JPH07174001A - Moving blade chip clearance controller - Google Patents

Moving blade chip clearance controller

Info

Publication number
JPH07174001A
JPH07174001A JP32043093A JP32043093A JPH07174001A JP H07174001 A JPH07174001 A JP H07174001A JP 32043093 A JP32043093 A JP 32043093A JP 32043093 A JP32043093 A JP 32043093A JP H07174001 A JPH07174001 A JP H07174001A
Authority
JP
Japan
Prior art keywords
segment
pressure
transmission top
tip clearance
moving blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32043093A
Other languages
Japanese (ja)
Inventor
Kenichi Okuno
研一 奥野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP32043093A priority Critical patent/JPH07174001A/en
Publication of JPH07174001A publication Critical patent/JPH07174001A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To minimize a moving blade chip clearance at a steady operation time, and prevent occurrence of contact between the and a casing inner surface facing thereto even at transient times during start and stop. CONSTITUTION:A moving blade chip clearance controller is provided with a segment 6 which is provided on a casing 4 opposing to a moving blade 2 and movable in the radial direction of the casing 4, a transmission piece 7 to adjust the radial position by transmitting external force to the segment 6, a driving pressure source P to apply pressure to the transmission piece 7, and a transmission piece elastic body 9 to regulate the positions of the segment 6 and the transmission piece 7 by means of balance with operating pressure of the driving pressure source P so that chip clearance may be controlled in the radial position of the segment 6.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は軸流圧縮機,軸流タービ
ンのような流体機械において、回転部である動翼とそれ
に相対する静止部との間隙を制御する動翼チップ間隙制
御装置に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a rotor blade tip clearance controller for controlling a clearance between a rotor blade which is a rotating portion and a stationary portion which faces the rotor blade in a fluid machine such as an axial compressor or an axial turbine. .

【0002】[0002]

【従来の技術】軸流圧縮機,軸流タービンのように回転
羽根を備えた流体機械においては、回転羽根すなわち動
翼が相対するケーシングなどの静止部に回転中接触して
損傷することのないように、動翼先端部とそれに対応す
るケーシング内面との間にチップ間隙が設けられてい
る。
2. Description of the Related Art In a fluid machine such as an axial flow compressor and an axial flow turbine having rotary vanes, the rotary vanes, that is, the moving blades, do not come into contact with a stationary portion such as a casing during rotation and are not damaged. As described above, the tip gap is provided between the blade tip and the corresponding inner surface of the casing.

【0003】しかしながら、このチップ間隙によって流
体的に漏れ損失が生じ、性能低下を引き起こすことにな
る。この傾向は軸流圧縮機の場合に顕著であり、性能低
下の度合いは1〜2%となる場合もある。その結果、ガ
スタービンプラント全体の効率低下の度合いはその倍程
度となり、非常に顕著である。
However, this tip gap causes a fluid leakage loss, resulting in deterioration of performance. This tendency is remarkable in the case of the axial compressor, and the degree of performance deterioration may be 1 to 2%. As a result, the degree of efficiency reduction of the entire gas turbine plant is about twice that, which is very remarkable.

【0004】また、チップ間隙の増大は、その他段落圧
力上昇の低下、サージマージンの減少など、流体機械全
体特性を大きく左右することが知られており、そのため
チップ間隙は極力小さくする必要がある。
Further, it is known that the increase of the tip clearance greatly affects the overall characteristics of the fluid machine such as the decrease of the pressure rise in other paragraphs and the decrease of the surge margin. Therefore, it is necessary to make the tip clearance as small as possible.

【0005】従来の動翼チップ間隙制御装置を図5〜図
7に基づいて説明する。一般的に、軸流圧縮機の通路部
は、図5に示すようにロータ1,動翼2,静翼3および
ケーシング4により構成されており、前述したように動
翼2の先端とそれに相対するケーシング4の内面との間
は、回転中の各部の変形により動翼2の先端とそれに相
対するケーシング4の内面とが接触することがないよう
に、組み立て時にチップ間隙δが設定されている。
A conventional blade tip clearance control device will be described with reference to FIGS. Generally, the passage portion of the axial compressor is constituted by the rotor 1, the moving blades 2, the stationary blades 3 and the casing 4 as shown in FIG. The tip clearance δ is set at the time of assembly so that the tip of the moving blade 2 and the inner surface of the casing 4 facing it do not come into contact with each other due to the deformation of each part during rotation. .

