JPH07174138A - Gas bearing structure - Google Patents

Gas bearing structure

Info

Publication number
JPH07174138A
JPH07174138A JP32192993A JP32192993A JPH07174138A JP H07174138 A JPH07174138 A JP H07174138A JP 32192993 A JP32192993 A JP 32192993A JP 32192993 A JP32192993 A JP 32192993A JP H07174138 A JPH07174138 A JP H07174138A
Authority
JP
Japan
Prior art keywords
gas bearing
rotary shaft
rotating shaft
bearing
bearing structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32192993A
Other languages
Japanese (ja)
Inventor
Hideo Sato
穎生 佐藤
Masaru Usami
優 宇佐美
浩 ▲吉▼川
Hiroshi Yoshikawa
Toshiaki Hirata
敏明 平田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Kobe Steel Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP32192993A priority Critical patent/JPH07174138A/en
Publication of JPH07174138A publication Critical patent/JPH07174138A/en
Pending legal-status Critical Current

Links

Landscapes

  • Structures Of Non-Positive Displacement Pumps (AREA)
  • Sliding-Contact Bearings (AREA)

Abstract

PURPOSE:To provide a stable bearing characteristic by uniformly holding a thickness in an air gap part between a rotary shaft and a gas bearing even at the time of both low and high speed rotations by facilitating working. CONSTITUTION:In a gas bearing structure formed so as to support a hollow rotary shaft 11 by a gas bearing 15, the structure is formed by providing a high rigidity part 16, by which rigidity against centrifugal force of the rotary shaft 11 is increased in a central part as compared with bearing both end parts, in an internal peripheral part of the rotary shaft 11.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、例えばタービン、圧縮
機等の回転機械に適用される気体軸受に関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas bearing applied to rotary machines such as turbines and compressors.

【0002】[0002]

【従来の技術】従来、図14〜16に示す気体軸受構造
が公知であり(特公昭51−28775号公報)、中空
の回転軸1の外周面に微小な空隙部を介して対向させた
ティルティングパッド2を回転軸1の円周方向に複数個
配設するとともに、このティルティングパッド2を回転
軸1の中心に向かって突出したピボット3により、背後
から揺動可能に支持させた気体軸受4が設けてある。そ
して、回転軸1が回転することにより、回転軸1とティ
ルティングパッド2との間には、楔形の空隙部が形成さ
れて、動圧が発生し、この動圧により回転軸1がティル
ティングパッド2と非接触状態を保って支持される。
2. Description of the Related Art Conventionally, a gas bearing structure shown in FIGS. 14 to 16 has been known (Japanese Patent Publication No. 51-28775), and a till which is opposed to the outer peripheral surface of a hollow rotary shaft 1 through a minute gap. A plurality of bearing pads 2 are arranged in the circumferential direction of the rotary shaft 1, and the tilting pad 2 is pivotably supported from the rear by a pivot 3 protruding toward the center of the rotary shaft 1. 4 is provided. Then, as the rotary shaft 1 rotates, a wedge-shaped space is formed between the rotary shaft 1 and the tilting pad 2, and dynamic pressure is generated. The dynamic pressure causes the rotary shaft 1 to tilt. The pad 2 is supported in a non-contact state.

【0003】ところで、回転軸1が回転すると、遠心力
により回転軸1の表面は軸線方向に湾曲面を形成し、こ
の湾曲面の曲がりが大きくなると回転軸1とティルティ
ングパッド2とが接触するという好ましくない事態が発
生する。そこで、図15に示すように、遠心力による膨
張を考慮してティルティングパッド2の内周面を湾曲面
として、その中心部での空隙部の厚みが大きくなるよう
に形成してある。そして、図16に示すように回転軸1
が高速回転して、遠心膨張しても、回転軸1とティルテ
ィングパッド2との接触を防止し、かつ上記空隙部の厚
みを均一にして軸受の特性を安定化させるようにしてあ
る。
When the rotating shaft 1 rotates, the surface of the rotating shaft 1 forms a curved surface in the axial direction by centrifugal force, and when the bending of the curved surface becomes large, the rotating shaft 1 and the tilting pad 2 come into contact with each other. An unfavorable situation occurs. Therefore, as shown in FIG. 15, the inner peripheral surface of the tilting pad 2 is formed as a curved surface in consideration of expansion due to centrifugal force so that the thickness of the void portion at the center thereof is increased. Then, as shown in FIG.
Even if the shaft rotates at high speed and centrifugally expands, contact between the rotary shaft 1 and the tilting pad 2 is prevented, and the thickness of the void is made uniform to stabilize the characteristics of the bearing.

