JPH07173724A - Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber - Google Patents

Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber

Info

Publication number
JPH07173724A
JPH07173724A JP5320217A JP32021793A JPH07173724A JP H07173724 A JPH07173724 A JP H07173724A JP 5320217 A JP5320217 A JP 5320217A JP 32021793 A JP32021793 A JP 32021793A JP H07173724 A JPH07173724 A JP H07173724A
Authority
JP
Japan
Prior art keywords
fiber
water
melting point
core
polymer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5320217A
Other languages
Japanese (ja)
Inventor
Akio Omori
昭夫 大森
Masahiro Sato
政弘 佐藤
Tomoyuki Sano
友之 佐野
Satoru Kobayashi
悟 小林
Shunpei Naramura
俊平 楢村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuraray Co Ltd
Original Assignee
Kuraray Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuraray Co Ltd filed Critical Kuraray Co Ltd
Priority to JP5320217A priority Critical patent/JPH07173724A/en
Publication of JPH07173724A publication Critical patent/JPH07173724A/en
Pending legal-status Critical Current

Links

Landscapes

  • Multicomponent Fibers (AREA)
  • Nonwoven Fabrics (AREA)

Abstract

PURPOSE:To provide a water-soluble polyvinyl alcohol fiber capable of heated and press-adhered, especially the fiber having usual handleability, when usually used, but capable of being heated and press-adhered substantially without changing its dimension, when heated and press-adhered. CONSTITUTION:A coaxial mono-core sheath-core type conjugate binder fiber is obtained from a polyvinyl alcohol polymer having a melting point of >=210 deg.C and a water-soluble polymer having a melting point of <210 deg.C as a sheath component and a core component, respectively, by a solution-spinning method, and can be heated and press-adhered by applying a linear pressure of >=3kg/cm or a face pressure of >=5kg/cm<2> to the fiber at 140-240 deg.C.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、水溶性のポリビニルア
ルコール系(以下PVA系と略記)バインダー繊維に関
するもので、従来困難とされてきた水溶性PVA系繊維
の水溶性を損うことなく熱圧着による接着を可能とする
PVA系バインダー繊維とその熱圧着方法に関するもの
である。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a water-soluble polyvinyl alcohol (hereinafter abbreviated as PVA) binder fiber, which can be heated without impairing the water solubility of the water-soluble PVA fiber, which has hitherto been difficult. The present invention relates to a PVA-based binder fiber that enables adhesion by pressure bonding and a thermocompression bonding method thereof.

【0002】[0002]

【従来の技術】溶融紡糸可能なポリエチレン、ポリエス
テルなどでは熱接着可能な繊維が市販されている。最近
では芯を高融点ポリマーとし、鞘を低融点ポリマーとす
る芯鞘複合繊維が開発され、熱接着時の収縮を抑えるこ
とが可能となり、この芯鞘複合熱接着性バインダー繊維
は、接着時の簡便性、高速性、無公害性のメリットを生
かして、ますます用途拡大しつつある。
2. Description of the Related Art For melt-spinnable polyethylene, polyester, etc., heat-bondable fibers are commercially available. Recently, a core-sheath composite fiber having a core as a high-melting polymer and a sheath as a low-melting polymer has been developed, which makes it possible to suppress shrinkage during heat bonding. Utilizing the merits of simplicity, high speed, and no pollution, the application is expanding more and more.

【0003】しかし、これらの熱接着性バインダー繊維
は、PVA系やセルロース系などの親水性繊維に対して
はその接着効果が低く、強力を必要とする用途には使用
できない。そこで強力を出すためにアクリル系、メラミ
ン系、PVA系等のポリマーが化学接着剤として単独又
は複合して使用されている。例えば水溶性であることが
必須のケミカルレース基布を製造する時、水溶性ビニロ
ンを材料とする乾式不織布にPVA系樹脂の水溶液を塗
布するか含浸し、乾燥する方法が一般的に実施されてい
るが、水溶液により基布の水溶性繊維が膨潤し、ポリマ
ーの乾燥に時間を要するため低速生産しかできない。も
し水溶性の熱接着性バインダー繊維が開発できれば、高
速生産が可能となる。またウェットワイパー用基布とし
てセルロース基材に疎水性の熱接着性繊維で接着させた
場合、不良品が発生した時あるいはトリミングにより発
生した屑の回収ができないため、焼却処分されている。
もし熱接着性繊維が水溶性であれば不良品や屑を回収し
て再使用することが可能となる。
However, these thermo-adhesive binder fibers have a low adhesive effect to hydrophilic fibers such as PVA type and cellulose type, and cannot be used in applications requiring high strength. Therefore, polymers such as acrylic type, melamine type, and PVA type polymers are used alone or in combination as a chemical adhesive in order to obtain a high strength. For example, when manufacturing a chemical lace base fabric which is essential to be water-soluble, a method of applying or impregnating an aqueous solution of a PVA-based resin to a dry non-woven fabric made of water-soluble vinylon and impregnating and drying is generally performed. However, the aqueous solution causes the water-soluble fibers of the base fabric to swell, and it takes time to dry the polymer, so only low-speed production is possible. If water-soluble thermo-adhesive binder fibers can be developed, high-speed production becomes possible. Further, when the base material for wet wiper is adhered to a cellulose substrate with a hydrophobic heat-adhesive fiber, it is incinerated because a defective product is generated or scraps generated by trimming cannot be collected.
If the heat-adhesive fiber is water-soluble, defective products and scraps can be collected and reused.

【0004】しかしながら、従来の熱接着性繊維は溶融
紡糸可能な疎水性ポリマーをベースとしており、水溶性
と熱接着性を兼備し、かつ実用に耐える他の繊維物性を
有する繊維は得られていない。水溶性ポリマーの代表例
であるPVA系ポリマーは、分子内に有する水酸基によ
る分子間相互作用が強く、融点が熱分解温度に近く、通
常は熱分解させずに溶融することが出来ず、熱接着性繊
維を得ることができない。
However, the conventional heat-adhesive fibers are based on a melt-spinnable hydrophobic polymer, and fibers having other water-soluble and heat-adhesive properties and other physical properties that can be used practically have not been obtained. . A PVA-based polymer, which is a typical example of a water-soluble polymer, has a strong intermolecular interaction due to hydroxyl groups in the molecule, has a melting point close to a thermal decomposition temperature, and usually cannot be melted without thermal decomposition. Unable to obtain sex fibers.

【0005】この背景下、PVA系ポリマーにおいて
も、共重合変性や後反応変性による内部可塑化及び可塑
剤混合による外部可塑化などにより、融点や軟化点を下
げ溶融成形を可能にしたり、ホットメルト接着剤として
使用する提案がなされている。例えば特開昭51−87
542号、特開昭51−96831号、特開昭53−5
0239号の各公報には、水溶性かつホットメルト性の
あるPVA系接着剤が開示されているが、これらホット
メルト性のPVA系ポリマーを繊維化しようとすると、
ホットメルト時の粘度を下げて接着性を大きくするた
め、PVAの重合度を600以下と低くしており、低強
度繊維しか得られないばかりでなく、熱接着性繊維とし
て使用しようとすると、繊維化時配向していた分子が熱
接着時溶融して緩和するため、繊維が大きく収縮し、実
用的に使用することは困難である。
Against this background, even in PVA-based polymers, the melting point and softening point are lowered to enable melt molding by internal plasticization due to copolymerization modification or post-reaction modification and external plasticization due to mixing of a plasticizer, or hot melt. Proposals for use as an adhesive have been made. For example, JP-A-51-87
No. 542, JP-A-51-96831, JP-A-53-5.
In each publication of 0239, a water-soluble and hot-melt PVA-based adhesive is disclosed. However, when an attempt is made to fiberize these hot-melt PVA-based polymers,
In order to lower the viscosity during hot melt and increase the adhesiveness, the polymerization degree of PVA is set as low as 600 or less, and not only low-strength fiber can be obtained, but when it is used as a heat-adhesive fiber, Molecules that were oriented during oxidization are melted and relaxed during heat bonding, so that the fibers are greatly shrunk, and it is difficult to use them practically.

【0006】特公昭47−29579号や特公昭47−
42050号の各公報には、PVA溶液にエチレン−酢
ビコポリマーのエマルジョンを添加し、湿式紡糸して得
られる繊維はヒートシール性を有し、紙や不織布のバイ
ンダー繊維または主体繊維として使用できることが記載
されている。しかし、添加するポリマーは水不溶性ポリ
マーのエマルジョンに限定されている。水溶性ポリマー
は、エマルジョンとすることはできず、従って水溶性と
することはできない。
Japanese Patent Publication No. 47-29579 and Japanese Patent Publication No. 47-
In each publication of No. 42050, a fiber obtained by adding an ethylene-vinyl acetate copolymer emulsion to a PVA solution and performing wet spinning has heat sealability and can be used as a binder fiber or a main fiber of paper or a nonwoven fabric. Has been described. However, the polymers added are limited to emulsions of water-insoluble polymers. Water-soluble polymers cannot be emulsions and therefore water-soluble.

