JPH0717418B2 - Manufacturing method of artificial lightweight aggregate - Google Patents

Manufacturing method of artificial lightweight aggregate

Info

Publication number
JPH0717418B2
JPH0717418B2 JP20469188A JP20469188A JPH0717418B2 JP H0717418 B2 JPH0717418 B2 JP H0717418B2 JP 20469188 A JP20469188 A JP 20469188A JP 20469188 A JP20469188 A JP 20469188A JP H0717418 B2 JPH0717418 B2 JP H0717418B2
Authority
JP
Japan
Prior art keywords
mud
fly ash
water
product
dry powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP20469188A
Other languages
Japanese (ja)
Other versions
JPH0255250A (en
Inventor
實生 相田
和則 鍋倉
Original Assignee
株式会社鐵原
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社鐵原 filed Critical 株式会社鐵原
Priority to JP20469188A priority Critical patent/JPH0717418B2/en
Publication of JPH0255250A publication Critical patent/JPH0255250A/en
Publication of JPH0717418B2 publication Critical patent/JPH0717418B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02WCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO WASTEWATER TREATMENT OR WASTE MANAGEMENT
    • Y02W30/00Technologies for solid waste management
    • Y02W30/50Reuse, recycling or recovery technologies
    • Y02W30/91Use of waste materials as fillers for mortars or concrete

Description

【発明の詳細な説明】Detailed Description of the Invention 【産業上の利用分野】[Industrial applications]

本発明は、山砂を水洗した際に発生する廃棄泥分にフラ
イアッシュを加えて混練造粒し、造粒物を乾燥焼成して
人工軽量骨材を製造する方法に関するものである。
TECHNICAL FIELD The present invention relates to a method for producing artificial lightweight aggregate by adding fly ash to the waste mud generated when the sand is washed with water, kneading and granulating, and drying and firing the granulated product.

【従来の技術】[Prior art]

コンクリート用骨材は清浄であることが必須とされてお
り、ごみ、粘土、シルト、有機物等の有害物を含んでは
ならない。これらの物質はコンクリートの強度を著しく
低下させるため、天然山砂からコンクリート用骨材を製
造する場合、焼成等を行わない場合は骨材中にごみや
泥、有機物等が含有しないよう、水洗することが義務づ
けられている。 山砂を水洗した際発生する廃棄泥分(以下、泥分と記
す。これは大部分はシルト分である。)は粒度が非常に
小さく(大部分が5μ〜74μからなる)、含水比が90〜
100%と多量の水を含んだ軟状物である。そのため泥分
をそのまま埋め立て処分をすると処分地はいつまでも軟
弱で地盤が固くならないという問題があり、土地の有効
利用に支障をきたす。埋め立て処分地の有効利用を図る
ためにサンドドレーン工法等で処分地の排水を促進して
地盤を圧密固化し、さらに表層部分を適当な深さまでセ
メント、石灰等の固化材を混入させて土の強度を上昇さ
せた後、さらにその上に礫や山土等を用いて厚い層で被
覆するなどの方法が行われている。しかしながら、この
ような方法としても処分地の地盤が硬く固まるまでに長
時間を要するため、近年では泥分にセメントや石灰等を
混合して泥分の強度向上を図りつつ埋め立てしたり、機
械的に脱水処理してから埋め立て処分を行う方法も検討
されている。 このように従来の泥分処理方法は、固化剤を用いて土質
の安定を図るものであった。しかしながら大量に発生す
る泥分を処分するには、それを受け入れる処分地が必要
であり、泥分以外にも固化剤や表層を覆うための新規な
山土等を加えるため処分地は広大な土地である必要があ
った。 上記の如く天然山砂を水洗した際に発生する泥分は、そ
の性状が故に処理処分について多くの問題点がある。 一方、石灰火力発電所や石灰ボイラーから大量に発生す
るフライアッシュは一部がフライアッシュセメントに使
用されているが、その大半は埋め立て処分されている。
しかしながら日本国内の埋め立て地の現状から、これら
多くの泥分やフライアッシュをそのまま受け入れる情況
が近い将来逼迫しているのが明らかである。 従来、フライアッシュを利用した軽量骨材の製造方法と
しては、例えば特公昭38-25820号公報及び同39-11234号
公報に記載の方法がある。前者の方法は、造粒機中にお
いて微粉炭灰(フライアッシュ)に粘土スラリー又はパ
ルプ廃液を滴下して球状粒状物を得、これを1100〜1500
℃に焼結して内部の水分の揮散により気孔を生じさせ
る。また、後者の方法は、フライアッシュにスラリー状
粘土を滴下して造粒後、回転窯内において加熱してフラ
イアッシュ中の酸化第一鉄を酸化第二鉄とし、その際に
発生する酸素で発泡させる。その発泡焼成の際、粒と粒
の溶融面が互いに付着する恐れがあるので、窯内におい
て比較的融点の高い無機物の粉末を表面に付着させ、造
粒物の粘結を防止する。
Aggregates for concrete are required to be clean and must not contain harmful substances such as dust, clay, silt and organic substances. Since these substances significantly reduce the strength of concrete, when manufacturing aggregate for concrete from natural mountain sand, if it is not fired, wash it with water so that the aggregate does not contain dust, mud, organic matter, etc. Is obligatory. Waste mud generated when the sand is washed with water (hereinafter referred to as mud, most of which is silt) has a very small particle size (most of which is 5μ to 74μ) and has a water content ratio. 90 ~
It is a soft substance that contains a large amount of 100% water. Therefore, if the mud is directly landfilled, there is a problem that the disposal site will remain soft and the ground will not harden, hindering the effective use of the land. In order to effectively use the landfill site, the drainage of the landfill site is promoted by the sand drain method, etc. to consolidate the ground, and the surface layer is mixed with a solidifying material such as cement or lime to an appropriate depth to remove the soil. After increasing the strength, a method such as further covering with a thick layer using gravel or mountain soil is performed. However, even with such a method, it takes a long time for the ground at the disposal site to harden and harden, so in recent years, cement and lime have been mixed with mud to improve the strength of mud and landfill, and A method of dewatering and then landfilling is also being considered. As described above, the conventional mud treatment method is intended to stabilize the soil quality by using the solidifying agent. However, in order to dispose of a large amount of mud, a disposal site that accepts it is necessary. In addition to mud, solidification agents and new mountain soil for covering the surface layer are added, so the disposal site is a vast land. Had to be. As described above, the mud generated when the natural mountain sand is washed with water has many problems in disposal due to its nature. On the other hand, a large amount of fly ash generated from lime thermal power plants and lime boilers is partly used for fly ash cement, but most of it is landfilled.
However, from the current state of landfills in Japan, it is clear that the situation of accepting these large amounts of mud and fly ash as they are will be tight in the near future. Conventionally, as a method of manufacturing a lightweight aggregate using fly ash, for example, there are methods described in Japanese Patent Publication Nos. 38-25820 and 39-11234. In the former method, a clay slurry or pulp waste liquid is dripped into fine coal ash (fly ash) in a granulator to obtain spherical granules, which are 1100-1500.
Sintering at ℃ causes volatilization of moisture inside to generate pores. Also, the latter method, after dropping the slurry clay into the fly ash and granulating it, heat it in a rotary kiln to make ferrous oxide in the fly ash ferric oxide, and with the oxygen generated at that time. Foam. During the foaming and firing, the particles and the melting surfaces of the particles may adhere to each other. Therefore, the inorganic material powder having a relatively high melting point is adhered to the surface in the kiln to prevent the caking of the granulated material.