【0004】[0004]

【発明が解決しようとする課題】上記従来の気体軸受構
造では、回転軸1の遠心膨張を考慮して、ティルティン
グパッド2の内周面を湾曲面として形成してある。しか
しながら、このような湾曲面を形成した構造のもので
は、回転軸1の低速回転時には、上記空隙部の厚みは軸
線方向に一定とはならず、安定した軸受特性を得ること
ができないという問題が生じる。即ち、上記空隙部が不
均一な場合には、軸受性能は低下する。また、ティルテ
ィングパッド2の内周面は、湾曲させるために樽形に加
工してあるが、この内周面の曲率等の加工精度が直接上
記空隙部の寸法に影響するため、この加工精度は十数ミ
クロンオーダにする必要がある。しかしながら、この精
度で加工することは困難であるという問題がある。
In the above conventional gas bearing structure, the inner peripheral surface of the tilting pad 2 is formed as a curved surface in consideration of the centrifugal expansion of the rotary shaft 1. However, in the structure having such a curved surface, the thickness of the void portion is not constant in the axial direction when the rotating shaft 1 rotates at a low speed, and stable bearing characteristics cannot be obtained. Occurs. That is, when the voids are non-uniform, the bearing performance is deteriorated. Further, the inner peripheral surface of the tilting pad 2 is processed into a barrel shape to be curved. However, since the processing accuracy such as the curvature of the inner peripheral surface directly affects the dimension of the void portion, this processing accuracy is improved. Must be on the order of a few dozen microns. However, there is a problem that it is difficult to process with this accuracy.

【0005】さらに、上記気体軸受構造では、回転軸1
の遠心膨張のみが考慮されているが、回転軸1も含め
て、気体軸受構造が大形化すると、遠心膨張よりも、発
熱により生じる回転軸1の不均一な温度分布による変形
が支配的となる。即ち、回転中の回転軸1とティルティ
ングパッド2との間では、気体の摩擦に起因する熱が発
生し、この熱はティルティングパッド2の端部に近い程
放熱し易く、中央部程放熱し難い。このため、回転軸1
にはこの放熱の程度の差に対応した熱分布が生じて、熱
膨張が不均一となる。そして、回転軸1の回転に伴う遠
心力による以外に、この不均一な熱膨張によって回転軸
1の表面は軸線方向に湾曲面を形成する。上記従来の気
体軸受構造では、この熱膨張が考慮されていないという
問題がある。本発明は、斯る従来の問題点を課題として
なされたもので、加工が容易で、低速回転時、高速回転
時のいずれにおいても、回転軸と気体軸受との間の空隙
部の厚みを均一に保ち、安定した軸受特性を得ることを
可能とした気体軸受構造を提供しようとするものであ
る。
Further, in the above gas bearing structure, the rotary shaft 1
However, if the gas bearing structure including the rotating shaft 1 is enlarged, the deformation due to the non-uniform temperature distribution of the rotating shaft 1 caused by heat generation is more dominant than the centrifugal expansion. Become. That is, between the rotating shaft 1 and the tilting pad 2 which are rotating, heat is generated due to the friction of the gas, and the heat is radiated closer to the end of the tilting pad 2 and radiated closer to the center. It's hard to do. Therefore, the rotary shaft 1
A heat distribution corresponding to this difference in the degree of heat radiation is generated in the sheet, resulting in non-uniform thermal expansion. The surface of the rotating shaft 1 forms a curved surface in the axial direction due to this non-uniform thermal expansion, in addition to the centrifugal force caused by the rotation of the rotating shaft 1. The conventional gas bearing structure described above has a problem that this thermal expansion is not taken into consideration. The present invention has been made to solve the problems of the conventional art, is easy to process, and even in low speed rotation and high speed rotation, the thickness of the gap between the rotary shaft and the gas bearing is uniform. Therefore, the present invention aims to provide a gas bearing structure capable of maintaining stable bearing characteristics and maintaining stable bearing characteristics.