【0007】また特公昭41−6605号公報や特公昭
47−31376号公報には、完全ケン化PVAと部分
ケン化PVAを混合紡糸することにより、易フィブリル
化性繊維とすることが記載されている。しかしこれらの
技術は易フィブリル化繊維を目的としており、一方の成
分には耐水性のよい完全ケン化PVAを用い、延伸、熱
収縮さらには必要に応じてアセタール化を行なってお
り、水溶性繊維ではない。また、該公報で実施されてい
るビニロンの通常紡糸法である芒硝水溶液による脱水凝
固法ではケン化度が85モル%以下のPVAを紡糸する
ことが困難であり、また紡糸により得られた繊維を洗浄
して表面に付着している芒硝を除去しようとすると硬着
するので、ケン化度85%以下のPVAを添加し、混合
紡糸することは実際上不可能である。このため、実施例
ではケン化度88モル%以上のPVAに限られている。
Further, Japanese Patent Publication No. 41-6605 and Japanese Patent Publication No. 47-31376 describe that a fiber which can be easily fibrillated is prepared by mixing and spinning a completely saponified PVA and a partially saponified PVA. There is. However, these techniques are aimed at easily fibrillated fibers. As one component, fully saponified PVA having good water resistance is used, and stretching, heat shrinkage and, if necessary, acetalization are carried out. is not. Further, it is difficult to spin PVA having a saponification degree of 85 mol% or less by a dehydration coagulation method using an aqueous sodium Glauber's solution which is a usual spinning method for vinylon carried out in the publication, and a fiber obtained by spinning is obtained. It is practically impossible to add PVA having a saponification degree of 85% or less and mix-spin it, because it adheres hard when trying to remove the sodium sulfate adhering to the surface by washing. Therefore, in the examples, PVA having a saponification degree of 88 mol% or more is limited.

【0008】また特公昭51−28729号公報には、
PVAとポリアクリロニトリルとアクリルニトリルグラ
フト重合PVAを共通溶媒のジメチルスルホキシド(以
下DMSOと略記)に溶解し、湿式紡糸して得られたゲ
ル糸条を延伸し、そして叩解した自己接着性合成パルプ
が記載されているが、水溶性繊維を得ることができな
い。
Further, Japanese Patent Publication No. 51-28729 discloses that
PVA, polyacrylonitrile, and acrylonitrile graft polymerization PVA is dissolved in dimethylsulfoxide (hereinafter abbreviated as DMSO), which is a common solvent, and a gel yarn obtained by wet spinning is drawn and beaten to describe a self-adhesive synthetic pulp. However, water-soluble fibers cannot be obtained.

【0009】また特開昭52−5318号公報には、低
重合度かつ低ケン化度PVAと繊維形成能を有するポリ
マーとを混合または複合紡糸し、水洗処理することによ
り低重合度かつ低ケン化度のPVAを除去して極細繊維
を製造することが提案されているが、繊維形成能を有す
るポリマーは水洗処理により影響を受けない非水溶性ポ
リマーであり、水溶性繊維は得られない。
Further, in JP-A-52-5318, a low polymerization degree and a low saponification degree PVA and a polymer having a fiber-forming ability are mixed or composite-spun and washed with water to obtain a low polymerization degree and a low saponification degree. It has been proposed to produce ultrafine fibers by removing the degree of chemical conversion PVA, but the polymer having fiber-forming ability is a water-insoluble polymer that is not affected by the water washing treatment, and water-soluble fibers cannot be obtained.

【0010】また特開平1−260017号公報には、
ケン化度80〜95モル%のPVA系ポリマーを芯成
分、ケン化度96モル%以上のPVA系ポリマーを鞘成
分とした高強度水崩壊型PVA系複合繊維が提案されて
いる。この複合繊維は、高強度で水崩壊性を有すること
を特徴としており、本発明の如くバインダー繊維を得る
ことを目標としておらず、熱圧着性についての記載はま
ったく見られない。
Further, Japanese Patent Laid-Open No. 1-260017 discloses that
A high-strength water-disintegrating PVA-based composite fiber has been proposed which uses a PVA polymer having a saponification degree of 80 to 95 mol% as a core component and a PVA polymer having a saponification degree of 96 mol% or more as a sheath component. This composite fiber is characterized by having high strength and water-disintegration property, is not aimed at obtaining a binder fiber as in the present invention, and there is no description about thermocompression bonding property.

【0011】[0011]

【発明が解決しようとする課題】上記の如く、水溶性の
PVA系バインダー繊維の出現が強く望まれているが、
従来の技術では得られていない。従って本発明の課題
は、水溶性の熱圧着性PVA系バインダー繊維を得るこ
とにある。またその繊維の熱圧着法を提供することにあ
る。
As described above, the appearance of water-soluble PVA binder fibers is strongly desired.
It has not been obtained by conventional techniques. Therefore, an object of the present invention is to obtain a water-soluble thermocompression-bonding PVA-based binder fiber. Another object is to provide a thermocompression bonding method for the fibers.

【0012】[0012]

【課題を解決するための手段】上記課題に対し、本発明
者らは鋭意検討を重ねた結果、本発明を完成した。すな
わち本発明は、融点が210℃以上であるPVA系ポリ
マーが鞘成分であり、融点が210℃未満である水溶性
ポリマーが芯成分であり、芯/鞘比率が80/20〜3
0/70である同心の一芯芯鞘複合繊維であって、熱圧
着により接着可能であることを特徴とする水溶性のPV
A系バインダー繊維であり、さらに、このバインダー繊
維を、温度140〜240℃、線圧3kg/cm以上ま
たは面圧5kg/cm2 以上の条件で熱圧着することを
特徴とする水溶性のPVA系バインダー繊維の熱圧着法
である。本発明においては、融点が210℃以上である
PVA系ポリマーを鞘成分とする。鞘成分のPVA系ポ
リマーの融点が210℃未満では本発明繊維の耐熱性、
高湿下での取扱い性が不十分となり実用に耐える繊維を
得ることが出来ない。鞘成分PVA系ポリマーの融点が
215℃以上であるとさらに好ましい。鞘成分ポリマー
の融点の上限に特別な限定はないが、熱水溶解性及び熱
圧着性の点で融点が235℃以下であることが好まし
く、225℃以下であると水溶解温度が低下しさらに好
ましい場合がある。
[Means for Solving the Problems] The present inventors have completed the present invention as a result of intensive studies on the above problems. That is, in the present invention, a PVA-based polymer having a melting point of 210 ° C. or higher is a sheath component, a water-soluble polymer having a melting point of less than 210 ° C. is a core component, and a core / sheath ratio is 80/20 to 3
A water-soluble PV which is a 0/70 concentric single-core sheath-fiber composite fiber and which can be bonded by thermocompression bonding.
A water-soluble PVA-based binder fiber which is an A-based binder fiber and is further thermocompression bonded under the conditions of a temperature of 140 to 240 ° C. and a linear pressure of 3 kg / cm or more or a surface pressure of 5 kg / cm 2 or more. This is a thermocompression bonding method for binder fibers. In the present invention, a PVA polymer having a melting point of 210 ° C. or higher is used as the sheath component. When the melting point of the PVA-based polymer of the sheath component is less than 210 ° C., the heat resistance of the fiber of the present invention,
The handling property under high humidity is insufficient, and a fiber that can be used practically cannot be obtained. It is further preferable that the sheath component PVA-based polymer has a melting point of 215 ° C. or higher. Although there is no particular limitation on the upper limit of the melting point of the sheath component polymer, the melting point is preferably 235 ° C. or lower from the viewpoint of hot water solubility and thermocompression bonding property, and when the melting point is 225 ° C. or lower, the water dissolution temperature decreases. It may be preferable.

【0014】鞘成分PVA系ポリマーの具体例をあげる
と、重合度500〜24,000で、ケン化度が94〜
100モル%の高ケン化度PVAである。重合度が15
00〜4000、ケン化度が95.0〜99.5モル%
であると熱水溶解性及び熱圧着性の点でさらに好まし
い。またエチレン、アリルアルコール、イタコン酸、ア
クリル酸、無水マレイン酸とその開環物、アリールスル
ホン酸、ピバリン酸ビニルの如く炭素数が4以上の脂肪
酸ビニルエステル、ビニルピロリドン及び上記イオン性
基の一部また全量中和物などの変性ユニットにより変性
したPVAも包含される。変性ユニットの量は2モル%
未満、好ましくは0.1〜1.5モル%である。変性ユ
ニットの導入法は、共重合でも後反応でも特別な限定は
ない。変性ユニットの分布はランダムでも、ブロックで
も限定はない。ブロック的に分布させると結晶化阻害効
果が小さく、ランダムより多く変性しても高融点を保ち
うる。繊維の最表層を高融点ポリマーとすることによ
り、繊維製造工程において硬着を防止することが可能と
なる。また、高ケン化度の高融点PVA系ポリマーを鞘
成分とすることにより高融点ポリマー単独繊維に近い性
能を得ることができる。
Specific examples of the PVA polymer of the sheath component include a polymerization degree of 500 to 24,000 and a saponification degree of 94 to.
Highly saponified PVA of 100 mol%. Polymerization degree is 15
00-4000, saponification degree 95.0-99.5 mol%
Is more preferable in terms of hot water solubility and thermocompression bonding property. In addition, ethylene, allyl alcohol, itaconic acid, acrylic acid, maleic anhydride and ring-opened products thereof, arylsulfonic acid, fatty acid vinyl esters having 4 or more carbon atoms such as vinyl pivalate, vinylpyrrolidone and a part of the above ionic groups. In addition, PVA modified with a modification unit such as a neutralized product is also included. The amount of denaturing unit is 2 mol%
Less, preferably 0.1 to 1.5 mol%. The method of introducing the modifying unit is not particularly limited, whether it is copolymerization or a post reaction. The distribution of the denaturing unit is not limited to random or block. When distributed in blocks, the crystallization-inhibiting effect is small, and the high melting point can be maintained even if it is modified more than randomly. By using a high melting point polymer for the outermost layer of the fiber, it becomes possible to prevent sticking in the fiber manufacturing process. Further, by using a high melting point PVA polymer having a high degree of saponification as a sheath component, it is possible to obtain a performance close to that of a single fiber having a high melting point.