【発明が解決しようとする課題】[Problems to be Solved by the Invention]

しかしながら、従来の後者の方法のように、発泡焼成工
程での造粒物粘結防止のために、高融点の無機物粉末を
別にコーテイングするようにしたとしても、その前の段
階の造粒工程で多くの水分を含んでいれば、造粒物表面
に水分が浮き出し、その表面の水分によって窯に入れる
前に造粒物同士が付着してしまい、造粒物の歩留りや球
形度や作業効率等の低下を招く。このことは、フライア
ッシュとの混練物が上記のように多量の水を含んだ泥分
(シルト分)となると、粘土スラリーよりも一層大とな
る。 そこで、本発明の目的は、フライアッシュと混練し造粒
する泥分が、山砂を水洗した際に発生する廃棄泥分のよ
うな多量の水分を含むものであっても、造粒物同士の付
着を的確に防止でき、従って造粒物の歩留りや球形度や
作業効率等の向上が図れるとともに、さらに製品として
も吸水性や圧潰強度等の性能の高い人工骨材が得られる
ようにすることにある。
However, as in the latter method of the related art, even if the high melting point inorganic powder is separately coated to prevent caking of the granulated material in the foaming and firing step, the granulation step in the previous step is performed. If a large amount of water is included, the water will float on the surface of the granulated product, and due to the water on the surface of the granulated product, the granulated products will adhere to each other before they are put into the kiln. Cause a decrease in This becomes even larger than the clay slurry when the kneaded product with fly ash becomes the mud content (silt content) containing a large amount of water as described above. Therefore, an object of the present invention is to provide granulated materials even if the mud content kneaded with fly ash and granulated contains a large amount of water such as waste mud generated when the sand is washed with water. It is possible to accurately prevent the adherence of granules, and thus improve the yield, sphericity, work efficiency, etc. of the granulated product, and also to obtain an artificial aggregate with high performance such as water absorption and crushing strength as a product. Especially.

