタ
ーンで配列形成されている。これら拡散抵抗を用いてブ
リッジ回路を構成することにより、三次元の加速度を検
出できる。
On the surface of the flexible portion 13, diffusion resistances Rx1 to Rx4 for detecting a force component in the x direction, diffusion resistances Ry1 to Ry4 for detecting a force component in the y direction, and a force component in the z direction are provided. Diffusion resistors Rz1 to Rz4 for detection are arrayed in a pattern as shown. A three-dimensional acceleration can be detected by configuring a bridge circuit using these diffused resistors.

【0011】加速度センサ基板1の固定部11の底面に
は台座2が接合され、この台座2が更に底板4に接合さ
れている。加速度センサ基板1の作用部12の底面には
重錘体3が接合されている。これら台座2および重錘体
3の材料は、加速度センサ基板1と熱膨張係数が等しい
ものが好ましく、例えばガラス基板が用いられる。この
実施例では、後に説明するように台座2と重錘体3とは
もともと一体のほうケイ酸ガラスを用いて形成され、接
合後分離される。底板4にはシリコン基板が用いられ
る。
A pedestal 2 is joined to the bottom surface of the fixed portion 11 of the acceleration sensor substrate 1, and the pedestal 2 is further joined to the bottom plate 4. The weight body 3 is joined to the bottom surface of the acting portion 12 of the acceleration sensor substrate 1. The pedestal 2 and the weight 3 are preferably made of a material having the same thermal expansion coefficient as that of the acceleration sensor substrate 1, and a glass substrate is used, for example. In this embodiment, as will be described later, the pedestal 2 and the weight body 3 are originally formed by using integral borosilicate glass, and are separated after bonding. A silicon substrate is used for the bottom plate 4.

【0012】重錘体3の底面、即ち底板4に対向する面
には導体膜31が形成されている。この導体膜31は例
えば、チタンまたは白金のメタライズとする。アルミニ
ウムや金等の他の金属膜でもよい。底板4の表面には浅
い溝41が加工されていて、重錘体3と底板4の間には
作用部12の移動を許容する幅D(=数μm 〜10μm
)のギャップ42が設けられている。
A conductor film 31 is formed on the bottom surface of the weight body 3, that is, the surface facing the bottom plate 4. The conductor film 31 is, for example, titanium or platinum metallized. Other metal films such as aluminum and gold may be used. A shallow groove 41 is formed on the surface of the bottom plate 4, and a width D (= several μm to 10 μm) that allows movement of the action portion 12 between the weight body 3 and the bottom plate 4.
) Is provided.

【0013】次にこの実施例の半導体加速度センサの具
体的な製造工程を、図2及び図3を参照しながら説明す
る。図2(a)に示すように、シリコンウェハ10に通
常の工程にしたがって表面に各センサチップ領域に拡散
抵抗層を形成し、裏面を湿式エッチング法によりエッチ
ング加工してリング状の可撓部13を形成する。図2の
一点鎖線は後に1チップとして分離する切断位置を示し
ている。
Next, a specific manufacturing process of the semiconductor acceleration sensor of this embodiment will be described with reference to FIGS. As shown in FIG. 2A, a diffusion resistance layer is formed on each surface of the silicon wafer 10 according to a normal process in each sensor chip region, and the back surface is etched by a wet etching method to form a ring-shaped flexible portion 13. To form. The alternate long and short dash line in FIG. 2 indicates a cutting position where a chip is separated later.

【0014】このシリコンウェハ10とは別に、重錘体
3となる部分と台座2となる部分の間に分離用溝21を
加工したガラス基板20を用意する。ガラス基板20の
重錘体3となる部分の底面には、スパッタにより導体膜
31を形成する。そしてこのガラス基板20を、図2
(a)に示すようにシリコンウェハ10に陽極接合す
る。具体的な陽極接合の条件は、例えば温度300〜5
00℃、印加電圧はガラス側を負として400〜200
0Vとする。なお導体膜31の形成は、シリコンウェハ
10とガラス基板20の接合後であってもよい。
Separately from the silicon wafer 10, a glass substrate 20 having a separating groove 21 formed between a portion which becomes the weight body 3 and a portion which becomes the pedestal 2 is prepared. A conductor film 31 is formed by sputtering on the bottom surface of the portion of the glass substrate 20 that becomes the weight body 3. The glass substrate 20 is shown in FIG.
As shown in (a), the silicon wafer 10 is anodically bonded. Specific conditions for anodic bonding are, for example, a temperature of 300 to 5
00 ° C, applied voltage is 400 to 200 with the glass side being negative
Set to 0V. The conductor film 31 may be formed after the silicon wafer 10 and the glass substrate 20 are bonded together.