【0006】このチップ間隙δの内訳は、概ね図7に示
すようになる。すなわち、回転部の遠心力の伸びδ1
ロータ撓み量δ2 、軸受油膜形成によるロータ浮上がり
量δ3 、回転部と静止部の定常熱伸び差δ4 、さらに起
動停止時予想される非定常伸び差δ5 、計算誤差および
機械加工精度に起因するマージンδ6 とからなる。この
ように起動時から定格時まであらゆる変形を想定して、
チップ間隙δは設定されている。
The details of the tip gap δ are as shown in FIG. That is, the centrifugal force elongation δ 1 of the rotating portion,
Rotor deflection amount δ 2 , Rotor lift amount due to bearing oil film formation δ 3 , Steady thermal expansion difference δ 4 between rotating and stationary parts, Unsteady expansion difference δ 5 expected at start and stop, calculation error and machining accuracy And a margin δ 6 due to In this way, assuming all deformations from startup to rated time,
The tip gap δ is set.

【0007】一方、図6は動翼2の先端に相対向するケ
ーシング4の内面に摩耗材5を装着した例を示す。この
摩耗材5は万一動翼2の先端がケーシング4に接触した
場合でも摩耗材5自体が摩滅することにより、動翼2の
損傷を最小限にするものである。この従来例の場合、設
定されたチップ間隙δは前述したその値に比べ小さくす
ることが可能である。例えば、チップ間隙δの内訳の中
でマージンδ6 分を取り除き、さらに狭い間隙に設定す
るものである。
On the other hand, FIG. 6 shows an example in which a wear material 5 is attached to the inner surface of the casing 4 facing the tip of the moving blade 2. Even if the tip of the moving blade 2 comes into contact with the casing 4, the abrasion material 5 wears the abrasion material 5 itself to minimize damage to the moving blade 2. In the case of this conventional example, the set chip gap δ can be made smaller than the above-mentioned value. For example, in the breakdown of the chip gap δ, the margin δ 6 minutes is removed to set a narrower gap.

【0008】しかしながら、この従来例の構造も予想以
上の過渡的な熱伸び差による変形が生じ、動翼2の先端
がケーシング4に接触した場合、摩耗材5は削り取ら
れ、結果的にチップ間隙δは大きくなる。しかも、一度
拡大したチップ間隙δは元に戻らず、それ以降の運転で
は性能低下を回避できない不具合がある。
However, also in the structure of this conventional example, when the deformation due to the transitional thermal expansion difference occurs more than expected and the tip of the moving blade 2 comes into contact with the casing 4, the wear material 5 is scraped off, resulting in the chip clearance. δ becomes large. Moreover, there is a problem that the once expanded chip gap δ cannot be restored, and performance deterioration cannot be avoided in subsequent operations.

【0009】[0009]

【発明が解決しようとする課題】ところで、図7に示す
チップ間隙δの内訳において、回転部の遠心力の伸びδ
1 、ロータ撓み量δ2 、軸受油膜形成によるロータ浮上
がり量δ3 、回転部と静止部の定常熱伸び差δ4 に関し
ては、例えば発電用に使用されるガスタービンの常用負
荷における連続運転時、つまり定常状態を想定する場
合、考慮されるべきものである。
By the way, in the breakdown of the tip clearance δ shown in FIG. 7, the elongation δ of the centrifugal force of the rotating part is shown.
1 , the rotor deflection amount δ 2 , the rotor floating amount δ 3 due to the formation of bearing oil film, and the steady thermal expansion difference δ 4 between the rotating part and the stationary part, for example, during continuous operation of a gas turbine used for power generation under a normal load. That is, it should be considered when assuming a steady state.

【0010】しかしながら、起動停止時に想定される非
定常伸び差δ5 、つまりロータ1とケーシング4の表面
との熱伝達率の相違に起因する非定常的な熱伸び差によ
る必要チップ間隙は、常用負荷における連続運転時、つ
まり定常状態には考慮する必要がない。
However, the unsteady elongation difference δ 5 that is expected at the time of starting and stopping, that is, the required chip clearance due to the unsteady difference in thermal expansion due to the difference in heat transfer coefficient between the rotor 1 and the surface of the casing 4, is There is no need to consider during continuous operation under load, that is, in steady state.

【0011】換言すれば、従来のチップ間隙の設定は、
流体機械として最も高性能が期待される常用負荷におけ
る連続運転時において、起動停止時にのみ必要とされる
チップ間隙量を含んでいることとなり、結果的に、必要
以上のチップ間隙を有することとなる。また、前述した
非定常的な熱伸び差の予測は非常に困難であり、信頼性
を優先するあまり、非定常伸び差δ5 は実際よりもかな
り大きめに設定している。
In other words, the conventional chip gap setting is
During continuous operation under normal load where the highest performance as a fluid machine is expected, it includes the chip clearance amount that is required only when starting and stopping, and as a result, it has more chip clearance than necessary. . Further, it is very difficult to predict the above-mentioned unsteady thermal expansion difference, and the unsteady thermal expansion difference δ 5 is set to be considerably larger than the actual value because reliability is prioritized.