【課題を解決するための手段】[Means for Solving the Problems]

泥分(シルト分)は通常含水比が90〜100%であるた
め、脱水処理を行う。脱水方法としては室内の土場に放
置する自然脱水方法、フィルタープレス等を用いる機械
脱水、焼却炉等からの廃熱を利用した脱水など状況に応
じた脱水方法が選択される。泥分処分ピットに貯溜して
いる泥分を用いる場合は、ピットの層高により含水比が
異なるため、取り出した泥分を土場でショベル等を用い
て充分混合を行い、含水比の均一化を図る必要がある。
脱水処理により泥分の含水比は30〜40%に低減させる。 脱水処理された泥分とフライアッシュを混合し、混練機
で充分に混練を行う。混練された原料の一部を焼却炉等
の廃熱を利用して乾燥し、ボールミル等で粉砕して乾燥
粉(乾粉)を得る。配合割合はフライアッシュ量が全体
重量の99〜20%である。混練された配合原料をパン型等
の造粒機を用い、添加水を加えながら、上記乾粉を第1
図c部から配合原料の表面にコーティングするように添
加し、目的とする粒度に造粒を行う。一般的にはJIS A
5002に規定される粒度を目標とする。 原料として用いる泥分とフライアッシュは微粒子が大半
であるためバインダーを用いることなく、添加水量や添
加位置、造粒機の角度や回転数、原料のフィード量やフ
ィード位置を適宜調整することで造粒が可能である。造
粒にあたって第1図に示すパン型造粒機1を用いる場
合、a部より混練原料を投入し、b部にて添加水を加え
ることが好ましい。造粒工程で同じ原料の乾粉をコーテ
ィングする理由は、造粒時における造粒性や球形度や歩
留り等の向上を図るばかりでなく、製品としての吸水性
や圧潰強度等の性能向上を図るためである。この乾粉コ
ーティング操作を行う場合においては、フライアッシュ
の混合量は99〜20%が許容され、原料選択の自由度が増
加するという利点もある。 パン型造粒機を用いて造粒を行うと、成品中には粒径の
大きい物や、小さい物等粒径の分布が発生する。そのた
めJIS規格を満足させるように20mmと5mmの篩を使い、20
mm上と5mm下を除去する。除去物は再び混練工程に戻
し、原料の一部として使用する。 造粒物は50〜60%の含水比であるため、そのまま次工程
の焼成を行うと、急激な水分蒸発によりバースティング
をおこすので事前に乾燥を行う必要がある。 次いで、造粒物をロータリーキルン等の焼成装置を用
い、1200℃程度の高温で焼成する。高温で焼成を行うと
フライアッシュ中の未燃炭素分及び泥分中の有機物が燃
えてガス化するため、気孔の多い軽量な骨材の製造が可
能である。
Since the water content of mud (silt) is usually 90 to 100%, dehydration treatment is performed. As the dehydration method, a natural dehydration method of leaving it in an indoor soil, a mechanical dehydration method using a filter press, a dehydration method using waste heat from an incinerator or the like is selected depending on the situation. When using the mud stored in the mud disposal pit, the water content varies depending on the layer height of the pit, so the extracted mud should be thoroughly mixed with a shovel in the soil to make the water content uniform. It is necessary to plan.
The water content of mud is reduced to 30-40% by dewatering. Mix the dewatered mud and fly ash and knead thoroughly with a kneader. A part of the kneaded raw material is dried using waste heat from an incinerator or the like, and pulverized by a ball mill or the like to obtain a dry powder (dry powder). The amount of fly ash is 99 to 20% of the total weight. The kneaded mixture of raw materials is first mixed with added water by using a pan-type granulator and the like.
It is added so as to coat the surface of the compounded raw material from the part c in FIG. Generally JIS A
Target the granularity specified in 5002. Since most of the mud and fly ash used as raw materials are fine particles, the amount of added water and the position of addition, the angle and rotation speed of the granulator, and the feed amount and feed position of the raw material are adjusted without using a binder. Granules are possible. When the pan type granulator 1 shown in FIG. 1 is used for granulation, it is preferable to add the kneading raw material from the part a and add the added water to the part b. The reason for coating dry powder of the same raw material in the granulation process is not only to improve the granulation property, sphericity, yield, etc. at the time of granulation, but also to improve the performance such as water absorption and crush strength of the product. Is. When this dry powder coating operation is performed, the amount of fly ash mixed is allowed to be 99 to 20%, which also has the advantage of increasing the degree of freedom in selecting raw materials. When granulation is performed using a pan type granulator, a product having a large particle size or a small particle size distribution is generated in the product. Therefore, use 20 mm and 5 mm sieves to satisfy the JIS standard.
Remove 5 mm above and 5 mm below. The removed material is returned to the kneading step again and used as a part of the raw material. Since the granulated product has a water content of 50 to 60%, if the baking in the next step is performed as it is, bursting will occur due to rapid water evaporation, so it is necessary to perform drying in advance. Next, the granulated product is fired at a high temperature of about 1200 ° C. using a firing device such as a rotary kiln. When firing is carried out at a high temperature, unburned carbon content in fly ash and organic matter in the mud content are burned and gasified, so that it is possible to manufacture a lightweight aggregate with many pores.