【0006】[0006]

【課題を解決するための手段】上記課題を解決するため
に、本発明は、中空の回転軸を気体軸受で支持するよう
にした気体軸受構造において、回転軸の内周部に、回転
軸の遠心力に対する剛性を軸受部の両端部に比して中央
部の方で大きくする高剛性部を設けて形成した。
In order to solve the above-mentioned problems, the present invention provides a gas bearing structure in which a hollow rotating shaft is supported by a gas bearing. It was formed by providing a high-rigidity portion that increases the rigidity against the centrifugal force in the central portion as compared with the both end portions of the bearing portion.

【0007】[0007]

【作用】上記発明のように構成することにより、回転軸
の軸受部の両端部に比して、熱膨張量の大きい軸受部の
中央部では、上記両端部に比して遠心膨張量が小さくな
る。
With the above structure, the amount of centrifugal expansion in the central portion of the bearing portion, which has a large amount of thermal expansion as compared with both ends of the bearing portion of the rotary shaft, is smaller than that in both ends. Become.

【0008】[0008]

【実施例】次に、本発明の一実施例を図面にしたがって
説明する。図1〜図5は、本発明の第一実施例に係る気
体軸受構造を示し、中空の回転軸11の外周面に微小な
空隙部を介して対向させたティルティングパッド12を
回転軸11の円周方向に複数個、本実施例では3個配設
するとともに、このティルティングパッド12を回転軸
11の中心に向かって突出させるように枠体13によっ
て支持したピボット14により、背後から揺動可能に支
持させた気体軸受15が設けてある。また、回転軸11
の内周部には、その肉厚が軸受部の両端部が中心部に向
かって大きくなるよう、この肉厚を連続的かつ直線的に
変化させて形成した高剛性部16が設けてあり、回転軸
11の遠心力に対する剛性を軸受部の両端部に比して中
央部の方で大きくなるようにしてある。そして、上記同
様に回転軸11が回転することにより、回転軸11とテ
ィルティングパッド12との間には、楔形の空隙部が形
成されて、動圧が発生し、この動圧により回転軸11が
ティルティングパッド12と非接触状態を保って支持さ
れるようになっている。
An embodiment of the present invention will be described below with reference to the drawings. 1 to 5 show a gas bearing structure according to a first embodiment of the present invention, in which a tilting pad 12 opposed to the outer peripheral surface of a hollow rotary shaft 11 via a minute gap is provided in the rotary shaft 11. A plurality of, three in the present embodiment, are arranged in the circumferential direction, and the tilting pad 12 is rocked from behind by a pivot 14 supported by a frame 13 so as to project toward the center of the rotary shaft 11. A gas bearing 15 is provided, which is supported as much as possible. Also, the rotating shaft 11
The high-rigidity portion 16 formed by continuously and linearly changing the wall thickness is provided on the inner peripheral part of the bearing so that the wall thicknesses of both ends of the bearing part increase toward the center. The rigidity of the rotating shaft 11 against the centrifugal force is set to be greater in the central portion than in both end portions of the bearing portion. By rotating the rotating shaft 11 in the same manner as described above, a wedge-shaped space is formed between the rotating shaft 11 and the tilting pad 12, and dynamic pressure is generated. Are supported in a non-contact state with the tilting pad 12.

【0009】ところで、回転軸11の高速回転時におけ
る上記空隙部での気体摩擦の結果発生する熱膨張のみを
考えた場合、回転軸11の表面は、図3に示すように軸
受部の中央部が外方に向かって凸形となるように、軸線
方向に湾曲面を形成する。次に、回転軸11の高速回転
による遠心膨張のみを考えた場合、本実施例では、回転
軸11の内周部に高剛性部16が設けてあるため、、回
転軸11の肉厚の変化による剛性の差に基づいて、回転
軸11は、図4に示すように剛性の小さい軸受部の両端
部程変形し易くなり、表面が外方に向かって凹形となる
ように軸線方向に湾曲面を形成する。現実には、遠心膨
張と熱膨張とが同時に発生する故、回転軸11の表面
は、図5に示すように、図3に示す凸形状と図4に示す
凹形状とを合成したものとなり、軸線方向に平らにな
る。この結果、上記空隙部の厚みは軸線方向に均一とな
る。
By the way, when considering only thermal expansion that occurs as a result of gas friction in the above-mentioned gap when the rotating shaft 11 rotates at high speed, the surface of the rotating shaft 11 has a central portion of the bearing portion as shown in FIG. A curved surface is formed in the axial direction so that is convex outward. Next, when only the centrifugal expansion due to the high speed rotation of the rotating shaft 11 is considered, in this embodiment, since the high rigidity portion 16 is provided on the inner peripheral portion of the rotating shaft 11, the change in the thickness of the rotating shaft 11 is changed. Based on the difference in rigidity, the rotating shaft 11 is more likely to be deformed toward both ends of the bearing part having a low rigidity as shown in FIG. 4, and is curved in the axial direction so that the surface becomes concave outward. Form a surface. In reality, since centrifugal expansion and thermal expansion occur simultaneously, the surface of the rotating shaft 11 is a combination of the convex shape shown in FIG. 3 and the concave shape shown in FIG. 4, as shown in FIG. It becomes flat in the axial direction. As a result, the thickness of the void becomes uniform in the axial direction.