【0015】その後、ガラス基板20を予め表面に加工
されている溝21に沿って裏面側から切断して、重錘体
3と台座2とを分離する。この状態をチップ単位で図2
の底面側から見ると図3のようになる。図示のように重
錘体3には導体膜31が形成されている。台座2は、切
断により8個の台座部21 〜28 に分割される。このよ
うに台座2と重錘体3が分離されたセンサ基板を、図2
(b)に示すように底板4となるシリコンウェハ30に
陽極接合する。シリコンウェハ30には予め、各センサ
チップの重錘体3が対向する部分に浅い溝42を加工し
ておく。この陽極接合の条件は、例えば温度300〜5
00℃、ガラス側を負とした直流印加電圧400〜20
00Vとする。最後に一点鎖線で示す位置で切断して、
各センサチップを分離する。
After that, the glass substrate 20 is cut from the back surface side along the groove 21 which is previously processed on the front surface, and the weight body 3 and the pedestal 2 are separated. This state is shown in chips.
When viewed from the bottom side of, it becomes as shown in FIG. As shown in the figure, a conductor film 31 is formed on the weight body 3. The pedestal 2 is divided into eight pedestal portions 21 to 28 by cutting. In this way, the sensor substrate in which the pedestal 2 and the weight body 3 are separated is shown in FIG.
As shown in (b), the silicon wafer 30 that will be the bottom plate 4 is anodically bonded. In the silicon wafer 30, a shallow groove 42 is previously formed in a portion of each sensor chip facing the weight body 3. The conditions for this anodic bonding are, for example, a temperature of 300 to 5
00 ° C., DC applied voltage 400 to 20 with glass side as negative
00V. Finally cut at the position indicated by the dashed line,
Separate each sensor chip.

【0016】この実施例によると、センサ基板の重錘体
3と底板4との間のギャップ42が数μm 〜10μm と
いう小さいものであっても、台座2を底板4に接合する
陽極接合工程で重錘体3と底板4とが接合されることは
なく、高い製造歩留まりが得られる。
According to this embodiment, even if the gap 42 between the weight body 3 of the sensor substrate and the bottom plate 4 is as small as several μm to 10 μm, the anodic bonding process for bonding the pedestal 2 to the bottom plate 4 is performed. The weight body 3 and the bottom plate 4 are not joined, and a high manufacturing yield can be obtained.

【0017】図4は、本発明の他の実施例の半導体加速
度センサの切断斜視図である。先の実施例では重錘体3
の底面にメタライズによる導体膜31を形成したのに対
して、この実施例では重錘体3の底面に薄い導体板32
を貼り付けている。これによっても先の実施例と同様の
効果が得られる。
FIG. 4 is a cutaway perspective view of a semiconductor acceleration sensor according to another embodiment of the present invention. In the previous embodiment, the weight 3
While the conductor film 31 is formed on the bottom surface of the thin metal plate by metallization, the thin conductor plate 32 is formed on the bottom surface of the weight body 3 in this embodiment.
Is pasted. With this, the same effect as that of the previous embodiment can be obtained.

【0018】[0018]

【発明の効果】以上説明したように本発明によれば、重
錘体の底板に対向する面に導体を設けることによって、
台座部を底板に陽極接合する際に重錘体が誤って底板に
接合されることがなくなり、特に小型の半導体加速度セ
ンサの歩留まり向上を図ることができる。
As described above, according to the present invention, by providing the conductor on the surface of the weight body facing the bottom plate,
When the pedestal part is anodically bonded to the bottom plate, the weight body is not accidentally bonded to the bottom plate, and the yield of a particularly small semiconductor acceleration sensor can be improved.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の一実施例の半導体加速度センサを示
す平面図と断面図である。
FIG. 1 is a plan view and a sectional view showing a semiconductor acceleration sensor according to an embodiment of the present invention.

【図2】 同実施例の製造工程を説明するための図であ
る。
FIG. 2 is a diagram for explaining a manufacturing process of the embodiment.

【図3】 同実施例の製造工程を説明するための図であ
る。
FIG. 3 is a drawing for explaining the manufacturing process of the embodiment.

【図4】 他の実施例の半導体加速度センサを示す図で
ある。
FIG. 4 is a diagram showing a semiconductor acceleration sensor of another embodiment.