【作用】[Action]

本発明の人工軽量骨材の製造方法の各工程の作用・効果
について以下に詳述する。 泥分脱水工程: 山砂水洗により発生する泥分は前述の如く90〜100%の
含水比であるため、そのままでは輸送等のハンドリング
は不可能である。そのため室内土場に放置して自然脱水
を行ったり、フィルタープレスを用いての機械脱水や廃
熱利用による乾燥脱水を行う。脱水することにより泥分
の含水比を30〜40%とする。30%を下回ると乾燥しすぎ
で泥分が団子状となり、40%を越えると造粒性が悪く高
い真球率が得られない。 混合工程及び乾燥粉製造工程: 脱水された泥分と全体量の99〜20%に相当するフライア
ッシュをローラーミキサー等の混練機に同時に投入し、
充分に混合混練を行う。混練の度合いは造粒性を大きく
左右するので充分なる混練を行う必要がある。 混練物はそのまま次の造粒工程に供することも可能であ
るが、上記のように造粒性の向上や造粒速度を上げる等
の目的で、混練物の一部を乾燥機を用いて焼却炉等の廃
熱を利用して乾燥し、ボールミル等の粉砕機にて微粉砕
して乾燥粉を製造する。この乾燥粉は次工程にて造粒物
のコーティング材として用いる。 造粒工程: 混練物はパン型造粒機等を用い、JIS A 5002に規定され
る粒度になるよう造粒を行う。前述の如く配合原料は微
粉が大半であるため、バインダーを使用する必要はな
く、添加水量や添加位置、造粒機の角度や回転数、原料
のフィード量やフィード位置を適宜調整するだけで造粒
が可能である。造粒にあたってパン型造粒機を用いる場
合、第1図a部より混練原料を投入し、b部にて添加水
を加えることが好ましい。また、上記乾燥粉を第1図c
部から造粒物の表面にコーティングするように添加する
と的確にコーティングがなされる。 造粒物はJIS規格に適合するよう20mmと5mmの篩を使い、
20mm上と5mm下を除去する。除去物は再び混練工程に戻
し、原料の一部として使用し経済性を向上させる。さら
に好ましくは、15mmと10mmの篩を加え、適宜粒度調整を
行うことが良い。 乾燥工程: 成形された造粒物は焼成工程で造粒物同士が融着した
り、急激な水分蒸発によるバースティングで造粒物が崩
壊しない程度に乾燥を行う。乾燥には焼却炉等の廃熱等
を利用してもよいし、次工程の焼成炉からの廃熱や余熱
を利用しても構わない。 焼成工程: 乾燥した造粒物をロータリーキルン等の焼成炉を用いて
焼成するが、このときの最適焼成温度は1150±100℃で
ある。この焼成により造粒物は焼結(融結)され粒状の
固化物が得られる。泥分は有機物を含有しているし、ま
たフライアッシュは未燃炭素分を含有するため、焼結さ
れた固化物の表面は有機分や未燃炭素分が燃焼してガス
化する際に発泡して多孔質となる。しかし、焼成温度10
50℃を下回るときは、焼成はしているが固化物内部に未
燃炭素分が残り、発泡性も少なく軽量骨材としての規格
を満足しない。一方、焼成温度が1250℃を越えるときは
固化物の焼結が進み、固化物同士が融着したり部分的に
崩壊したりする恐れがある。 上述した方法により得られた固化物は水に不溶であり、
多孔質であることから比重が小さく、かつ高強度である
ため構造用軽量コンクリート骨材として充分に規格を満
足する。 以上、本発明の特徴を要約すると、本発明では、フライ
アッシュと泥分(シルト分)との混練原料の一部を乾
燥、粉砕した乾粉を、造粒工程中の混練原料の表面へ所
定の位置から添加して(例えば混練原料:乾粉の割合を
9対1とする)コーティングすることで、混練原料(造
粒物)表面に浮き出した水分を瞬時に乾粉で吸収し、造
粒物同士の付着による造粒物の歩留りや球形度や作業効
率等の低下を防止する。このことによってまた、製品と
しても吸水性や圧潰強度等の性能向上が図れるものであ
る。 このような同一原料の乾粉によるコーティングの効果
は、フライアッシュ及びシルトがいずれも吸水性に優れ
ていることから発揮できるもので、仮に他ダスト(例え
ば鉱石粉や鉄を多く含有したダスト等)を造粒物表面に
添加したとしても、該ダストの吸水性がフライアッシュ
及びシルトにより劣るため、造粒物表面の水分を吸収す
ることができず、同様の効果は期待できない。 また、フライアッシュとシルトとの混練原料の表面に、
フライアッシュ単味又はシルト単味を添加したとして
も、造粒性は向上するが満足した成品比重及び圧潰強度
は得られない。すなわち、本発明のように、フライアッ
シュとシルトとの混練原料の表面に、該混練原料を乾燥
・粉砕した乾粉を添加しない限り、JIS規格M種の比重
及び圧潰強度を十分に満足する人工軽量骨材は得られな
い。
The action and effect of each step of the method for producing an artificial lightweight aggregate of the present invention will be described in detail below. Mud dewatering process: The mud generated by washing with sand and sand has a water content of 90 to 100% as described above, so handling such as transportation is impossible as it is. Therefore, it is left in the indoor soil for natural dehydration, or mechanical dehydration using a filter press or dry dehydration using waste heat. The water content of mud is reduced to 30-40% by dehydration. If it is less than 30%, it will be too dry and the mud will be in the form of dumplings. Mixing process and dry powder manufacturing process: Dehydrated mud and fly ash equivalent to 99 to 20% of the total amount are simultaneously charged into a kneader such as a roller mixer,
Mix and knead thoroughly. Since the degree of kneading greatly affects the granulation property, it is necessary to perform sufficient kneading. The kneaded product can be directly subjected to the next granulation step, but as described above, a part of the kneaded product is incinerated using a dryer for the purpose of improving the granulation property or increasing the granulation speed. It is dried using waste heat from a furnace and finely pulverized by a pulverizer such as a ball mill to produce a dry powder. This dry powder is used as a coating material for the granulated product in the next step. Granulation step: The kneaded product is granulated using a pan-type granulator or the like so as to have a particle size specified in JIS A 5002. As mentioned above, most of the blended raw materials are fine powders, so it is not necessary to use a binder, and the amount of added water and addition position, the angle and rotation speed of the granulator, and the feed amount and feed position of the raw material can be adjusted appropriately. Granules are possible. When a pan-type granulator is used for granulation, it is preferable that the kneading raw material is introduced from part a in FIG. 1 and the added water is added in part b. In addition, the above-mentioned dry powder is added to FIG.