【0010】一方、回転軸11とティルティングパッド
12のそれぞれの対向面は、軸線方向に平らに形成して
ある故、回転軸11の低速回転時にも上記空隙部の厚み
は均一となる。したがって、回転軸11の高速、低速回
転時のいずれにおいても、常に安定した軸受特性が維持
される。図6は、本発明の第二実施例に係る気体軸受構
造の軸受部近傍のみを示し、図1に示す第一実施例と
は、高剛性部16に代えて、軸受部の中央部内方に全周
にわたって突出させて形成した環状の高剛性部16aを
設けた点を除き、他は実質的に同一である。図7は、本
発明の第三実施例に係る気体軸受構造の軸受部近傍のみ
を示し、図1に示す第一実施例とは、高剛性部16に代
えて、軸受部の内方全周にわたって、中央部程肉厚が大
きくなるように、階段状に突出させ形成した高剛性部1
6bを設けた点を除き、他は実質的に同一である。な
お、第一〜第三実施例において、高剛性部16,16
a,16bを、回転軸11の他の部分とは別の部材によ
って形成してもよい。
On the other hand, since the facing surfaces of the rotary shaft 11 and the tilting pad 12 are formed flat in the axial direction, the thickness of the above-mentioned void becomes uniform even when the rotary shaft 11 rotates at a low speed. Therefore, stable bearing characteristics are always maintained at both high speed and low speed rotation of the rotating shaft 11. FIG. 6 shows only the vicinity of the bearing portion of the gas bearing structure according to the second embodiment of the present invention. In contrast to the first embodiment shown in FIG. Others are substantially the same except that an annular high-rigidity portion 16a formed by projecting over the entire circumference is provided. FIG. 7 shows only the vicinity of the bearing portion of the gas bearing structure according to the third embodiment of the present invention, and in contrast to the first embodiment shown in FIG. 1, instead of the high rigidity portion 16, over the entire inner circumference of the bearing portion, A high-rigidity portion 1 formed by projecting in a step-like manner such that the wall thickness increases toward the central portion.
Other than that the point 6b is provided, it is substantially the same. In the first to third embodiments, the high rigidity parts 16, 16
The a and 16b may be formed by members different from the other parts of the rotating shaft 11.

【0011】図8は、本発明の第四実施例に係る気体軸
受構造の軸受部近傍のみを示し、図1に示す第一実施例
とは、高剛性部16に代えて、軸受部の中央部内方に、
回転軸11の他の箇所より剛性の大きい環状部材を埋設
して形成した高剛性部16cを設けた点を除き、他は実
質的に同一である。そして、第二、第三、第四実施例
は、上記構成を採用することにより、回転軸11の軸受
部の両端部に比して中央部の遠心力に対する剛性を大き
くして、第一実施例の場合と同様に上記空隙部を均一に
保ち、安定した軸受特性を維持するようになっている。
FIG. 8 shows only the vicinity of the bearing portion of the gas bearing structure according to the fourth embodiment of the present invention. In contrast to the first embodiment shown in FIG. 1, the high rigidity portion 16 is replaced by the center portion of the bearing portion. Inside the department,
Except for the point that a high-rigidity portion 16c formed by embedding an annular member having a higher rigidity than the other parts of the rotating shaft 11 is provided, the other parts are substantially the same. Then, in the second, third, and fourth embodiments, by adopting the above-mentioned configuration, the rigidity of the central portion against the centrifugal force is increased as compared with the both ends of the bearing portion of the rotating shaft 11, and the first embodiment is performed. Similar to the case of the example, the voids are kept uniform to maintain stable bearing characteristics.