【0012】一方、図6に示す摩耗材5を装着した構造
であっても、前述したように予想以上の過渡的な熱伸び
差による変形が生じ、動翼2の先端がケーシング4に接
触した場合、摩耗材5が削り取られ、結果的にチップ間
隙δは大きくなる。しかも、一度拡大したチップ間隙δ
は元に戻らず、それ以降の運転の性能低下は回避でき
ず、その修正のために一旦分解し、摩耗材5を交換する
必要があり、その交換作業が煩わしいという問題点があ
った。
On the other hand, even in the structure in which the wear member 5 shown in FIG. 6 is mounted, as described above, the deformation due to the transient thermal expansion difference more than expected occurs, and the tip of the moving blade 2 comes into contact with the casing 4. In this case, the wear material 5 is scraped off, and as a result, the chip gap δ becomes large. Moreover, the tip gap δ once expanded
However, there is a problem in that it is necessary to disassemble the wear material 5 once in order to correct it, and the wear material 5 must be replaced, which is troublesome.

【0013】また、緊急停止時などの急激な運転状態の
変化の際に、回転部と静止部との接触、すなわちラビン
グが生じ易いということは周知の事実である。
Further, it is a well-known fact that contact between the rotating part and the stationary part, that is, rubbing is likely to occur during a sudden change in the operating state such as an emergency stop.

【0014】本発明は上述した事情を考慮してなされた
もので、定常運転時における動翼チップ間隙を最小と
し、且つ起動停止時の過渡時においても動翼とそれに対
応するケーシング内面との接触が発生しにくい動翼チッ
プ間隙制御装置を提供することを目的とする。
The present invention has been made in consideration of the above circumstances, and minimizes the blade tip clearance during steady operation, and also allows the contact between the blade and the corresponding inner surface of the casing during a transition at the time of start / stop. It is an object of the present invention to provide a blade tip clearance control device that is less likely to generate.

【0015】[0015]

【課題を解決するための手段】上述した課題を解決する
ために、本発明の請求項1は、動翼に相対するケーシン
グに設けられその半径方向に移動可能なセグメントと、
このセグメントに外力を伝達しその半径方向位置を調整
する伝達こまと、この伝達こまに圧力を加える駆動圧力
源と、上記セグメントと上記伝達こまの位置を上記駆動
圧力源の動作圧力とのバランスにて規定する伝達こま弾
性体とを備え、上記セグメントの半径方向位置にてチッ
プ間隙を制御することを特徴とする。
In order to solve the above-mentioned problems, the first aspect of the present invention is to provide a segment, which is provided in a casing facing a rotor blade and is movable in a radial direction thereof,
A transmission top for transmitting an external force to the segment to adjust its radial position, a drive pressure source for applying pressure to the transmission top, and the positions of the segment and the transmission top to balance the operating pressure of the drive pressure source. And a transmission top elastic body defined by the above, and the tip gap is controlled at the radial position of the segment.

【0016】また、請求項2は、請求項1記載の駆動圧
力源の動作圧力は、圧縮機の吐出空気圧力および途中段
落からの抽気空気圧力のいずれかを用いたことを特徴と
する。
A second aspect of the present invention is characterized in that the operating pressure of the driving pressure source according to the first aspect uses either the discharge air pressure of the compressor or the bleed air pressure from the middle stage.

【0017】さらに、請求項3は、請求項1記載のセグ
メントは、ケーシングに形成されたあり溝に嵌め込まれ
たことを特徴とする。
Further, a third aspect of the present invention is characterized in that the segment according to the first aspect is fitted into a dovetail groove formed in the casing.

【0018】そして、請求項4は、請求項1または3記
載のセグメントと上記伝達こまとの間には、起動停止時
の過渡時に動翼チップ間隙をラビングを回避する値に保
持した初期クリアランスを有することを特徴とする。
According to a fourth aspect of the present invention, an initial clearance is provided between the segment according to the first or third aspect of the invention and the transmission frame, in which the blade tip clearance is maintained at a value that avoids rubbing during a transition at the time of starting and stopping. It is characterized by having.

【0019】[0019]

【作用】上記の構成を有する本発明においては、駆動圧
力源の動作圧力がある値まではチップ間隙を初期状態に
保持し、動作圧力がある値以上になると、伝達こまがセ
グメントに接触し、動作圧力の上昇に伴いセグメントを
動翼側に移動させ、チップ間隙を小さくする。これによ
り、起動停止時の信頼性を高めるとともに、定格時の性
能を向上させる。
In the present invention having the above-mentioned structure, the tip gap is kept in the initial state until the operating pressure of the driving pressure source reaches a certain value, and when the operating pressure exceeds a certain value, the transmission top comes into contact with the segment, As the operating pressure rises, the segment is moved to the rotor blade side to reduce the tip clearance. As a result, the reliability at the time of starting and stopping is improved and the performance at the rated time is improved.