When the granules are added so as to coat the surface of the granulated product, the coating is accurately performed. Granules use 20 mm and 5 mm sieves to meet JIS standards,
Remove 20mm up and 5mm down. The removed material is returned to the kneading step again and used as a part of the raw material to improve the economical efficiency. It is more preferable to add sieves of 15 mm and 10 mm and adjust the particle size appropriately. Drying process: The formed granulated product is dried to such an extent that the granulated products are not fused to each other in the firing process and the granulated product is not collapsed by bursting due to rapid water evaporation. For drying, waste heat from an incinerator or the like may be used, or waste heat or residual heat from a firing furnace in the next step may be used. Firing step: The dried granulated material is fired using a firing furnace such as a rotary kiln, and the optimum firing temperature at this time is 1150 ± 100 ° C. By this firing, the granulated product is sintered (fused) to obtain a granular solidified product. Since mud contains organic matter and fly ash contains unburned carbon, the surface of the sintered solidified product foams when organic matter and unburned carbon burn and gasify. And become porous. However, firing temperature 10
When the temperature is lower than 50 ° C, unburned carbon remains inside the solidified product after firing, and the foamability is low and the standard as a lightweight aggregate is not satisfied. On the other hand, when the firing temperature is higher than 1250 ° C, the solidified products are more likely to be sintered, and the solidified products may be fused or partially collapsed. The solidified product obtained by the above method is insoluble in water,
Since it is porous, it has a low specific gravity and high strength, so it sufficiently satisfies the standard as a lightweight concrete aggregate for structure. To summarize the features of the present invention, in the present invention, a part of the kneading raw material of fly ash and the mud content (silt content) is dried and pulverized into a predetermined dry powder on the surface of the kneading raw material during the granulation step. By adding from a position and coating (for example, the ratio of kneading raw material: dry powder is 9 to 1), the moisture emerging on the surface of the kneading raw material (granulated product) is instantly absorbed by the dry powder, and Prevents deterioration of yield, sphericity and work efficiency due to adhesion. As a result, the performance of the product such as water absorption and crush strength can be improved. The effect of coating with dry powder of the same raw material can be exhibited because both fly ash and silt have excellent water absorption properties, and other dust (for example, ore powder or dust containing a large amount of iron) can be used. Even if added to the surface of the granulated product, the water absorption of the dust is inferior due to fly ash and silt, so that the water on the surface of the granulated product cannot be absorbed, and the same effect cannot be expected. Also, on the surface of the kneading raw material of fly ash and silt,
Even if only fly ash plain or silt plain is added, the granulation property is improved, but satisfactory product specific gravity and crush strength cannot be obtained. That is, as in the present invention, as long as the dry powder obtained by drying and crushing the kneading raw material is not added to the surface of the kneading raw material of fly ash and silt, an artificial lightweight sufficiently satisfying the specific gravity and crushing strength of JIS standard M type. No aggregate can be obtained.