【0015】本発明複合バインダー繊維の芯成分は融点
または融着温度が210℃未満の水溶性ポリマーを用い
る。芯成分ポリマーの融点または融着温度が210℃以
上であると、熱圧着温度が高くなり過ぎ、熱圧着時、鞘
成分のPVA系ポリマーの配向性・結晶性までも破壊し
易いので好ましくない。なお融点を持たない水溶性の非
晶ポリマーであっても、その非晶性ポリマーチップを所
定温度に加熱し、0.1kg/cm2 の圧力を10分間
印加した際チップ同志が融着する最低温度を融着温度と
した時、融着温度が210℃未満の水溶性非晶ポリマー
は本発明の水溶性ポリマーに包含され、芯成分水溶性ポ
リマーとして有効に用いることができる。芯成分水溶性
ポリマーの融点、あるいは融着温度(以下この温度も融
点という語に含めて使用する)が200℃以下であると
より好ましく、190℃以下であるとさらに好ましい。
さらに鞘成分と芯成分の融点差が20℃以上であると、
熱圧着時の繊維寸法変化が小さくなるので好ましい。特
に、融点差が30℃以上であると、熱圧着時の繊維の寸
法変化が小さくなるとともに、鞘成分ポリマーの高配向
・高結晶性が維持されやすいのでさらに好ましい態様で
ある。融点差が40℃以上であると最も好ましい。融点
が210℃未満の水溶性ポリマーは低配向、低結晶性で
あるため、低融点ポリマーが繊維最表面に存在すると繊
維製造工程や繊維を高湿下で放置した時硬着し易く、不
都合である。
As the core component of the composite binder fiber of the present invention, a water-soluble polymer having a melting point or a fusion temperature of less than 210 ° C. is used. When the melting point or the fusion temperature of the core component polymer is 210 ° C. or higher, the thermocompression bonding temperature becomes too high, and the orientation and crystallinity of the PVA polymer of the sheath component are easily broken during thermocompression bonding, which is not preferable. Even if the water-soluble amorphous polymer does not have a melting point, when the amorphous polymer chip is heated to a predetermined temperature and a pressure of 0.1 kg / cm 2 is applied for 10 minutes, the chips will fuse together. When the temperature is the fusion temperature, the water-soluble amorphous polymer having a fusion temperature of less than 210 ° C. is included in the water-soluble polymer of the present invention and can be effectively used as the core component water-soluble polymer. The melting point of the core component water-soluble polymer or the fusing temperature (hereinafter this temperature is also included in the term "melting point") is more preferably 200 ° C or lower, and further preferably 190 ° C or lower.
Furthermore, if the melting point difference between the sheath component and the core component is 20 ° C. or more,
This is preferable because the change in fiber dimensions during thermocompression bonding is reduced. In particular, when the melting point difference is 30 ° C. or more, the dimensional change of the fiber at the time of thermocompression bonding becomes small, and the high orientation and high crystallinity of the sheath component polymer are easily maintained, which is a further preferable embodiment. Most preferably, the melting point difference is 40 ° C. or higher. Since a water-soluble polymer having a melting point of less than 210 ° C. has low orientation and low crystallinity, if the low-melting point polymer is present on the outermost surface of the fiber, it easily adheres to the fiber during the fiber manufacturing process or when the fiber is left under high humidity, which is inconvenient. is there.

【0016】本発明にいう融点210℃未満の水溶性ポ
リマーの具体例としては、低ケン化度PVA、高イオン
基変性PVA、高変性カルボキシメチルセルロースなど
のセルロース誘導体、アルギン酸やその中和物およびキ
トサンなどの天然ポリマー、ポリビニルピロリドンなど
の水溶性ポリマー、変性アクリル系ポリマーなどがあげ
られる。就中、取扱い性(特に高湿時)、接着性、性能
再現性(安定性)、コストの点で、ケン化度が50〜9
2モル%、重合度50〜4000の低ケン化度PVAや
アリルアルコール、アクリル酸、メタアクリル酸、イタ
コン酸、無水マレイン酸とその開環物、アリールスルホ
ン酸、ビニルピロリドン及びそのイオン性基の一部また
全量中和された変性ユニットにより、1モル%〜10モ
ル%変性されたPVAが好ましい。変性ユニットの導入
法としては共重合でも後反応でも特別な限定はない。変
性ユニットの分布はランダムでもブロックでも特別な限
定はない。ケン化度が65モル%以下では特に高温水溶
性が低下するので上記変性ユニットで少量変性すること
を組合せたPVA系ポリマーは本発明バインダー繊維の
芯成分として有用である。芯成分ポリマーの重合度に特
別な限定はないが、芯成分は、繊維強度に寄与する必要
はなく、接着性に寄与することが重要であるから、熱圧
着時流動性のよい低重合度、例えば100〜1000が
好ましい。
Specific examples of the water-soluble polymer having a melting point of less than 210 ° C. in the present invention include low saponification degree PVA, highly ionic group-modified PVA, highly modified carboxymethyl cellulose and other cellulose derivatives, alginic acid and its neutralized products, and chitosan. And natural polymers, polyvinylpyrrolidone and other water-soluble polymers, modified acrylic polymers and the like. Above all, in terms of handleability (especially in high humidity), adhesiveness, performance reproducibility (stability), and cost, the saponification degree is 50 to 9
2 mol%, low degree of saponification PVA with a degree of polymerization of 50 to 4000, allyl alcohol, acrylic acid, methacrylic acid, itaconic acid, maleic anhydride and ring-opened products thereof, arylsulfonic acid, vinylpyrrolidone and ionic groups thereof PVA modified by 1 mol% to 10 mol% with a modification unit partially or wholly neutralized is preferable. There is no particular limitation on the method of introducing the modifying unit, either by copolymerization or post-reaction. The distribution of the denaturing units is random or block without any special limitation. When the degree of saponification is 65 mol% or less, the water solubility at high temperature is particularly lowered, so a PVA-based polymer combined with a small amount of modification in the above modification unit is useful as a core component of the binder fiber of the present invention. There is no particular limitation on the degree of polymerization of the core component polymer, but the core component does not need to contribute to the fiber strength, and since it is important to contribute to the adhesiveness, a low degree of polymerization with good fluidity during thermocompression bonding, For example, 100 to 1000 is preferable.

【0017】本発明複合バインダー繊維は同心の一芯芯
鞘複合繊維、すなわち繊維軸に直角な方向での繊維断面
形状が、芯成分と鞘成分が中心点をほぼ同一とする円形
(芯成分)とドーナツ形(鞘成分)あるいはそれに近い
形状を有している複合繊維である。偏芯させたり、2ケ
以上の多芯芯鞘とすると、ノズルブロックの構造が極め
て複雑になり、取り付けが困難となるとともに、ノズル
部品の洗浄維持管理に十分な配慮が必要であり、また運
転の管理幅が狭く、微少な変化が工程性や品質に大きな
影響を与えやすい。したがって、再現性が得にくい問題
がある。図1に本発明繊維の代表的な断面形状の例を示
す。図中、aが芯成分、bが鞘成分である。
The composite binder fiber of the present invention is a concentric single-core-sheath composite fiber, that is, a fiber cross-sectional shape in a direction perpendicular to the fiber axis is a circle (core component) in which the center points of the core component and the sheath component are almost the same. And a composite fiber having a donut shape (sheath component) or a shape close thereto. If it is eccentric or if it has two or more multi-core sheaths, the structure of the nozzle block will become extremely complicated and it will be difficult to install, and sufficient consideration must be given to cleaning and maintenance of the nozzle parts. The control range is narrow, and minute changes easily affect processability and quality. Therefore, there is a problem that reproducibility is difficult to obtain. FIG. 1 shows an example of a typical cross-sectional shape of the fiber of the present invention. In the figure, a is a core component and b is a sheath component.