【0020】[0020]

【実施例】以下、本発明の実施例を図面に基づいて説明
する。
Embodiments of the present invention will be described below with reference to the drawings.

【0021】図1および図2は本発明に係る動翼チップ
間隙制御装置の一実施例を示す断面図である。なお、従
来の構成と同一または対応する部分には図5と同一の符
号を用いて説明する。
1 and 2 are sectional views showing an embodiment of a moving blade tip clearance controller according to the present invention. It should be noted that the same or corresponding portions as those of the conventional configuration will be described using the same reference numerals as those in FIG.

【0022】本実施例は軸流圧縮機に適用した例を示
し、図1は圧縮機の起動時から起動途中の非定常伸び差
が大きい範囲での構成要素の位置関係を示し、図2は圧
縮機の非定常伸び差が小さくなる定格点近傍での構成要
素の位置関係を示し、これらの図では一部の段落につい
て抜き出して示している。
This embodiment shows an example applied to an axial flow compressor. FIG. 1 shows the positional relationship of the constituent elements in the range where the unsteady elongation difference between the start-up and the start-up of the compressor is large, and FIG. The positional relationship of the components in the vicinity of the rated point where the unsteady expansion difference of the compressor becomes small is shown. In these figures, some paragraphs are extracted and shown.

【0023】図1に示すように、ロータ1には動翼2が
固定され、この動翼2と相対するケーシング4には、そ
の半径方向にあり溝4aが形成されている。このあり溝
4aにはセグメント6が嵌め込む形態でケーシング4の
半径方向に移動可能に取り付けられている。このセグメ
ント6とあり溝4aとの間にはセグメント弾性体10が
介挿されてセグメント6の半径方向の位置決めを行って
いる。
As shown in FIG. 1, a rotor 1 has a rotor blade 2 fixed thereto, and a casing 4 facing the rotor blade 2 has a groove 4a formed in its radial direction. A segment 6 is fitted in the dovetail groove 4a so as to be movable in the radial direction of the casing 4. A segment elastic body 10 is interposed between the segment 6 and the dovetail groove 4a to position the segment 6 in the radial direction.

【0024】また、このセグメント6の半径方向の位置
は伝達こま7からの外力により調整され、この伝達こま
7の外力には圧力管8を通して駆動圧力源である圧縮機
の吐出空気圧力が加えられる。そして、伝達こま7とセ
グメント6の位置は、圧縮機からの動作圧力Pと伝達こ
ま弾性体9の弾性力とのバランスにより規定される。
The radial position of the segment 6 is adjusted by the external force from the transmission top 7, and the external force of the transmission top 7 is applied with the discharge air pressure of the compressor, which is a driving pressure source, through the pressure pipe 8. . The positions of the transmission top 7 and the segment 6 are defined by the balance between the operating pressure P from the compressor and the elastic force of the transmission top elastic body 9.

【0025】本実施例では、動作圧力Pを圧縮機の吐出
空気圧力とし、過渡時のチップ間隙δT は従来の技術で
述べたように非定常伸び差δ5 を含み、流体機械の信頼
性を優先させた余裕のある設定値、δ≦δT とする一
方、定格時のチップ間隙δS は、同様に図7に示す内訳
中、非定常伸び差δ5 を考慮しない設定値、δ−δ5
δS とする。
In this embodiment, the operating pressure P is the discharge air pressure of the compressor, and the tip clearance δ T at the time of transition includes the unsteady expansion difference δ 5 as described in the prior art, and the reliability of the fluid machine is improved. A setting value with a margin giving priority to δ ≦ δ T , while the tip clearance δ S at the time of rating is a setting value not considering the unsteady elongation difference δ 5 in the breakdown shown in FIG. δ 5
Let δ S.

【0026】セグメント弾性体10は、伝達こま7から
の外力が加わらないときにセグメント6を半径方向に押
し付け、セグメント6と動翼2の先端との間隙を過渡時
のチップ間隙δT に保持するのに充分なばね定数K1
備え、定格点動作圧力P0 でセグメント6と動翼2の先
端との間隙が定格時のチップ間隙δS になる変形量を有
する弾性体である。
The segment elastic body 10 presses the segment 6 in the radial direction when the external force from the transmission top 7 is not applied, and maintains the gap between the segment 6 and the tip of the moving blade 2 at the tip gap δ T during the transition. Is an elastic body having a spring constant K 1 sufficient for the above, and having a deformation amount such that the gap between the segment 6 and the tip of the moving blade 2 at the rated point operating pressure P 0 becomes the tip gap δ S at the rated time.