【実施例】【Example】

次に本発明の実施例を説明する。 本発明の方法による人工軽量骨材の製造試験には、表−
1に示す組成の山砂水洗による発生泥分と表−2に示す
組成のフライアッシュを使用した。 泥分脱水工程と混合混練工程: 含水比95%の山砂水洗による発生泥分を室内の土場にて
含水比35%にまで自然脱水を行った。次いでフライアッ
シュと脱水泥分をローラーミキサーに投入し、10分間混
練を行った。泥分とフライアッシュの配合比を表−3に
示すように種々変化させて実験を行った。 乾燥粉製造工程: 各々の配合原料の一部を乾燥機を用いて乾燥した後、ボ
ールミルにて粉砕して乾燥粉を製造し、次工程の造粒物
にコーティング材として使用した。 造粒工程: 混練物並びに乾燥粉を第1図に示すパン型造粒機1にて
混練原料投入位置a、水分添加位置b並びに乾燥粉添加
位置cで造粒操作を行い、造粒に際しては次の2通りの
方法を行い、造粒物含水比は50〜60%であった。なお、
第1図においては2はサイドスクレーパ、3は製品排出
口で、破線は造粒物の軌跡を示す。 (a)混練物のみを造粒 対象としたのは表−3のNo.1〜No.5の試料。 (b)混練物を造粒後、それに乾燥粉をコーティング 混練物と乾燥粉の供給比は重量比で9:1とした。対象と
したのは表−3のNo.1〜No.4の試料と各々の乾燥粉。こ
のときの造粒機仕様は以下のとおりである。 パン直径:900mm、パン深さ:150mm、パン角度:52°、パ
ン回転数:16rpm、配合原料供給量:200kg/h 得られた造粒物についてJISに規格される骨材の種類に
適合させるため、20mmと5mmの篩を用いて20mm以上と5mm
以下の造粒物をカットし中間物のみを次工程で使用し
た。 乾燥工程: 造粒方法(a)、(b)で得られた各種造粒物を電気炉
を用いて炉内温度を400℃に設定し、4〜5分間乾燥時
間を設けて各々の含水比を5%以下にした。 焼成工程: 乾燥工程で得られた各々の乾燥造粒物をシリコニット電
気炉にて、焼成帯のみをシミュレートするため炉内温度
1200±50℃に設定し、焼成時間を2〜3分間設けて焼成
を行った。造粒物の表面が半溶融状態になり、同時に内
部にガスが発生してそれが気泡となり、軟化した全体が
膨張したときに造粒焼成物を焼成帯から取り出し、空冷
を行った。こうして得られた焼成造粒物は、表面が硬い
殻で覆われ、しかも内部は細かい独立気泡を多量に包含
する発泡体であった。 上記の各操作を行って得られた焼成造粒物について、各
々比重試験及び圧潰強度試験を行った結果について以下
に述べる。 表−6は泥分のみで造粒焼成を行ったものについて、そ
の粒度構成変化による絶乾比重測定結果である。 表−6及び第2図に示す通り泥分のみの造粒焼成物は、
中間粒度においては構造用人工軽量骨材として表−4に
示すJIS A 5002で定められた骨材の絶乾燥比重による区
分について粗骨材として比重規格に合格しなかった。そ
のため規格内の粒度構成を中間粒度から粗粒側に変えて
比重を測定したが大差はなく、粒度構成比率の変更程度
では比重に影響がないことが判った。 次いで本発明の方法による、フライアッシュを混合した
造粒焼成物について、上記と同様の試験を行った。その
結果を表−7、第3図に示す。また第4図にフライアッ
シュ混合率と焼成造粒物の圧潰強度との関係を示す。 結果から判るように粒度構成は表−5のJIS規格の中間
粒度を満足しており、乾燥粉添加無しの造粒焼成物では
フライアッシュ混合比で30%以上、乾燥粉コーティング
造粒焼成物ではフライアッシュ混合比で20%以上で各々
JIS規格のM種を充分満足していることが判る。また、
圧潰強度も充分満足できる値であることが判る。すなわ
ち、乾燥粉を添加した方が添加しない場合に比べ、フラ
イアッシュ混合比が10%程度増加し、原料選択の自由度
が向上する。 以上の結果から、山砂を水洗した際に発生する泥分のみ
ではJIS規格を満足する人工軽量骨材の製造は不可能で
あるが、本発明の方法によるフライアッシュを混合して
製造した人工軽量骨材はJIS規格を充分に満足するもの
である。
Next, examples of the present invention will be described. In the production test of the artificial lightweight aggregate by the method of the present invention, Table-
The mud generated by washing with sand sand having the composition shown in 1 and the fly ash having the composition shown in Table 2 were used. Mud dewatering step and mixing and kneading step: The mud generated by washing with sand and sand with a water content of 95% was naturally dehydrated in the indoor soil to a water content of 35%. Next, the fly ash and the dehydrated mud were put into a roller mixer and kneaded for 10 minutes. Experiments were carried out by changing the mixing ratio of mud and fly ash as shown in Table-3. Dry powder manufacturing process: A part of each blended raw material was dried using a drier, and then pulverized by a ball mill to manufacture a dry powder, which was used as a coating material in the granulated product in the next step. Granulation step: The kneaded material and the dry powder are granulated at the kneading raw material feeding position a, the water addition position b and the dry powder addition position c by the pan type granulator 1 shown in FIG. The following two methods were performed, and the water content of the granules was 50 to 60%. In addition,
In FIG. 1, 2 is a side scraper, 3 is a product discharge port, and the broken line shows the trajectory of the granulated product. (A) Only the kneaded product was granulated for the samples No. 1 to No. 5 in Table-3. (B) After granulating the kneaded product, it was coated with dry powder The feed ratio of the kneaded product and dry powder was 9: 1 by weight. The target was the samples No. 1 to No. 4 in Table-3 and their dry powders. The granulator specifications at this time are as follows. Bread diameter: 900 mm, Bread depth: 150 mm, Bread angle: 52 °, Bread rotation speed: 16 rpm, Blended raw material supply rate: 200 kg / h Adapted to the type of aggregate specified in JIS for the obtained granules Therefore, using 20mm and 5mm sieve, more than 20mm and 5mm