【0018】本発明複合バインダー繊維の芯成分/鞘成
分の比は重量比で80/20〜30/70の範囲であ
る。鞘成分の高融点PVA系ポリマーが20%より少な
いと安定して芯鞘複合バインダー繊維が得られない。一
方、低融点水溶性ポリマーが30%より少ないと、実用
に耐える熱圧着性能を得ることができない。強度と熱圧
着性のバランスより、芯/鞘比が60/40〜40/6
0であるとより好ましい。本発明複合バイダー繊維の接
着メカニズムは、最表面を形成する高融点のPVA系ポ
リマー相が熱圧着時破れ、芯成分の低融点ポリマーが繊
維最表面に押し出されることにより、熱圧着性が確保さ
れると考えているので、繊維最表面と芯部との最近接距
離が短い方が破れやすいので好ましいと推定され、本発
明バインダー繊維の如く同心の一芯芯鞘複合繊維では繊
維最表面と芯部との最近接距離を短くすることが偏芯,
多芯やブレンド紡糸に比べ困難であるが、細デニールと
したり熱圧着条件をシビァーにすることが重要である。
したがって、本発明の繊維は0.4〜4デニールの範囲
が好ましい。0.4デニール未満のものはノズルの構造
上製造が難しく、4デニールを越えるものは熱圧着性の
点で不十分となりやすく、また風合も硬くなり、ケミカ
ルレース等の繊細なレースには好ましくない。紡糸性と
熱圧着性のバランスより1〜3デニールであるとさらに
好ましい。
The core component / sheath component ratio of the composite binder fiber of the present invention is in the range of 80/20 to 30/70 by weight. When the content of the high melting point PVA-based polymer in the sheath component is less than 20%, a stable core-sheath composite binder fiber cannot be obtained. On the other hand, if the low-melting point water-soluble polymer is less than 30%, thermocompression bonding performance that can be practically used cannot be obtained. A core / sheath ratio of 60/40 to 40/6 due to the balance between strength and thermocompression bonding
It is more preferably 0. The bonding mechanism of the composite binder fiber of the present invention is such that the high melting point PVA-based polymer phase forming the outermost surface is broken during thermocompression bonding and the low melting point polymer of the core component is extruded onto the outermost surface of the fiber, thereby ensuring thermocompression bonding property. Therefore, it is presumed that it is preferable that the closest distance between the outermost surface of the fiber and the core portion is short because it is easy to break, and in the concentric single core-core sheath composite fiber like the binder fiber of the present invention, the outermost surface of the fiber and the core are Eccentricity is to shorten the closest distance to the part,
It is more difficult than multi-core or blend spinning, but it is important to make fine denier and to make the thermocompression bonding conditions shiva.
Therefore, the fiber of the present invention preferably has a range of 0.4 to 4 denier. If it is less than 0.4 denier, it is difficult to manufacture due to the structure of the nozzle, and if it exceeds 4 denier, it tends to be insufficient in terms of thermocompression bonding property and the texture becomes hard, which is preferable for delicate lace such as chemical lace. Absent. From the balance of spinnability and thermocompression bonding property, 1 to 3 denier is more preferable.

【0019】以上のように、本発明繊維は、従来の疎水
性ポリマーにおける芯鞘複合熱接着性繊維では芯を高融
点ポリマーとして、鞘を低融点ポリマーとしているのと
は逆に、鞘成分を高融点ポリマーとし、芯成分を低融点
ポリマーとし、通常は高配向、高結晶性の高融点PVA
系ポリマーによる優れた繊維性能を発揮し、熱圧着(高
温かつ高圧印加)時繊維最表層の高融点PVA系ポリマ
ー相が破れ、芯成分を形成している熱接着性の低融点水
溶性ポリマーが繊維表面に押し出され、別の繊維の芯成
分の水溶性ポリマー同志と接着したり、或いは鞘成分の
高融点ポリマーと接着することにより、熱圧着性を確保
したものである。高配向、高結晶化した高融点PVAポ
リマーがマトリックス相を形成するため、芯成分が低ケ
ン化度で低耐水性の低融点水溶性ポリマーであっても高
湿下でも強度や寸法安定性が優れており、しかも熱圧着
時においてもマトリックス相は大きな影響を受けないた
め、寸法変化が小さくかつ熱圧着後でも高い強度を得る
ことができる特徴がある。
As described above, in the fiber of the present invention, in contrast to the conventional core-sheath composite heat-adhesive fiber in the hydrophobic polymer in which the core is the high melting point polymer and the sheath is the low melting point polymer, the sheath component is High melting point polymer, core component low melting point polymer, usually high orientation, high crystallinity high melting point PVA
The high-melting point low-melting water-soluble polymer that exhibits excellent fiber performance due to the base polymer, breaks the high-melting point PVA-based polymer phase of the fiber outermost layer during thermocompression bonding (applying high temperature and high pressure), and forms the core component. The thermocompression bonding property is ensured by being extruded onto the fiber surface and adhering to the water-soluble polymer as the core component of another fiber or adhering to the high melting point polymer as the sheath component. Highly oriented and highly crystallized high melting point PVA polymer forms a matrix phase, so the strength and dimensional stability are high even under high humidity even if the core component is a low melting point, low water resistance, low melting point water-soluble polymer. Since the matrix phase is excellent, and the matrix phase is not greatly affected even during thermocompression bonding, the dimensional change is small and high strength can be obtained even after thermocompression bonding.

【0020】本発明バインダー繊維を熱圧着するには、
140〜240℃の温度で3kg/cm以上の線圧また
は5kg/cm2 以上の面圧を印加することにより繊維
を接着することが必要である。温度が140℃未満、線
圧3kg/cm未満、あるいは面圧5kg/cm2 未満
では鞘成分の高融点PVA系ポリマー相が一般に破れ
ず、芯成分の低融点水溶性ポリマーが繊維表面に押し出
されてこないので接着力が不十分である。鞘成分の高融
点ポリマーを昇温し柔らかくなった状態で圧力を加える
ことにより鞘成分のポリマー相を破り、接着成分の低融
点ポリマーが押し出され接着することが可能となる。熱
圧着温度が高過ぎると、鞘成分の分子配向や結晶までこ
われる可能性があるので、240℃以上とすべきではな
い。芯/鞘のポリマー仕様、分布状態及び印加圧力など
により、適正圧着温度は変わるが、160〜230℃が
好ましく、170〜220℃であるともっと好ましく、
180〜210℃であるとさらに好ましい。また印加圧
力があまり高いと鞘成分の繊維構造をこわしてしまい、
熱圧着後の繊維強力が低下するので好ましくない。熱カ
レンダーローラーなどによる線圧は800kg/cm以
下が好ましい。線圧が300kg/cm以下であるとも
っと好ましく、150kg/cm以下であるとさらに好
ましい。熱プレスなどによる面圧は1500kg/cm
2 以下が好ましい。面圧が600kg/cm2 以下であ
るともっと好ましく、300kg/cm2 以下であると
さらに好ましい。通常は8〜80kg/cmの線圧ある
いは15〜150kg/cm2 の面圧が使用される。熱
圧着時間は、通常1分以内で十分であるが、特に、本発
明バインダー繊維は0.01〜10秒程度の短い時間で
も熱圧着可能である。短時間処理で接着しうることが熱
圧着法の重要な特性である。本発明バインダー繊維の場
合、熱圧着時間を10分以上とすると、却って接着力が
低下する傾向にある。好ましくは1分以下であり、さら
に好ましくは0.01〜10秒、もっとも好ましくは
0.05〜1秒である。この原因は不明であるが、ポリ
マーの結晶化に関係すると推測される。このため、処理
時間の長い面圧タイプの熱プレス法より処理時間の短か
い線圧タイプの熱カレンダーロール法がより好ましく熱
圧着に使用しうる。
For thermocompression bonding of the binder fiber of the present invention,
It is necessary to bond the fibers by applying a linear pressure of 3 kg / cm or more or a surface pressure of 5 kg / cm 2 or more at a temperature of 140 to 240 ° C. When the temperature is less than 140 ° C., the linear pressure is less than 3 kg / cm, or the surface pressure is less than 5 kg / cm 2 , the high melting point PVA polymer phase of the sheath component is not generally broken, and the low melting point water-soluble polymer of the core component is extruded onto the fiber surface. The adhesive strength is insufficient because it does not come out. By heating the high melting point polymer of the sheath component and applying pressure in a softened state, the polymer phase of the sheath component is broken, and the low melting point polymer of the adhesive component can be extruded and adhered. If the thermocompression bonding temperature is too high, the molecular orientation of the sheath component and the crystals may be broken, so the temperature should not be higher than 240 ° C. The appropriate pressure-bonding temperature varies depending on the core / sheath polymer specifications, the distribution state, the applied pressure, etc., but 160 to 230 ° C is preferable, and 170 to 220 ° C is more preferable,
More preferably, it is 180 to 210 ° C. Also, if the applied pressure is too high, it will break the fiber structure of the sheath component,
The fiber strength after thermocompression bonding is reduced, which is not preferable. The linear pressure applied by a thermal calendar roller or the like is preferably 800 kg / cm or less. The linear pressure is more preferably 300 kg / cm or less, further preferably 150 kg / cm or less. Surface pressure by heat press is 1500kg / cm
2 or less is preferable. The surface pressure is more preferably 600 kg / cm 2 or less, further preferably 300 kg / cm 2 or less. Usually, a linear pressure of 8 to 80 kg / cm or a surface pressure of 15 to 150 kg / cm 2 is used. The thermocompression bonding time is usually 1 minute or less, but in particular, the binder fiber of the present invention can be thermocompression bonded even for a short time of about 0.01 to 10 seconds. The ability to bond in a short time is an important property of the thermocompression bonding method. In the case of the binder fiber of the present invention, if the thermocompression bonding time is set to 10 minutes or longer, the adhesive force tends to be rather reduced. It is preferably 1 minute or less, more preferably 0.01 to 10 seconds, and most preferably 0.05 to 1 second. The cause of this is unknown, but it is presumed to be related to crystallization of the polymer. For this reason, a linear pressure type thermal calender roll method, which has a shorter treatment time, can be more preferably used for thermocompression bonding than a surface pressure type heat press method, which requires a long treatment time.