【0027】伝達こま弾性体9は、伝達こま動作圧力P
1 にてクリアランスCLだけ変形するばね定数K2 を備
えている。すなわち、伝達こま7の受圧面積をA1 とす
ると、
The transmission top elastic body 9 has a transmission top operating pressure P.
At 1, the spring constant K 2 is deformed by the clearance CL. That is, when the pressure receiving area of the transmission top 7 is A 1 ,

【数1】P1 ・A1 =K2 ・CL なる関係を有する。[Formula 1] P 1 · A 1 = K 2 · CL.

【0028】さらに、これらの間には、Further, between these,

【数2】δT −δS =X## EQU2 ## δ T −δ S = X

【数3】P0 ・A1 =K2 (CL+X)+K1 ・X なる関係があり、伝達こま動作圧力P1 は非定常伸び差
が許容できる範囲に収束した点での圧力値に設定されて
いる。
[Formula 3] P 0 · A 1 = K 2 (CL + X) + K 1 · X There is a relationship, and the transmission top operating pressure P 1 is set to the pressure value at the point where the unsteady elongation difference converges within the allowable range. ing.

【0029】次に、本実施例の作用について説明する。Next, the operation of this embodiment will be described.

【0030】本実施例の軸流圧縮機の動翼チップ間隙制
御装置においては、動作圧力Pを圧縮機吐出圧力とし、
伝達こま動作圧力P1 を非定常伸び差が許容できる範囲
に収束した点での圧力値に設定しているため、圧縮機の
起動時から起動途中の非定常伸び差が大きい範囲、すな
わち吐出圧力が伝達こま動作圧力P1 以下では、図1に
示すように圧縮機吐出圧力が回転数上昇および負荷上昇
に伴って伝達こま弾性体9を変形させて、伝達こま7を
押し下げていくものの、伝達こま7とセグメント6との
クリアランスCLがあるために、セグメント6には外力
が加わらず、セグメント弾性体10の作用により、初期
状態の過渡時のチップ間隙δT を保持する。
In the rotor blade tip clearance controller for the axial compressor of this embodiment, the operating pressure P is the compressor discharge pressure,
Since the transmission top operating pressure P 1 is set to a pressure value at a point where the unsteady expansion difference converges to an allowable range, the unsteady expansion difference between the start of the compressor and the start of the compressor is large, that is, the discharge pressure. When the transmission top operating pressure P 1 is lower than the transmission top operating pressure P 1 , although the compressor discharge pressure deforms the transmission top elastic body 9 as the number of rotations increases and the load increases, the transmission top 7 is pushed down. Since there is a clearance CL between the top 7 and the segment 6, an external force is not applied to the segment 6, and the action of the segment elastic body 10 maintains the tip clearance δ T during the transition in the initial state.

【0031】また、非定常伸び差が許容できる範囲の定
格点近傍では、圧縮機吐出圧力が伝達こま動作圧力P1
より大きくなり、図2に示すように、動作圧力Pが伝達
こま7を介してセグメント6を動翼2側に移動させ、チ
ップ間隙を小さくするように作用し、定格点では定格時
のチップ間隙δS となる。
Further, in the vicinity of the rated point in the range where the unsteady elongation difference is allowable, the compressor discharge pressure is the transmission top operating pressure P 1
As shown in FIG. 2, the operating pressure P moves the segment 6 to the moving blade 2 side through the transmission top 7, and acts to reduce the chip gap. It becomes δ S.

【0032】これら一連の作用を図3および図4に基づ
いて説明する。図3は横軸に定格動作圧力、本実施例で
は定格点吐出圧力で無次元化した動作圧力、縦軸に動翼
2の先端との間隙であるチップ間隙δを示す。図4は横
軸が図3と同様であるが、縦軸に伝達こま7の移動量を
示す。
The series of operations will be described with reference to FIGS. 3 and 4. In FIG. 3, the horizontal axis shows the rated operating pressure, in this embodiment the operating pressure made dimensionless by the rated point discharge pressure, and the vertical axis shows the tip clearance δ which is the clearance with the tip of the moving blade 2. In FIG. 4, the horizontal axis is the same as in FIG. 3, but the vertical axis shows the movement amount of the transmission top 7.