The following granules were cut and only the intermediate was used in the next step. Drying process: The various granulated products obtained by the granulation methods (a) and (b) are set to a furnace temperature of 400 ° C. using an electric furnace, and a drying time is provided for 4 to 5 minutes to obtain a water content ratio of each. Of less than 5%. Firing process: Each dried granulation product obtained in the drying process is heated in a silicon furnace in order to simulate only the firing zone in the furnace.
The temperature was set to 1200 ± 50 ° C. and the firing time was set to 2 to 3 minutes to perform firing. When the surface of the granulated product became a semi-molten state, and at the same time gas was generated inside to form bubbles, and the softened whole expanded, the granulated calcined product was taken out from the calcining zone and air-cooled. The fired granulated product thus obtained was a foam whose surface was covered with a hard shell and which contained a large amount of fine closed cells. The results of the specific gravity test and the crushing strength test performed on the fired granulated product obtained by performing each of the above operations are described below. Table 6 shows the results of absolute dry specific gravity measurement for the granulated and fired product with only the mud content due to the change in the particle size composition. As shown in Table 6 and FIG.
In the medium grain size, the specific gravity standard was not passed as coarse aggregate for classification by aggregate dry specific gravity of JIS A 5002 shown in Table 4 as artificial lightweight aggregate for structure. Therefore, the specific gravity was measured by changing the grain size composition within the standard from the medium grain size to the coarse grain side, but there was no big difference, and it was found that the specific gravity was not affected by the change in the grain size composition ratio. Next, the same test as described above was performed on the granulated and fired product mixed with fly ash according to the method of the present invention. The results are shown in Table 7 and FIG. Further, FIG. 4 shows the relationship between the fly ash mixing ratio and the crush strength of the fired granulated product. As can be seen from the results, the particle size composition satisfies the JIS standard intermediate particle size shown in Table 5, and in the granulated and baked product without the addition of dry powder, the fly ash mixing ratio is 30% or more, and in the dry powder-coated granulated and baked product, Fly ash mix ratio of 20% or more each
It can be seen that the product satisfies JIS standard M class sufficiently. Also,
It can be seen that the crush strength is also a value that can be sufficiently satisfied. That is, compared with the case where dry powder is not added, the fly ash mixing ratio is increased by about 10%, and the degree of freedom in selecting raw materials is improved. From the above results, it is impossible to produce an artificial lightweight aggregate satisfying the JIS standard only with the mud generated when the mountain sand is washed with water, but an artificial produced by mixing fly ash by the method of the present invention. The lightweight aggregate sufficiently satisfies the JIS standard.