【0012】次に、図6中二点鎖線によって示すように
回転軸11の肉厚を一定とした気体軸受構造と、図6に
実線で示す上記第二実施例に係る気体軸受構造につい
て、それぞれ回転軸外径,回転数,回転軸の材質等の条
件を同一として、有限要素法を用いて回転軸外径の変化
を計算した結果を図9,10(図9が肉厚一定の場合、
図10が第二実施例の場合である)に示す。なお、図
9,10において、横軸は軸受部全体の長さを1とし
て、軸受部の一端からの距離を比の形で表し、縦軸は回
転軸11の膨張による外径の変化量の最大値を1とし
て、この外径の変化量をこの最大値に対する比の形で表
したものである。図から明らかなように、肉厚一定の場
合の図9に比して、第二実施例の場合の図10では最大
変化量が約60%と小さく、高剛性部11aの影響が明
確に現れている。
Next, the gas bearing structure in which the thickness of the rotary shaft 11 is constant as shown by the two-dot chain line in FIG. 6 and the gas bearing structure according to the second embodiment shown by the solid line in FIG. The results of calculating the change in the outer diameter of the rotating shaft using the finite element method under the same conditions of the outer diameter of the rotating shaft, the number of revolutions, the material of the rotating shaft, etc. are shown in FIGS.
FIG. 10 shows the case of the second embodiment). 9 and 10, the horizontal axis represents the length of the entire bearing portion as 1, and the distance from one end of the bearing portion is expressed in the form of a ratio, and the vertical axis represents the change amount of the outer diameter due to the expansion of the rotating shaft 11. The maximum value is set to 1, and the change amount of the outer diameter is expressed in the form of a ratio to the maximum value. As is clear from the figure, in FIG. 10 in the case of the second embodiment, the maximum change amount is as small as about 60% compared to FIG. 9 in the case of a constant wall thickness, and the effect of the high rigidity portion 11a clearly appears. ing.

【0013】なお、上記実施例では、ティルティングパ
ッド型気体軸受を用いた気体軸受構造について説明した
が、本発明はこれに限定するものでなく、上記各実施例
での中空の回転軸11を採用していれば、この他、図1
1に示すように、他のタイプの動圧気体軸受15aを用
いた気体軸受構造、図12に示すように静圧気体軸受1
5bを用いた気体軸受構造、図13に示す動圧、静圧を
併用した気体軸受15cを用いた気体軸受構造のいずれ
も本発明に含まれる。
In the above embodiments, the gas bearing structure using the tilting pad type gas bearing has been described, but the present invention is not limited to this, and the hollow rotary shaft 11 in each of the above embodiments is used. If adopted, in addition to this,
1, a gas bearing structure using another type of dynamic pressure gas bearing 15a, and a static pressure gas bearing 1 as shown in FIG.
The present invention includes both the gas bearing structure using 5b and the gas bearing structure using the gas bearing 15c shown in FIG. 13, which uses both dynamic pressure and static pressure.

【0014】[0014]

【発明の効果】以上の説明より明らかなように、本発明
によれば、中空の回転軸を気体軸受で支持するようにし
た気体軸受構造において、回転軸の内周部に、回転軸の
遠心力に対する剛性を軸受部の両端部に比して中央部の
方で大きくする高剛性部を設けて形成してある。このた
め、本発明に係る気体軸受構造は、加工が容易であり、
また回転軸の軸受部の両端部に比して、熱膨張量の大き
い軸受部の中央部では、上記両端部に比して遠心膨張量
が小さくなり、この結果、低速回転時、高速回転時のい
ずれにおいても、回転軸と気体軸受との間の空隙部の厚
みを均一に保ち、安定した軸受特性を得ることが可能に
なるという効果を奏する。
As is apparent from the above description, according to the present invention, in a gas bearing structure in which a hollow rotary shaft is supported by a gas bearing, a centrifugal force of the rotary shaft is provided in an inner peripheral portion of the rotary shaft. A high-rigidity portion is formed to increase the rigidity with respect to the force in the central portion as compared with the both end portions of the bearing portion. Therefore, the gas bearing structure according to the present invention is easy to process,
In addition, the amount of centrifugal expansion in the central portion of the bearing portion, which has a large amount of thermal expansion compared to both ends of the bearing portion of the rotating shaft, is smaller than that in both ends, and as a result, during low speed rotation and high speed rotation. In either case, there is an effect that the thickness of the gap between the rotary shaft and the gas bearing can be kept uniform and stable bearing characteristics can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の第一実施例に係る気体軸受構造を示
す断面図である。
FIG. 1 is a sectional view showing a gas bearing structure according to a first embodiment of the present invention.