【0033】図3および図4に示すように、動作圧力P
の増大に伴って、伝達こま7はクリアランスCLだけ移
動する。しかし、この移動する間、クリアランスCLが
あるために、セグメント6には外力が作用せず、結果的
にチップ間隙δは初期状態の過渡時のチップ間隙δT
保持する。また、動作圧力Pが伝達こま動作圧力P1
越えた時点で、伝達こま7はセグメント6に接触し、セ
グメント6が動翼2側に移動を始め、最終的に動作圧力
Pが定格点動作圧力P0 となった時点でセグメント6
は、δT −δS 移動し、チップ間隙δは定格時のチップ
間隙δS に設定されることとなる。
As shown in FIGS. 3 and 4, the operating pressure P
The transmission top 7 moves by the clearance CL with the increase of. However, during this movement, due to the clearance CL, no external force acts on the segment 6, and as a result, the tip gap δ retains the tip gap δ T at the transition of the initial state. Further, when the operating pressure P exceeds the transmission top operating pressure P 1 , the transmission top 7 comes into contact with the segment 6, the segment 6 starts moving to the moving blade 2 side, and the operating pressure P finally reaches the rated point operation. Segment 6 when the pressure reaches P 0
Moves by δ T −δ S, and the chip gap δ is set to the rated chip gap δ S.

【0034】このように本実施例によれば、非定常伸び
差が大きい範囲では、チップ間隙δを過渡時のチップ間
隙δT に保持することにより、流体機械の信頼性を確保
できるとともに、定常状態ではチップ間隙δを必要最小
限の間隙、つまり定格時のチップ間隙δS に設定するこ
とにより、流体機械の定格点の性能向上を確保できる。
As described above, according to the present embodiment, by maintaining the tip clearance δ at the transient tip clearance δ T in the range where the unsteady elongation difference is large, the reliability of the fluid machine can be ensured and the steady state can be ensured. In this state, the tip gap δ is set to the minimum required gap, that is, the tip gap δ S at the time of rating, so that the performance improvement of the rated point of the fluid machine can be secured.

【0035】また、ラビングの発生が予期される非常停
止時やサージング発生時にも、吐出圧力の降下により、
速やかに動作圧力Pによりその異常を検知し、チップ間
隙δを拡大する作用をなし、動翼2の損傷など重大事故
に繋がるラビングの発生を回避することができる。
Further, at the time of an emergency stop in which the occurrence of rubbing is expected or during the occurrence of surging, the discharge pressure drops,
The abnormality can be promptly detected by the operating pressure P, the tip gap δ can be expanded, and rubbing that causes a serious accident such as damage to the moving blade 2 can be avoided.

【0036】さらに、セグメント6と伝達こま7との間
には、クリアランスCLがあるため、起動停止時の過渡
時に動翼チップ間隙をラビングを回避する値に保持する
ことができる。そして、動作圧力Pに圧縮機自体の吐出
圧力を直接配管により導くことにより、電気系による複
雑な制御機構を不要とし、構造を簡略化させることがで
きる。
Further, since there is a clearance CL between the segment 6 and the transmission top 7, the blade tip clearance can be maintained at a value that avoids rubbing during a transition at the time of starting and stopping. Further, by directly introducing the discharge pressure of the compressor itself to the operating pressure P by piping, a complicated control mechanism by an electric system is unnecessary, and the structure can be simplified.

【0037】なお、上記実施例では、非常停止時やサー
ジング発生時にも、吐出圧力の降下により速やかに動作
圧力Pがその異常を検知するため、動作圧力Pとして途
中段落からの抽気空気圧力を用いても上記実施例と同様
の効果が得られる。
In the above embodiment, the operating pressure P quickly detects the abnormality due to the drop in the discharge pressure even during the emergency stop or the surging. Therefore, the extracted air pressure from the middle stage is used as the operating pressure P. However, the same effect as that of the above-described embodiment can be obtained.

【0038】また、上記実施例では、単数の段落に適用
した場合を示したが、当然のことながら複数の段落に適
用可能である。そして、動翼チップ間隙を調整するセグ
メント6に摩耗材を配設すれば、一段と信頼性を向上さ
せることができる。
Further, in the above-mentioned embodiment, the case where the present invention is applied to a single paragraph is shown, but it is naturally applicable to a plurality of paragraphs. Further, by disposing a wear material in the segment 6 for adjusting the blade tip clearance, the reliability can be further improved.

【0039】[0039]

【発明の効果】以上説明したように、本発明に係る動翼
チップ間隙制御装置によれば、動翼に相対するケーシン
グに設けられその半径方向に移動可能なセグメントと、
このセグメントに外力を伝達しその半径方向位置を調整
する伝達こまと、この伝達こまに圧力を加える駆動圧力
源と、セグメントと伝達こまの位置を駆動圧力源の動作
圧力とのバランスにて規定する伝達こま弾性体とを備
え、セグメントの半径方向位置にてチップ間隙を制御す
ることにより、非定常伸び差が大きい範囲では、チップ
間隙を比較的大きく保持することにより、流体機械の信
頼性を確保できるとともに、定常状態ではチップ間隙を
必要最小限に設定することにより、流体機械の定格点の
性能向上が確保される。
As described above, according to the blade tip clearance control device of the present invention, the segment provided in the casing facing the blade and movable in the radial direction thereof,
The balance between the transmission top that transfers external force to this segment and adjusts its radial position, the drive pressure source that applies pressure to this transmission top, and the position of the segment and the transmission top by the operating pressure of the drive pressure source Equipped with a transmission top elastic body, by controlling the tip gap at the radial position of the segment, the tip gap is kept relatively large in the range where the unsteady elongation difference is large, thereby ensuring the reliability of the fluid machine. In addition, by setting the tip clearance to the minimum necessary in the steady state, the performance improvement of the rated point of the fluid machine is ensured.