【発明の効果】【The invention's effect】

以上説明したように本発明の方法によれば、従来その埋
め立て処分に問題のあった天然山砂を水洗した際に発生
する泥分と、やはり埋め立て地の確保等に問題を抱えて
いた石炭火力発電所にて発生するフライアッシュを、脱
水、混合混練、一部乾燥粉砕、造粒、焼成といった簡単
な工程操作を行うことによりJIS規格を満足する人工軽
量骨材の製造が可能であり、資源の有効活用を図れると
ともに、埋め立て地の確保問題をも緩和するものであ
る。 また、造粒物の歩留りや球形度や作業効率等の向上が図
れるとともに、さらに製品としても吸水性や圧潰強度等
の性能の高い人工骨材が得られる。
As described above, according to the method of the present invention, a coal thermal power generation that has a problem in securing a landfill site and mud generated when the natural mountain sand that has been conventionally problematic in landfill disposal is washed with water. It is possible to manufacture artificial lightweight aggregates that meet JIS standards by performing simple process operations such as dehydration, mixing and kneading, partial dry pulverization, granulation, and firing of fly ash generated at power plants. It is possible to effectively utilize the landfill and alleviate the problem of securing landfill sites. Further, the yield, sphericity, work efficiency, etc. of the granulated product can be improved, and an artificial aggregate having high performance such as water absorption and crushing strength can be obtained as a product.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明の造粒工程において、パン型造粒機を用
いる場合の混練物の投入位置、添加水の添加位置並びに
乾燥粉の添加位置の位置関係を示す説明図、第2図は山
砂水洗により発生する泥分のみを使った造粒焼成物の粒
度構成変化による粒度分布を示すグラフ、第3図はフラ
イアッシュ混合率と絶乾比重との関係を示すグラフ、第
4図はフライアッシュ混合率と圧潰強度との関係を示す
グラフである。
FIG. 1 is an explanatory diagram showing a positional relationship among a kneaded material feeding position, an added water addition position, and a dry powder addition position in the case of using a bread granulator in the granulation step of the present invention, and FIG. A graph showing the particle size distribution due to the change in the particle size composition of the granulated fired product using only the mud generated by washing with sand and sand, Fig. 3 is a graph showing the relationship between the fly ash mixing ratio and the absolute dry specific gravity, and Fig. 4 is It is a graph which shows the relationship between a fly ash mixing ratio and a crush strength.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】山砂を水洗する際に発生する廃棄泥分を脱
水する工程と、その脱水した泥分とフライアッシュとを
混合混練する工程と、該混練物の一部を乾燥粉砕して乾
粉とする工程と、上記混練物を造粒した後、その造粒物
の表面に上記乾粉をコーティングする工程と、乾粉をコ
ーティングされた造粒物を乾燥、焼成する工程とからな
る人工軽量骨材の製造方法。
1. A step of dewatering waste mud generated when washing mountain sand with water, a step of mixing and kneading the dewatered mud and fly ash, and a part of the kneaded material is dried and pulverized. An artificial lightweight bone comprising a step of forming a dry powder, a step of granulating the kneaded product, a step of coating the surface of the granulated material with the dry powder, and a step of drying and firing the granulated material coated with the dry powder. Method of manufacturing wood.
【請求項2】山砂を水洗する際に発生する含水比90〜10
0%の廃棄泥分を含水比30〜40%まで脱水することを特
徴とする請求項1に記載の人工軽量骨材の製造方法。
2. A water content ratio of 90 to 10 generated when washing sand sand with water.
The method for producing an artificial lightweight aggregate according to claim 1, wherein 0% of the waste mud is dehydrated to a water content ratio of 30 to 40%.
JP20469188A 1988-08-19 1988-08-19 Manufacturing method of artificial lightweight aggregate Expired - Lifetime JPH0717418B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP20469188A JPH0717418B2 (en) 1988-08-19 1988-08-19 Manufacturing method of artificial lightweight aggregate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP20469188A JPH0717418B2 (en) 1988-08-19 1988-08-19 Manufacturing method of artificial lightweight aggregate

Publications (2)

Publication Number Publication Date
JPH0255250A JPH0255250A (en) 1990-02-23
JPH0717418B2 true JPH0717418B2 (en) 1995-03-01

Family

ID=16494713

Family Applications (1)

Application Number Title Priority Date Filing Date
JP20469188A Expired - Lifetime JPH0717418B2 (en) 1988-08-19 1988-08-19 Manufacturing method of artificial lightweight aggregate

Country Status (1)

Country Link
JP (1) JPH0717418B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002047074A (en) * 2000-07-28 2002-02-12 Japan Science & Technology Corp Method of manufacturing lightweight porous sintered product utilizing waste as raw material
CN117534504A (en) * 2022-10-25 2024-02-09 上海建工建材科技集团股份有限公司 Mine fine tail mud-based baking-free lightweight aggregate and preparation method thereof

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6172661A (en) * 1984-09-17 1986-04-14 加藤 明彦 Manufacture of artificial lightweight aggregate

Also Published As

Publication number Publication date
JPH0255250A (en) 1990-02-23

Similar Documents

Publication Publication Date Title
TWI397511B (en) Synthetic aggregates comprising sewage sludge and other waste materials and methods for producing such aggregates
GB2211836A (en) Process for converting refuse into a material in pellet form
JP2831009B2 (en) Population aggregate using municipal waste incineration ash and method for producing the same
JP2008126185A (en) Calcined object and its manufacturing method
JPH04119952A (en) Production of artificial light aggregate
KR20000036361A (en) A method of producing ascon using electric arc furnace dust fly ash and bottom ash
JPH0717418B2 (en) Manufacturing method of artificial lightweight aggregate
JPH03252375A (en) Production of water-penetrable construction material containing coal ash
JPH1029841A (en) Production of artificial aggregate
JP2603599B2 (en) Artificial lightweight aggregate and manufacturing method thereof
JP2001146444A (en) Method for producing artificial lightweight aggregate
KR20020044899A (en) Composition for lightweight aggregate and method for manufacturing the same
JP3628661B2 (en) Method for producing porous granular material using inorganic waste as raw material
JPH05170567A (en) Production of expanded burned product
JP2002167288A (en) Method of manufacturing artificial lightweight aggregate
JP3552173B2 (en) Manufacturing method of lightweight aggregate using sewage sludge incineration ash
JP3892545B2 (en) Lightweight aggregate manufacturing method
JP2000034179A (en) Production of water-holding granular sintered compact
JP3369687B2 (en) Fly ash artificial aggregate
JP4579063B2 (en) Method for producing conglomerate-like artificial rock
JP3635288B2 (en) Manufacturing method of artificial lightweight aggregate
JPH05294692A (en) Production of artificial lightweight aggregate from construction sludge
JPH092851A (en) Production of artificial aggregate using waste
JP3723161B2 (en) Aggregate manufacturing method
KR20050036118A (en) Produce method of lightweight aggregate for lightweight aggregate concrete