【0021】次に本発明バインダー繊維を製造する方法
について記載する。本発明バインダー繊維の鞘部を構成
する融点210℃以上のPVA系ポリマーは、溶融紡糸
が困難であり、乾式、湿式あるいは乾湿式などの溶液紡
糸法により芯鞘複合紡糸する。融点が210℃以上のP
VA系ポリマーと融点が210℃未満の水溶性ポリマー
を各々の溶媒に溶解して得た紡糸原液を、別々の原液配
管及びギアポンプを通し、融点210℃以上のPVA系
ポリマー原液が鞘に、融点210℃未満の水溶性ポリマ
ー原液が芯になるようセットした芯鞘ノズルパックを通
して芯鞘ノズルより各々定量的に吐出させる。この際、
紡糸延伸後の最終繊維形態において同心芯鞘となるよう
芯原液吐出孔の位置を配置する。安定な芯鞘紡糸を行な
うためには、鞘原液と芯原液の粘度をほぼ同一とするこ
とが好ましい。
Next, a method for producing the binder fiber of the present invention will be described. The PVA-based polymer having a melting point of 210 ° C. or higher, which constitutes the sheath portion of the binder fiber of the present invention, is difficult to melt-spin, and thus the core-sheath composite spinning is performed by a solution spinning method such as a dry method, a wet method, or a dry-wet method. P with a melting point of 210 ° C or higher
A spinning stock solution obtained by dissolving a VA polymer and a water-soluble polymer having a melting point of less than 210 ° C. in each solvent is passed through separate stock solution pipes and gear pumps, and the PVA polymer stock solution having a melting point of 210 ° C. or higher is in the sheath, and the melting point is A water-soluble polymer stock solution of less than 210 ° C. is quantitatively discharged from each core-sheath nozzle through a core-sheath nozzle pack set so as to form a core. On this occasion,
The positions of the core undiluted solution discharge holes are arranged so as to form a concentric core-sheath in the final fiber form after the spinning and drawing. In order to carry out stable core-sheath spinning, it is preferable that the pod stock solution and the core stock solution have substantially the same viscosity.

【0022】紡糸原液の粘度は紡糸時ノズル近辺の温度
において、乾式紡糸では500〜20000ポイズ、乾
湿式紡糸では50〜1000ポイズ、湿式紡糸では5〜
200ポイズとなるようポリマー濃度及び原液温度を調
整する。鞘原液と芯原液の溶媒は必ずしも同一である必
要はないが、同じであることの方が好ましい。紡糸原液
には他の目的のために種々の添加剤を添加してもよい。
例えば、ポリマーの分解劣化防止のため酸化防止剤、光
安定剤、紫外線吸収剤、繊維着色のため顔料、染料、界
面張力制御のため界面活性剤、pH調整のため酸或いは
アルカリなどである。
The viscosity of the spinning dope is 500 to 20000 poise for dry spinning, 50 to 1000 poise for dry and wet spinning, and 5 for wet spinning at a temperature near the nozzle during spinning.
Adjust the polymer concentration and undiluted solution temperature to 200 poise. The solvent for the sheath stock solution and the solvent for the core stock solution do not necessarily have to be the same, but they are preferably the same. Various additives may be added to the spinning dope for other purposes.
For example, an antioxidant, a light stabilizer, an ultraviolet absorber, a pigment for dyeing the fiber, a surfactant for controlling the interfacial tension, an acid or an alkali for adjusting the pH, etc. for preventing the decomposition and deterioration of the polymer.

【0023】両原液を芯鞘ノズルより、芯/鞘比率が8
0/20〜30/70となるよう各々定量的に吐出させ
る。乾式紡糸においては溶媒を蒸発させ、熱延伸を行な
って巻き取る。乾湿式紡糸においては一旦不活性気体
(例えば大気)層に吐出し、次いで固化液中に通し、固
化と原液溶媒の抽出を行ない、湿延伸、乾熱延伸を施こ
し捲き取る。また湿式紡糸においては原液をノズルより
直接固化液に吐出し、固化抽出を行ない、湿延伸、乾熱
延伸を施こし捲き取る。
From both core and sheath liquids, the core / sheath ratio was 8
Each is quantitatively discharged so as to be 0/20 to 30/70. In dry spinning, the solvent is evaporated and hot drawing is performed to wind it. In dry-wet spinning, the mixture is first discharged into an inert gas (for example, the atmosphere) layer, then passed through a solidifying solution to solidify and extract the solvent of the stock solution, wet-draw and dry-heat draw, and wind. In wet spinning, the stock solution is directly discharged from a nozzle into a solidification solution for solidification extraction, wet drawing and dry heat drawing, and wound up.

【0024】本発明繊維の製造に用いる溶媒は、鞘部ポ
リマー及び芯部ポリマーの溶媒ならば特に限定はない
が、極性有機溶媒であるジメチルスルホキシド(以下D
MSOと略記)、NN′−ジメチルホルムアミド、ジメ
チルアセトアミド、N−メチルピロリドン、ジメチルイ
ミダゾリジノンなどがあげられる。就中、低温溶解性、
腐食性、毒性及び均一固化性の点でDMSOが好まし
い。また固化液としては鞘部ポリマーである融点210
℃以上のPVA系ポリマーに対して固化能力を有するも
のであれば特別な限定はなく、例えば、メチルアルコー
ルやエチルアルコールなどのアルコール類、アセトン、
メチルエチルケトンなどのケトン類、酢酸メチルなどの
脂肪族エステル類、ヘキサンやデカリンなどの炭化水素
類などがあげられる。就中、均一固化性、腐食性の点で
メタノール、エタノール、アセトンが好ましい。さらに
これら固化溶媒(及び溶液)と原液溶媒(及び溶液)と
の混合液も固化液として用いることができる。ここで注
意すべきはこれら固化液は芯成分である水溶性ポリマー
に対しては固化能力を持っていなくとも、極端には芯部
水溶性ポリマーが固化液に対して可溶であっても、鞘成
分である高融点ポリマーに対してのみ固化能力があれ
ば、意外にも十分に使用しうることを見出した。
The solvent used for producing the fiber of the present invention is not particularly limited as long as it is a solvent for the sheath polymer and the core polymer, but is dimethyl sulfoxide (hereinafter D) which is a polar organic solvent.
(Abbreviated as MSO), NN'-dimethylformamide, dimethylacetamide, N-methylpyrrolidone, dimethylimidazolidinone and the like. Above all, low temperature solubility,
DMSO is preferred in terms of corrosiveness, toxicity and uniform solidification. Further, the solidifying liquid has a melting point of 210 which is a sheath polymer.
There is no particular limitation as long as it has a solidifying ability for a PVA-based polymer having a temperature of ℃ or higher, and examples thereof include alcohols such as methyl alcohol and ethyl alcohol, acetone,
Examples include ketones such as methyl ethyl ketone, aliphatic esters such as methyl acetate, and hydrocarbons such as hexane and decalin. Among them, methanol, ethanol and acetone are preferable from the viewpoint of uniform solidification and corrosiveness. Further, a mixed liquid of these solidifying solvent (and solution) and stock solution solvent (and solution) can also be used as the solidifying liquid. It should be noted here that even though these solidified liquids have no solidifying ability for the water-soluble polymer as the core component, even if the core water-soluble polymer is extremely soluble in the solidified liquid, It was surprisingly found that if only the high melting point polymer which is the sheath component has the solidifying ability, it can be used sufficiently satisfactorily.

【0025】従来、PVAの紡糸に一般的に用いられて
いる濃厚芒硝水溶液を固化浴に用いると、不均一固化と
なるため、断面がまゆ型となり、延伸配向が十分行なえ
ず低強度の繊維しか得ることができない。また原液に硼
酸を添加し、アルカリ性脱水塩類浴に固化する場合、部
分ケン化PVAが紡糸中にケン化され、融点が上がり、
水溶性も低下するので好ましくない。一方メタノールや
エタノールなどのアルコール類、アセトン、メチルエチ
ルケトンなどのケトン類、酢酸メチルや酢酸エチルなど
の脂肪族エステル類、及びこれらと原液溶媒との混合溶
媒などの鞘成分となる高融点PVA系ポリマーに対して
固化能を有する有機溶剤を固化浴に用いると、均一な固
化となるため、断面がほぼ円型となり、その後の湿延伸
及び乾熱延伸により十分な配向結晶化を行なうことがで
き、高強度例えば7g/dr以上の強度が達成可能とな
る。なお本発明で言う繊維の横断面形状は、通常の光学
顕微鏡を用いて観測されるものである。より均一なゲル
糸篠を得るためには、固化浴の温度を0〜10℃の低温
とすることが好ましい。
When a concentrated aqueous solution of Glauber's salt, which has been generally used for spinning PVA, is used for the solidifying bath, the resulting mixture becomes nonuniformly solidified, resulting in a cocoon-shaped cross section and insufficient stretch orientation. Can't get When boric acid is added to the stock solution and solidified in an alkaline dehydration salt bath, the partially saponified PVA is saponified during spinning to raise the melting point,
The water solubility is also reduced, which is not preferable. On the other hand, for alcohols such as methanol and ethanol, ketones such as acetone and methyl ethyl ketone, aliphatic esters such as methyl acetate and ethyl acetate, and high melting point PVA-based polymers that serve as sheath components such as mixed solvents of these and undiluted solvents. On the other hand, when an organic solvent having a solidifying ability is used in the solidifying bath, uniform solidification results in a substantially circular cross section, and sufficient oriented crystallization can be performed by subsequent wet drawing and dry heat drawing. Strength, for example, a strength of 7 g / dr or more can be achieved. The cross-sectional shape of the fiber referred to in the present invention can be observed by using an ordinary optical microscope. In order to obtain a more uniform gel yarn, it is preferable to set the temperature of the solidifying bath to a low temperature of 0 to 10 ° C.