【図2】 図1のII−II線断面図である。FIG. 2 is a sectional view taken along line II-II of FIG.

【図3】 図1に示す気体軸受構造の軸受部の熱膨張の
みによる変形後の形状を示す部分断面図である。
FIG. 3 is a partial cross-sectional view showing a shape of a bearing portion of the gas bearing structure shown in FIG. 1 after being deformed only by thermal expansion.

【図4】 図1に示す気体軸受構造の軸受部の遠心膨張
のみによる変形後の形状を示す部分断面図である。
FIG. 4 is a partial cross-sectional view showing the shape of the bearing portion of the gas bearing structure shown in FIG. 1 after being deformed only by centrifugal expansion.

【図5】 図1に示す気体軸受構造の軸受部の遠心膨
張,熱膨張の双方による変形後の形状を示す部分断面図
である。
5 is a partial cross-sectional view showing the shape of the bearing portion of the gas bearing structure shown in FIG. 1 after being deformed by both centrifugal expansion and thermal expansion.

【図6】 本発明の第二実施例に係る気体軸受構造の軸
受部のみを示す部分断面図である。
FIG. 6 is a partial cross-sectional view showing only the bearing portion of the gas bearing structure according to the second embodiment of the present invention.

【図7】 本発明の第三実施例に係る気体軸受構造の軸
受部のみを示す部分断面図である。
FIG. 7 is a partial sectional view showing only a bearing portion of a gas bearing structure according to a third embodiment of the present invention.

【図8】 本発明の第四実施例に係る気体軸受構造の軸
受部のみを示す部分断面図である。
FIG. 8 is a partial sectional view showing only a bearing portion of a gas bearing structure according to a fourth embodiment of the present invention.

【図9】 肉厚一定の回転軸における軸受部の変形量の
計算結果を示す図である。
FIG. 9 is a diagram showing a calculation result of a deformation amount of a bearing portion on a rotating shaft having a constant wall thickness.

【図10】 肉厚一定の回転軸における軸受部の変形量
の計算結果を示す図である。
FIG. 10 is a diagram showing a calculation result of a deformation amount of a bearing portion on a rotating shaft having a constant wall thickness.

【図11】 ティルティングパッド型以外の動圧型気体
軸受を用いた気体軸受構造を示す軸直角断面図である。
FIG. 11 is a cross-sectional view perpendicular to the axis showing a gas bearing structure using a dynamic pressure type gas bearing other than the tilting pad type.

【図12】 静圧型気体軸受を用いた気体軸受構造を示
す軸直角断面図である。
FIG. 12 is a cross-sectional view perpendicular to the axis showing a gas bearing structure using a static pressure type gas bearing.

【図13】 動圧併用型気体軸受を用いた気体軸受構造
を示す軸直角断面図である。
FIG. 13 is a cross-sectional view perpendicular to the axis showing a gas bearing structure using a dynamic pressure combined type gas bearing.

【図14】 従来の気体軸受構造を示す断面図である。FIG. 14 is a cross-sectional view showing a conventional gas bearing structure.

【図15】 図14に示す気体軸受の変形を生じていな
い状態における軸受部のみを示す部分断面図である。
FIG. 15 is a partial cross-sectional view showing only a bearing portion in a state where the gas bearing shown in FIG. 14 is not deformed.

【図16】 図14に示す気体軸受の遠心膨張による変
形が生じた状態における軸受部のみを示す部分断面図で
ある。
16 is a partial cross-sectional view showing only the bearing portion in a state where the gas bearing shown in FIG. 14 is deformed by centrifugal expansion.