【0040】また、ラビングの発生が予期される非常停
止時やサージング発生時にも、動作圧力の低下により、
速やかにその異常を検知し、チップ間隙を拡大すること
で、動翼の損傷など重大事故に繋がるラビングの発生を
回避することができる。
Also, at the time of an emergency stop in which rubbing is expected to occur or when surging occurs, the operating pressure decreases,
By quickly detecting the abnormality and widening the tip clearance, it is possible to avoid the occurrence of rubbing that may cause a serious accident such as damage to the moving blade.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係る動翼チップ間隙制御装置の一実施
例を示す断面図。
FIG. 1 is a sectional view showing an embodiment of a moving blade tip clearance control device according to the present invention.

【図2】図1においてチップ間隙が小さくなった状態を
示す断面図。
FIG. 2 is a cross-sectional view showing a state where the chip gap is small in FIG.

【図3】定格動作圧力とチップ間隙との関係を示す図。FIG. 3 is a diagram showing a relationship between a rated operating pressure and a tip gap.

【図4】定格動作圧力と伝達こまの移動量との関係を示
す図。
FIG. 4 is a diagram showing a relationship between a rated operating pressure and a movement amount of a transmission top.

【図5】一般の軸流圧縮機の通路部を示す部分断面図。FIG. 5 is a partial sectional view showing a passage portion of a general axial flow compressor.

【図6】従来の動翼チップ間隙制御装置を示す断面図。FIG. 6 is a sectional view showing a conventional blade tip clearance control device.

【図7】設定チップ間隙の内訳を示す図。FIG. 7 is a diagram showing a breakdown of a set tip gap.

【符号の説明】[Explanation of symbols]

1 ロータ 2 動翼 4 ケーシング 6 セグメント 7 伝達こま 8 圧力管 9 伝達こま弾性体 10 セグメント弾性体 CL クリアランス P 動作圧力 δ チップ間隙 1 rotor 2 rotor blade 4 casing 6 segment 7 transmission top 8 pressure tube 9 transmission top elastic body 10 segment elastic body CL clearance P operating pressure δ tip gap

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 動翼に相対するケーシングに設けられそ
の半径方向に移動可能なセグメントと、このセグメント
に外力を伝達しその半径方向位置を調整する伝達こま
と、この伝達こまに圧力を加える駆動圧力源と、上記セ
グメントと上記伝達こまの位置を上記駆動圧力源の動作
圧力とのバランスにて規定する伝達こま弾性体とを備
え、上記セグメントの半径方向位置にてチップ間隙を制
御することを特徴とする動翼チップ間隙制御装置。
1. A segment, which is provided in a casing facing a rotor blade and is movable in a radial direction thereof, a transmission top for transmitting an external force to the segment to adjust its radial position, and a drive for applying a pressure to the transmission top. A pressure source, and a transmission top elastic body that defines the position of the segment and the transmission top by the operating pressure of the drive pressure source, and controlling the tip clearance at the radial position of the segment. Characteristic blade tip clearance control device.
【請求項2】 上記駆動圧力源の動作圧力は、圧縮機の
吐出空気圧力および途中段落からの抽気空気圧力のいず
れかを用いたことを特徴とする請求項1記載の動翼チッ
プ間隙制御装置。
2. The moving blade tip clearance control device according to claim 1, wherein the operating pressure of the driving pressure source is either the discharge air pressure of the compressor or the bleed air pressure from the middle stage. .
【請求項3】 上記セグメントは、ケーシングに形成さ
れたあり溝に嵌め込まれたことを特徴とする請求項1記
載の動翼チップ間隙制御装置。
3. The blade tip clearance control device according to claim 1, wherein the segment is fitted in a dovetail groove formed in the casing.
【請求項4】 上記セグメントと上記伝達こまとの間に
は、起動停止時の過渡時に動翼チップ間隙をラビングを
回避する値に保持した初期クリアランスを有することを
特徴とする請求項1または3記載の動翼チップ間隙制御
装置。
4. The initial clearance between the segment and the transmission frame has an initial clearance that holds a blade tip clearance at a value that avoids rubbing during a transition at the time of start and stop. A blade tip clearance control device as described.
JP32043093A 1993-12-20 1993-12-20 Moving blade chip clearance controller Pending JPH07174001A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32043093A JPH07174001A (en) 1993-12-20 1993-12-20 Moving blade chip clearance controller