【0026】次に本発明繊維の有用性について、用途の
一つである不織布について説明する。本発明繊維を少な
くとも30%含有する乾式不織布あるいは湿式不織布
は、温度140〜240℃で線圧2kg/cm以上また
は面圧5kg/cm2 以上の条件で熱圧着することによ
り、熱接着可能な不織布となる。本発明繊維の含有量が
30%未満である不織布は上記熱圧着条件では実用に耐
える熱圧着性は得られない。本発明不織布を熱圧着させ
た時の熱接着力をさらに高めるためには、本発明繊維の
含有量を40%以上にすると好ましく、50%以上にす
ると一層好ましい。本発明繊維単独あるいは本発明繊維
と他の水溶性繊維、例えば水溶性ビニロンの混合で構成
すると、水溶性かつ熱圧着可能な不織布が得られる。こ
の不織布は袋物やポットなどの3次元構造体に成形加工
する際、熱圧着による接着が可能である。従来の化学接
着剤を用いた成形加工に比べて、高速、簡便、無公害、
安全なプロセスで成形加工しうるため、成形加工費を大
巾に節減することが可能である。この不織布は熱圧着に
よる成形加工により水溶性の3次元構造体を製造しうる
ことが大きな特徴である。従って、例えば洗濯袋、ラン
ドリーバッグ、水解性生理用品、水解性トイレタリー用
品、シードシート、シードテープ、肥料袋、ペーパーポ
ット、水溶性おもしろグッズなどに有効に使用しうる。
Next, the usefulness of the fiber of the present invention will be explained with respect to a non-woven fabric which is one of the uses. A dry non-woven fabric or a wet non-woven fabric containing at least 30% of the fiber of the present invention is a non-woven fabric which can be heat-bonded by thermocompression bonding at a temperature of 140 to 240 ° C. under a linear pressure of 2 kg / cm or more or a surface pressure of 5 kg / cm 2 or more. Becomes The nonwoven fabric containing less than 30% of the fiber of the present invention cannot obtain practical thermocompression bonding under the above thermocompression bonding conditions. In order to further enhance the thermal adhesive force when the nonwoven fabric of the present invention is thermocompression bonded, the content of the fiber of the present invention is preferably 40% or more, and more preferably 50% or more. When the fiber of the present invention is used alone or the fiber of the present invention is mixed with another water-soluble fiber, for example, water-soluble vinylon, a water-soluble and thermocompression-bondable nonwoven fabric is obtained. This non-woven fabric can be bonded by thermocompression bonding when it is formed into a three-dimensional structure such as a bag or a pot. Compared with the conventional molding process using chemical adhesive, it is faster, simpler, and pollution-free.
Since the molding process can be performed in a safe process, it is possible to greatly reduce the molding cost. A major feature of this nonwoven fabric is that a water-soluble three-dimensional structure can be manufactured by molding by thermocompression bonding. Therefore, it can be effectively used for, for example, laundry bags, laundry bags, water-degradable sanitary products, water-degradable toiletry products, seed sheets, seed tapes, fertilizer bags, paper pots, and water-soluble funny goods.

【0027】また、親水性であるが非水溶性のビニロン
繊維やレーヨン、キュプラ、ポリノシック、溶剤系セル
ロース繊維、綿などのセルロース繊維に本発明繊維を3
0%以上含有させた不織布は、熱圧着可能であり、3次
元構造体に成形加工する際、従来の化学接着剤を用いる
場合に比べ、上記メリットを有する熱圧着法を適用する
ことが可能である。また本発明繊維を用いた不織布の特
徴は、熱圧着された3次元構造体が水或いは熱水に接触
すると、熱圧着部の接着力がなくなり、元の不織布形状
になることである。さらに本発明繊維を用いた不織布
が、本発明繊維の熱圧着性を利用して接着されていた
り、水溶性のバインダー繊維や水溶性の化学接着剤を用
いて接着されていると、これを用いて熱圧着された3次
元構造体は、水或いは熱水に接触すると、不織布を構成
していたビニロン繊維やセルロース繊維にまでバラバラ
になるという性能を有する。例えばセルロース繊維は自
然崩壊性の地球にやさしい繊維として注目されている
が、セルロース繊維を含有した不織布を3次元構造体に
成形加工する際、従来は、化学接着剤を用いて、接着剤
調製→所定量塗布→乾燥・キュアリングといった複雑な
工程を経たり、疎水性の熱接着性繊維を用いて熱接着法
で接着していた(この場合、接着は高速・簡便・無公害
で行ないうるが、得られた3次元構造体は、セルロース
繊維の特長である自然崩壊性を活かすことができない)
が、本発明バインダー繊維の不織布を用いて熱圧着法
(ヒートシール法)により成形加工して得た3次元構造
体は、高速・簡便・無公害で自動化ラインにも容易に組
み込んで製造可能であるとともに、得られたペーパーポ
ット、肥料袋、シードシート、シードテープ、根巻き材
などの3次元構造体は、土中に埋設したり、地上に放置
すると、水分や雨により接着力がなくなるとともに、基
材のセルロース繊維が自然崩壊する。従って、本発明バ
インダー繊維を使用した不織布を用いると、地球にやさ
しい3次元構造体を安価に、無公害で製造することが可
能である。
Further, hydrophilic but water-insoluble vinylon fibers, rayon, cupra, polynosic, solvent-based cellulose fibers, cellulose fibers such as cotton, and the like according to the present invention are used.
The non-woven fabric containing 0% or more can be thermocompression bonded, and when molding into a three-dimensional structure, the thermocompression bonding method having the above advantages can be applied as compared with the case where a conventional chemical adhesive is used. is there. Further, a feature of the nonwoven fabric using the fiber of the present invention is that when the thermocompression-bonded three-dimensional structure comes into contact with water or hot water, the adhesive force of the thermocompression bonding portion is lost and the original nonwoven fabric shape is obtained. Further, a non-woven fabric using the fiber of the present invention is bonded by utilizing the thermocompression bonding property of the fiber of the present invention, or is bonded by using a water-soluble binder fiber or a water-soluble chemical adhesive, this is used. When contacted with water or hot water, the three-dimensional structure thermocompression-bonded by thermocompression has a property that even the vinylon fibers and the cellulose fibers constituting the non-woven fabric are separated. Cellulose fibers, for example, have been attracting attention as natural-disintegrating, earth-friendly fibers. However, when a nonwoven fabric containing cellulose fibers is molded into a three-dimensional structure, conventionally, a chemical adhesive is used to prepare an adhesive → A complicated process such as application of a predetermined amount → drying / curing was performed, or bonding was performed by a thermal bonding method using a hydrophobic thermal bonding fiber (in this case, bonding can be performed at high speed, simply and without pollution). , The obtained three-dimensional structure cannot utilize the natural disintegration characteristic of cellulose fiber.)
However, the three-dimensional structure obtained by molding the non-woven fabric of the binder fiber of the present invention by the thermocompression bonding method (heat sealing method) can be easily incorporated into an automated line with high speed, simplicity and no pollution, and can be manufactured. In addition, if the three-dimensional structure such as the obtained paper pot, fertilizer bag, seed sheet, seed tape, and root wrapping material is buried in the soil or left on the ground, it loses its adhesive force due to moisture and rain. , The base material cellulose fibers are naturally disintegrated. Therefore, by using the non-woven fabric using the binder fiber of the present invention, it is possible to produce a three-dimensional structure friendly to the earth at low cost and without pollution.

【0028】また非水溶性ビニロン、レーヨンなどのセ
ルロース系繊維、ナイロン−6などポリアミド系繊維、
ポリオレフィン系繊維、ポリエステル系繊維あるいはそ
れらを混合したベース繊維素材に本発明バインダー繊維
を30重量%以上混合し、この混合素材を熱圧着法で不
織布を製造すると、不織布を製造する時発生する不良
品、トリミングにより発生した屑、あるいは使用済品は
水あるいは熱水に接触させることにより、もとの繊維素
材にバラバラとなり、ベースの繊維素材を回収再生する
ことができ、リサイクル可能となる。従来熱圧着法で製
造した不織布は極めて合理的であるが、不良品やトリミ
ング屑などの屑(湿式法では損紙)の回収再生が出来
ず、焼却せざるをえないデメリットがあったが、本発明
バインダー繊維を使用することにより、熱接着法と回収
再生使用可の両方を満足することができるようになっ
た。
Further, water-insoluble vinylon, cellulosic fibers such as rayon, polyamide fibers such as nylon-6,
If the binder fiber of the present invention is mixed in an amount of 30% by weight or more with a polyolefin fiber, a polyester fiber or a base fiber material obtained by mixing them, and a non-woven fabric is produced by a thermocompression bonding method using this mixed material, a defective product that occurs when the non-woven fabric is produced The scraps generated by trimming, or the used products are brought into contact with water or hot water to separate the original fiber material, and the base fiber material can be recovered and recycled, and can be recycled. Nonwoven fabrics manufactured by the conventional thermocompression bonding method are extremely rational, but they have the disadvantage that they cannot recover and recycle scraps (damaged paper by the wet method) such as defective products and trimming scraps. By using the binder fiber of the present invention, it has become possible to satisfy both the thermal bonding method and the recovery and reusability.

【0029】本発明におけるバラメーターの定義とその
測定法は次の如くである。 1.融点 メトラー社示差走査熱量測定装置(DSC−20)を用
い、試料ポリマー10mgを窒素下20℃/minの速
度で昇温した際、吸熱ピークを示す温度を意味する。
The definition of the parameter and the measuring method thereof in the present invention are as follows. 1. Melting point Means the temperature at which an endothermic peak is exhibited when 10 mg of a sample polymer is heated under nitrogen at a rate of 20 ° C./min using a differential scanning calorimeter (DSC-20) manufactured by Mettler.