【符号の説明】[Explanation of symbols]

11 回転軸 15,15a,15b,15c 気体軸受 16,16a,16b,16c 高剛性部 11 rotating shaft 15,15a, 15b, 15c gas bearing 16,16a, 16b, 16c high rigidity part

フロントページの続き (72)発明者 ▲吉▼川 浩 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内 (72)発明者 平田 敏明 兵庫県高砂市荒井町新浜2丁目3番1号 株式会社神戸製鋼所高砂製作所内Front page continuation (72) Inventor ▲ Yoshi ▼ Hiro Kawakawa 2-3-1, Niihama, Arai-cho, Takasago, Hyogo Pref., Takasago Works, Kobe Steel Co., Ltd. (72) Toshiaki Hirata 2-3, Niihama, Arai-cho, Takasago, Hyogo Prefecture No. 1 Inside Takasago Works, Kobe Steel, Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 中空の回転軸を気体軸受で支持するよう
にした気体軸受構造において、回転軸の内周部に、回転
軸の遠心力に対する剛性を軸受部の両端部に比して中央
部の方で大きくする高剛性部を設けたことを特徴とする
気体軸受構造。
1. In a gas bearing structure in which a hollow rotating shaft is supported by a gas bearing, the inner peripheral portion of the rotating shaft has a rigidity against the centrifugal force of the rotating shaft compared to both ends of the bearing portion in a central portion. The gas bearing structure is characterized in that it has a high-rigidity portion that is enlarged in the direction.
JP32192993A 1993-12-21 1993-12-21 Gas bearing structure Pending JPH07174138A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32192993A JPH07174138A (en) 1993-12-21 1993-12-21 Gas bearing structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32192993A JPH07174138A (en) 1993-12-21 1993-12-21 Gas bearing structure

Publications (1)

Publication Number Publication Date
JPH07174138A true JPH07174138A (en) 1995-07-11

Family

ID=18137998

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32192993A Pending JPH07174138A (en) 1993-12-21 1993-12-21 Gas bearing structure

Country Status (1)

Country Link
JP (1) JPH07174138A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238487A (en) * 2012-05-15 2013-11-28 Jeol Resonance Inc Nmr sample tube and nmr apparatus
JP2014059235A (en) * 2012-09-18 2014-04-03 Mitsubishi Heavy Ind Ltd Shaft bearing monitoring system, rotary machine and shaft bearing monitoring method
EP3260716A1 (en) * 2016-06-23 2017-12-27 Robert Bosch GmbH Tilt segment bearing
CN112554969A (en) * 2020-12-11 2021-03-26 中国北方发动机研究所(天津) Bearing pedestal structure and variable-stiffness bearing system of turbocharger

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013238487A (en) * 2012-05-15 2013-11-28 Jeol Resonance Inc Nmr sample tube and nmr apparatus
JP2014059235A (en) * 2012-09-18 2014-04-03 Mitsubishi Heavy Ind Ltd Shaft bearing monitoring system, rotary machine and shaft bearing monitoring method
EP3260716A1 (en) * 2016-06-23 2017-12-27 Robert Bosch GmbH Tilt segment bearing
CN112554969A (en) * 2020-12-11 2021-03-26 中国北方发动机研究所(天津) Bearing pedestal structure and variable-stiffness bearing system of turbocharger

Similar Documents

Publication Publication Date Title
US5967746A (en) Gas turbine interstage portion seal device
JP4357599B2 (en) Rotor shaft for rotating machine and rotating machine equipped with this kind of rotor shaft
KR20040018950A (en) In situ load sharing brush seals
JPH07174138A (en) Gas bearing structure
US5997180A (en) Circumferential flow type dynamic pressure bearing
JP3310826B2 (en) Dynamic pressure gas journal bearing
JP2002346861A (en) Main spindle device of machine tool
JPH10288220A (en) Tilting pad bearing
JPS585519A (en) Foil journal bearing
JP2019082233A (en) Tilting pad bearing
JP2003269449A (en) Foil bearing
JPH0842560A (en) Dynamic pressure gas journal bearing
JP3294083B2 (en) Dynamic gas bearing
JP3197145B2 (en) Dynamic gas bearing
JP2542251Y2 (en) Synthetic resin cage for cylindrical roller bearings
JPH03121306A (en) Tilting pad shaped dynamic pressure gas bearing
JP3127717B2 (en) Shroud centering device for radial turbine
JPH06307434A (en) Dynamic pressure gas bearing
JPS62127508A (en) Tilting pad journal bearing
JP2563923Y2 (en) Protective bearing for magnetic bearing device
JP2000055050A (en) Bearing supporting structure of gas bearing
JPH1182499A (en) Rolling bearing
JPH0919805A (en) Preload adjusting mechanism for spindle bearing of machine tool
JPH06313423A (en) Dynamic pressure gas bearing
JP2005036858A (en) Crowned cage and rolling bearing