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32043093A JPH07174001A (en) 1993-12-20 1993-12-20 Moving blade chip clearance controller

Publications (1)

Publication Number Publication Date
JPH07174001A true JPH07174001A (en) 1995-07-11

Family

ID=18121366

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32043093A Pending JPH07174001A (en) 1993-12-20 1993-12-20 Moving blade chip clearance controller

Country Status (1)

Country Link
JP (1) JPH07174001A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291205A (en) * 2004-03-30 2005-10-20 General Electric Co <Ge> Sealing device and method for turbomachinery
JP2009047167A (en) * 2007-08-17 2009-03-05 General Electric Co <Ge> Apparatus and method for monitoring compressor clearance and controlling gas turbine
CN102619577A (en) * 2012-04-06 2012-08-01 东南大学 Device for inhibiting clearance leakage of blade tip and reducing steam flow exciting force
EP2273073A3 (en) * 2009-06-12 2013-07-03 Rolls-Royce plc System and method for adjusting rotor-stator clearance
WO2015102949A2 (en) 2013-12-30 2015-07-09 United Technologies Corporation Accessible rapid response clearance control system
KR101675277B1 (en) * 2015-10-02 2016-11-11 두산중공업 주식회사 Gas Turbine Tip Clearance Control Assembly

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005291205A (en) * 2004-03-30 2005-10-20 General Electric Co <Ge> Sealing device and method for turbomachinery
JP2009047167A (en) * 2007-08-17 2009-03-05 General Electric Co <Ge> Apparatus and method for monitoring compressor clearance and controlling gas turbine
EP2273073A3 (en) * 2009-06-12 2013-07-03 Rolls-Royce plc System and method for adjusting rotor-stator clearance
US8555477B2 (en) 2009-06-12 2013-10-15 Rolls-Royce Plc System and method for adjusting rotor-stator clearance
CN102619577A (en) * 2012-04-06 2012-08-01 东南大学 Device for inhibiting clearance leakage of blade tip and reducing steam flow exciting force
CN102619577B (en) * 2012-04-06 2015-06-10 东南大学 Device for inhibiting clearance leakage of blade tip and reducing steam flow exciting force
WO2015102949A2 (en) 2013-12-30 2015-07-09 United Technologies Corporation Accessible rapid response clearance control system
EP3097274A4 (en) * 2013-12-30 2017-10-04 United Technologies Corporation Accessible rapid response clearance control system
US10557367B2 (en) 2013-12-30 2020-02-11 United Technologies Corporation Accessible rapid response clearance control system
KR101675277B1 (en) * 2015-10-02 2016-11-11 두산중공업 주식회사 Gas Turbine Tip Clearance Control Assembly
WO2017057992A1 (en) * 2015-10-02 2017-04-06 두산중공업 주식회사 Gas turbine tip gap control assembly
US10323537B2 (en) 2015-10-02 2019-06-18 DOOSAN Heavy Industries Construction Co., LTD Gas turbine tip clearance control assembly

Similar Documents

Publication Publication Date Title
US11092166B2 (en) Variable geometry diffuser having extended travel and control method thereof
US5203673A (en) Tip clearance control apparatus for a turbo-machine blade
JP5281795B2 (en) Active retractable seal for turbomachinery
RU2501955C2 (en) Design of seal for sealing space between rotary and fixed element /versions/
US8678742B2 (en) Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
EP1215421B1 (en) Turbine rotor-stator leaf seal and related method
JP4107829B2 (en) Turbomachine
US9068471B2 (en) Clearance control system, turbomachine and method for adjusting a running clearance between a rotor and a casing of a turbomachine
KR20070026217A (en) Methods and apparatus for assembling a rotary machine
EP2426318B1 (en) System for controlling thrust in steam turbine
RU2549922C2 (en) Turbomachine
JP2007162482A (en) Axial flow turbine
EP2400113B1 (en) System for controlling thrust in steam turbine
JPS61152906A (en) Seal part gap regulating device for turbine
JPH07174001A (en) Moving blade chip clearance controller
US5076050A (en) Thermal clearance control method for gas turbine engine
JPS61250304A (en) Axial flow turbine
JP2015165133A (en) System and method for thrust bearing actuation to actively control clearance in turbo machine
JP2002357103A (en) Seal device for steam turbine
JPS5820905A (en) Tip clearance adjuster for axial flow type hydraulic machine
JPH04187801A (en) Seal portion interval adjustor for turbine
JPH0739805B2 (en) Turbine seal clearance adjustment device
JPH0437310B2 (en)
JPS62111104A (en) Clearance adjustment system for gas turbine
JPH0723682B2 (en) Blade clearance adjustment device for axial flow fluid machinery