【符号の説明】[Explanation of symbols]

1…半導体加速度センサ基板、11…固定部、12…作
用部、13…可撓部、2…台座、3…重錘体、4…底
板、31…導体膜、42…ギャップ。
DESCRIPTION OF SYMBOLS 1 ... Semiconductor acceleration sensor substrate, 11 ... Fixed part, 12 ... Working part, 13 ... Flexible part, 2 ... Pedestal, 3 ... Weight body, 4 ... Bottom plate, 31 ... Conductor film, 42 ... Gap.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西村 仁 東京都江東区木場1丁目5番1号 株式会 社フジクラ内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Hitoshi Nishimura 1-5-1, Kiba, Koto-ku, Tokyo Inside Fujikura Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 半導体基板が周辺の固定部と、中央の加
速度により力を受ける作用部と、これら固定部と作用部
の間を連結する薄肉の可撓部とに加工され、前記可撓部
の表面に拡散抵抗が形成された加速度センサ基板と、 この加速度センサ基板の固定部底面が台座を介して接合
された底板と、 前記加速度センサ基板の作用部底面に前記底板との間に
微小ギャップを保って接合され、底板に対向する面に導
体が形成された重錘体とを備えたことを特徴とする半導
体加速度センサ。
1. A semiconductor substrate is processed into a peripheral fixed portion, a working portion that receives a force from a central acceleration, and a thin flexible portion that connects the fixed portion and the working portion, and the flexible portion is formed. An acceleration sensor substrate having a diffusion resistance formed on its surface, a bottom plate to which the bottom surface of the fixed portion of the acceleration sensor substrate is joined via a pedestal, and a small gap between the bottom surface of the action portion of the acceleration sensor substrate and the bottom plate. And a weight body having a conductor formed on a surface facing the bottom plate.
JP5344907A 1993-12-20 1993-12-20 Semiconductor acceleration sensor Pending JPH07174786A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5344907A JPH07174786A (en) 1993-12-20 1993-12-20 Semiconductor acceleration sensor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5344907A JPH07174786A (en) 1993-12-20 1993-12-20 Semiconductor acceleration sensor

Publications (1)

Publication Number Publication Date
JPH07174786A true JPH07174786A (en) 1995-07-14

Family

ID=18372921

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5344907A Pending JPH07174786A (en) 1993-12-20 1993-12-20 Semiconductor acceleration sensor

Country Status (1)

Country Link
JP (1) JPH07174786A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111592A1 (en) * 2003-06-17 2004-12-23 Nitta Corporation Multi-axis sensor
WO2008044404A1 (en) * 2006-10-11 2008-04-17 Nitta Corporation Strain gauge sensor

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2004111592A1 (en) * 2003-06-17 2004-12-23 Nitta Corporation Multi-axis sensor
US7360456B2 (en) 2003-06-17 2008-04-22 Nitta Corporation Six-axis sensor
WO2008044404A1 (en) * 2006-10-11 2008-04-17 Nitta Corporation Strain gauge sensor
JP2008096230A (en) * 2006-10-11 2008-04-24 Nitta Ind Corp Strain gauge type sensor

Similar Documents

Publication Publication Date Title
US5284057A (en) Microaccelerometer having low stress bonds and means for preventing excessive Z-axis deflection
US8186221B2 (en) Vertically integrated MEMS acceleration transducer
JP2575939B2 (en) Semiconductor acceleration sensor
JPH09113534A (en) Acceleration sensor
JP2658949B2 (en) Semiconductor acceleration sensor
US20160341759A1 (en) Sensor and method of manufacturing same
JP3686147B2 (en) Acceleration sensor
JPH09292409A (en) Accelerometer
JP3223849B2 (en) Semiconductor acceleration sensor
JPH07174786A (en) Semiconductor acceleration sensor
JP3355916B2 (en) Micro G switch
JP2008224294A (en) Semiconductor acceleration sensor
JP3265641B2 (en) Semiconductor acceleration sensor
JPH0484725A (en) Sensor using resistor element
JPH05281251A (en) Acceleration sensor and manufacture thereof
JP3310154B2 (en) Semiconductor type acceleration sensor and method of manufacturing the same
JP2003136494A (en) Microstructure body, physical quantity detector and manufacturing method for the same
JPH03214064A (en) Acceleration sensor
JPH07146307A (en) Semiconductor acceleration sensor and its manufacture
JPH075192A (en) Semiconductor acceleration sensor and fabrication thereof
JPS63111676A (en) Detecting device of force
JPH09184851A (en) Semiconductor acceleration sensor
JP2003149262A (en) Micro structure, heat-controlling method thereof, and manufacturing method of the micro structure
JPH05256869A (en) Semiconductor type acceleration sensor and its manufacture
JPH06273440A (en) Semiconductor acceleration sensor and its manufacture