【0030】2.繊維強度 JISL−1015に準じ、単繊維強度を試長20m
m、引張速度50%/分で引張試験を行なう。
2. Fiber strength In accordance with JIS L-1015, the single fiber strength is 20m.
m, tensile rate 50% / min.

【0031】[0031]

【実施例】以下実施例により、本発明を具体的に説明す
るが、本発明はこれらの実施例に限定されるものではな
い。実施例中、%は特にことわりがない限り重量にもと
ずく値である。
The present invention will be described in more detail with reference to the following examples, but the present invention is not limited to these examples. In the examples,% is a value based on weight unless otherwise specified.

【0032】実施例1 重合度1710、ケン化度96.4モル%で融点が21
8℃のPVAと重合度600、ケン化度70モル%で融
点が172℃のPVAとを各々22%と35%となるよ
う別々に100℃のDMSOに窒素下混合撹拌溶解し
た。これらの原液を別々の配管を通して、2台のギアポ
ンプで計量し、低融点PVA溶液が芯に、高融点PVA
溶液が鞘になるようセットした芯鞘ノズルパックを通
し、孔径0.15mmφ、孔数24の芯鞘ノズルより大
気に吐出し、8mmのエアギャップを通過させ、メタノ
ール78%とDMSO22%よりなる2℃の固化液中に
乾湿式紡糸した。この際芯/鞘比率がポリマーで50/
50となるよう各ギアポンプの回転数を設定し、なおか
つ紡糸延伸後の全ての繊維において芯部がほぼ中央とな
るよう芯鞘ノズルにおける芯原液吐出口位置を各ノズル
孔について調整した。固化後のゲル糸篠は4倍の湿延伸
を施こし、ゲル糸篠中の残存DMSOをメタノールで抽
出洗浄し、オイリング、乾燥後、210℃熱風中で全延
伸倍率11倍の乾熱延伸を行ない、標準タイプの一芯芯
鞘複合の36d/24fのマルチフィラメントを得た。
なお、鞘成分と芯成分の融点差は48℃であった。
Example 1 Polymerization degree of 1710, saponification degree of 96.4 mol% and melting point of 21.
PVA at 8 ° C. and PVA having a polymerization degree of 600 and a saponification degree of 70 mol% and a melting point of 172 ° C. were separately mixed and dissolved in DMSO at 100 ° C. under nitrogen with stirring so as to be 22% and 35%, respectively. These stock solutions were weighed with two gear pumps through separate pipes, and the low melting point PVA solution was used as the core and the high melting point PVA was used.
A core-sheath nozzle pack set so that the solution becomes a sheath is discharged into the atmosphere through a core-sheath nozzle having a hole diameter of 0.15 mmφ and a number of holes of 24, and passed through an air gap of 8 mm, and is composed of 78% methanol and 22% DMSO. Dry-wet spinning was performed in a solidifying solution at ℃. At this time, the core / sheath ratio of the polymer is 50 /
The number of rotations of each gear pump was set to 50, and the core stock solution discharge port position of the core-sheath nozzle was adjusted for each nozzle hole so that the core of all fibers after spin-drawing was in the center. After solidification, the gel yarn is subjected to a wet stretching of 4 times, the residual DMSO in the gel yarn is extracted and washed with methanol, and after oiling and drying, it is subjected to dry heat stretching at a total stretching ratio of 11 times in hot air at 210 ° C. The standard type single core-sheath composite 36d / 24f multifilament was obtained.
The melting point difference between the sheath component and the core component was 48 ° C.

【0033】このフィラメントの強度は8.1g/d
で、断面は同心円状であった。またこのマルチフィラメ
ントを十字状に交叉して、温度220℃、線圧50kg
/cm、処理時間1秒以下の熱圧着条件で熱カレンダー
ロール処理を施こした。得られた交叉部を手で剥がそう
としたが、接着していることが認められた。また熱圧着
部を沸騰水に投入した所形状がなくなり溶解した。
The strength of this filament is 8.1 g / d
The cross section was concentric. In addition, this multifilament is crossed in a cross shape, and the temperature is 220 ° C and the linear pressure is 50 kg.
/ Cm, the treatment time was 1 second or less, and the heat calender roll treatment was applied. When the obtained crossing portion was peeled off by hand, it was confirmed that the crossing portion was adhered. Also, when the thermocompression bonded portion was poured into boiling water, the shape disappeared and the material melted.

【0034】比較例1 実施例1において、鞘成分のPVA溶液のみを通常の円
形ノズルより吐出し、実施例1と同様に紡糸延伸して、
高融点PVAのみの36d/24fのマルチフィラメン
トを得た。このフィラメントの単糸強度は14.3g/
dであった。またこのマルチフィラメントをを実施例1
と同様の熱圧着条件で熱カレンダーロール処理を施こし
た。得られた交叉部を手で剥がそうとした所、極めて簡
単に剥がれ、接着力はほとんどなかった。
Comparative Example 1 In Example 1, only the PVA solution of the sheath component was discharged from a normal circular nozzle and spun and drawn in the same manner as in Example 1,
A 36d / 24f multifilament containing only high melting point PVA was obtained. Single filament strength of this filament is 14.3 g /
It was d. In addition, this multifilament is used in Example 1.
Thermal calender roll treatment was performed under the same thermocompression bonding conditions. When the obtained crossing portion was peeled off by hand, it was peeled off very easily and there was almost no adhesive force.

【0035】比較例2 実施例1において、芯成分のPVA溶液のみを通常の円
形ノズルより吐出し、実施例1と同様に紡糸延伸して、
高融点PVAのみの36d/24fのマルチフィラメン
トを得ようとしたが、繊維同志が硬着し正常なフィラメ
ントは得ることができなかった。
Comparative Example 2 In Example 1, only the PVA solution of the core component was discharged from an ordinary circular nozzle and spun and drawn in the same manner as in Example 1,
An attempt was made to obtain a 36d / 24f multifilament containing only the high melting point PVA, but the fibers were stuck together and a normal filament could not be obtained.

【0036】実施例2 重合度1750、ケン化度97.1モル%で、融点が2
20℃のPVAと重合度600、ケン化度60モル%、
アリールスルホン酸ソーダを0.6モル%で共重合した
融点161℃の変性PVAとを各々濃度19%と36%
となるよう別々に90℃のDMSOに窒素下混合撹拌溶
解した。これらの原液を別々の配管を通して2台のギア
ポンプで計量し、低融点変性PVA溶液が芯に、高融点
PVA溶液が鞘になるようセットした芯鞘ノズルパック
を通して、孔径0.18mmφ、孔数48の芯鞘ノズル
より、メタノール62%とDMSO38%よりなる10
℃の固化液中に湿式紡糸した。この際、芯鞘比率がポリ
マーで45/55となるよう各ギアポンプの回転数を設
定し、なおかつ紡糸延伸後の全ての繊維において芯部が
ほぼ中央となるよう芯鞘ノズルにおける芯原液吐出口位
置を各ノズル孔について調整した。固化後のゲル糸篠は
5.0倍の湿延伸を施こし、ゲル糸篠中の残存DMSO
をメタノールで抽出洗浄し、オイリング、乾燥後、20
0℃熱風中で全延伸倍率11倍の乾熱延伸を行ない、9
6d/48fの一芯芯鞘複合マルチフィラメントを得
た。
Example 2 Polymerization degree 1750, saponification degree 97.1 mol%, melting point 2
PVA at 20 ° C., polymerization degree 600, saponification degree 60 mol%,
A modified PVA having a melting point of 161 ° C., which is obtained by copolymerizing sodium arylsulfonate with 0.6 mol%, has a concentration of 19% and 36%, respectively.
So that they were separately dissolved in 90 ° C. DMSO with stirring under nitrogen. These stock solutions were weighed with two gear pumps through separate pipes, passed through a core-sheath nozzle pack in which the low-melting point modified PVA solution was the core and the high-melting point PVA solution was the sheath, and the hole diameter was 0.18 mmφ and the number of holes was 48. From the core-sheath nozzle of 10% consisting of 62% methanol and 38% DMSO
Wet spinning was carried out in a solidifying solution at ℃. At this time, the number of rotations of each gear pump was set so that the core-sheath ratio was 45/55 for the polymer, and the core stock solution discharge port position in the core-sheath nozzle was set so that the core portion was almost in the center in all the fibers after spinning and drawing. Was adjusted for each nozzle hole. After solidification, the gel yarn is subjected to a wet drawing of 5.0 times, and the residual DMSO in the gel yarn is
Was extracted and washed with methanol, oiled and dried, then 20
Dry heat drawing was performed at a total draw ratio of 11 times in 0 ° C. hot air, and 9
A 6d / 48f single-core-sheath composite multifilament was obtained.

【0037】このフィラメントの強度は7.1g/dで
断面形は同心円状であった。またこのマルチフィラメン
トを十字状に交叉して、温度165℃、線圧30kg/
cm、処理時間1秒以下の熱圧着条件で熱カレンダーロ
ール処理を施こした。得られた交叉部を手で剥がそうと
した所なかなか剥がれず、カレンダー処理により熱圧着
していることが認められた。また熱圧着後の交叉部を8
0℃の熱水に投入した所溶解した。
The strength of this filament was 7.1 g / d and the cross-sectional shape was concentric. In addition, the multifilaments are crossed to form a cross shape at a temperature of 165 ° C. and a linear pressure of 30 kg /
cm, and the treatment time was 1 second or less. When the obtained crossing portion was peeled off by hand, it was difficult to peel it off, and it was confirmed that thermocompression bonding was performed by calendering. In addition, the intersection after thermocompression bonding is 8
When it was poured into hot water at 0 ° C, it dissolved.

【0038】[0038]

【発明の効果】本発明は、高融点の高ケン化度PVAと
低融点の水溶性ポリマーとを所定のブレンド比で混合
し、高融点PVA系ポリマーを鞘成分とし、低融点水溶
性ポリマーを芯成分とし、芯成分と鞘成分を同心円状に
配置した芯鞘複合繊維であって、このような繊維とする
ことにより、従来困難であった水溶性の熱圧着性バイン
ダー繊維を得た。このバインダー繊維は、高融点の高ケ
ン化度PVAをマトリックスとして鞘成分に存在せし
め、高配向高結晶化せしめており、高湿度下でも寸法が
安定しており、通常状態においては普通の繊維として取
り扱うことが可能であるが、熱圧着すると、鞘成分相が
破れ、芯成分の低融点ポリマーが繊維表面に押し出さ
れ、繊維同志が接着されるものである。熱圧着時鞘成分
の高融点PVAポリマー相は融解しないため、寸法変化
が殆んどなく、かつ熱圧着後も高強度を維持しうる。
Industrial Applicability According to the present invention, a high-melting point high-saponification degree PVA and a low-melting point water-soluble polymer are mixed at a predetermined blending ratio, and the high-melting point PVA polymer is used as a sheath component to form a low-melting point water-soluble polymer. A core-sheath composite fiber in which a core component and a sheath component are concentrically arranged as a core component, and by using such a fiber, a water-soluble thermocompression-bondable binder fiber, which has been difficult in the past, was obtained. This binder fiber has a high melting point and a high saponification degree PVA as a matrix and is present in the sheath component to be highly oriented and highly crystallized, and the dimension is stable even under high humidity, and as a normal fiber in a normal state. It can be handled, but when thermocompression bonded, the sheath component phase is broken, the low melting point polymer of the core component is extruded onto the fiber surface, and the fibers are bonded together. Since the high melting point PVA polymer phase of the sheath component does not melt during thermocompression bonding, there is almost no dimensional change and high strength can be maintained even after thermocompression bonding.

【0039】以上の如く、本発明は、水溶性と熱圧着性
を兼備したPVA系バインダー繊維であり、不織布分野
に用いると、熱圧着による接着が可能であるため、簡便
なプロセスにより、無公害で高速生産が可能となる。例
えば、従来PVA系糊剤水溶液を塗布乾燥して生産して
いたケミカルレース基布などは生産の合理化が可能であ
る。また乾式法及び湿式法で得られた不織布は熱圧着性
を有するため、袋物状などの3次元構造体に成形加工す
る際、ヒートシール加工が可能であるため、成形加工が
効率的に生産しうる。さらにビニロンやレーヨンなど親
水性素材と混合して不織布化すると、熱圧着で接着が可
能であり、かつ不良品、2次格品、トリミング片などの
屑が発生した際に水あるいは熱水と接触させるとビニロ
ンやレーヨンなどの素材が回収でき、再使用が可能とな
る。
As described above, the present invention is a PVA-based binder fiber having both water solubility and thermocompression bonding property, and when used in the field of non-woven fabrics, since bonding by thermocompression bonding is possible, it is a pollution-free, simple process. It enables high speed production. For example, the production of chemical lace base cloth, which was conventionally produced by applying and drying a PVA-based sizing agent aqueous solution, can be rationalized. In addition, since the non-woven fabrics obtained by the dry method and the wet method have thermocompression bonding properties, heat sealing can be performed when molding into a three-dimensional structure such as a bag-like product, so that the molding process can be efficiently produced. sell. When mixed with hydrophilic materials such as vinylon and rayon to form a non-woven fabric, it can be bonded by thermocompression bonding, and when scraps such as defective products, secondary products, trimming pieces, etc., contact with water or hot water. By doing so, materials such as vinylon and rayon can be collected and reused.

【図面の簡単な説明】[Brief description of drawings]

【図1】(イ)〜(ニ)は、ともに本発明繊維の断面形
状の代表例を示す図である。
1 (a) to 1 (d) are diagrams showing typical examples of the cross-sectional shape of the fiber of the present invention.

【符号の説明】[Explanation of symbols]

a:芯成分 b:鞘成分 a: core component b: sheath component

───────────────────────────────────────────────────── フロントページの続き (72)発明者 小林 悟 岡山県倉敷市酒津1621番地 株式会社クラ レ内 (72)発明者 楢村 俊平 岡山県倉敷市酒津1621番地 株式会社クラ レ内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Satoru Kobayashi 1621 Sakata, Kurashiki City, Okayama Prefecture, Kuraray Co., Ltd. (72) Shunpei Naramura 1621 Sakata, Kurashiki City, Okayama Prefecture, Kuraray Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 融点が210℃以上であるポリビニルア
ルコール系ポリマーが鞘成分であり、融点が210℃未
満である水溶性ポリマーが芯成分であり、芯/鞘比率が
80/20〜30/70である同心の一芯芯鞘複合繊維
である水溶性のポリビニルアルコール系バインダー繊
維。
1. A polyvinyl alcohol-based polymer having a melting point of 210 ° C. or higher is a sheath component, a water-soluble polymer having a melting point of less than 210 ° C. is a core component, and the core / sheath ratio is 80/20 to 30/70. A water-soluble polyvinyl alcohol-based binder fiber that is a concentric single-core sheath-fiber composite fiber.
【請求項2】 請求項1のバインダー繊維を、温度14
0〜240℃、線圧3kg/cm以上または面圧5kg
/cm2 以上の条件で熱圧着することを特徴とする水溶
性のポリビニルアルコール系バインダー繊維の熱圧着
法。
2. The binder fiber according to claim 1 at a temperature of 14
0 ~ 240 ℃, linear pressure 3kg / cm or more or surface pressure 5kg
A thermocompression bonding method for water-soluble polyvinyl alcohol-based binder fibers, characterized in that thermocompression bonding is performed under a condition of / cm 2 or more.
JP5320217A 1993-12-20 1993-12-20 Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber Pending JPH07173724A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5320217A JPH07173724A (en) 1993-12-20 1993-12-20 Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5320217A JPH07173724A (en) 1993-12-20 1993-12-20 Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber

Publications (1)

Publication Number Publication Date
JPH07173724A true JPH07173724A (en) 1995-07-11

Family

ID=18119032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5320217A Pending JPH07173724A (en) 1993-12-20 1993-12-20 Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber

Country Status (1)

Country Link
JP (1) JPH07173724A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2017515989A (en) * 2014-04-22 2017-06-15 ザ プロクター アンド ギャンブル カンパニー Filament and fibrous structure using the same
US11925698B2 (en) 2020-07-31 2024-03-12 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent
US11944696B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Detergent product and method for making same
US11951194B2 (en) 2017-01-27 2024-04-09 The Procter & Gamble Company Compositions in the form of dissolvable solid structures comprising effervescent agglomerated particles
US11970789B2 (en) 2010-07-02 2024-04-30 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US11944693B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Method for delivering an active agent
US11944696B2 (en) 2010-07-02 2024-04-02 The Procter & Gamble Company Detergent product and method for making same
US11970789B2 (en) 2010-07-02 2024-04-30 The Procter & Gamble Company Filaments comprising an active agent nonwoven webs and methods for making same
JP2017515989A (en) * 2014-04-22 2017-06-15 ザ プロクター アンド ギャンブル カンパニー Filament and fibrous structure using the same
US11951194B2 (en) 2017-01-27 2024-04-09 The Procter & Gamble Company Compositions in the form of dissolvable solid structures comprising effervescent agglomerated particles
US11925698B2 (en) 2020-07-31 2024-03-12 The Procter & Gamble Company Water-soluble fibrous pouch containing prills for hair care

Similar Documents

Publication Publication Date Title
KR0185438B1 (en) Water-soluble heat-press-bonding polyvinyl alcohol type binder fiber, nonwoven fabric containing said fiber, and processes for production of said fiber and said non-woven fabric
CA2340832C (en) Hollow fibers and manufacturing method of hollow fibers
KR20000076367A (en) Fibre, film and its production
JPH07173724A (en) Water-soluble polyvinyl alcohol binder fiber and method for heating and press-adhering the fiber
JP3345191B2 (en) Water-soluble and thermocompressible polyvinyl alcohol-based binder fiber
JPH11241225A (en) Conjugate filament having high nitrile content
JP2002235236A (en) Polyvinyl alcohol-based water-soluble fiber
JPH07126918A (en) Heat-bondable and water-soluble polyvinyl alcohol fiber and heat-bonding method therefor
JPS5838526B2 (en) Gokubososen Inoseizouhou
JP3254315B2 (en) Water-resistant and thermo-compressible polyvinyl alcohol fiber
JP2003306861A (en) Filament nonwoven fabric
JPH04174719A (en) Conjugate yarn
JPH09302520A (en) Production of readily fibrillating fiber
JP3235924B2 (en) Non-woven fabric using thermocompression bonding polyvinyl alcohol fiber
JP3345110B2 (en) Multifilament or staple fiber composed of water-soluble polyvinyl alcohol fiber
JP7336282B2 (en) Polyvinyl alcohol fiber and method for producing the same
JP3072952B2 (en) Nonwoven fabric, method for producing nonwoven fabric using the same, and interlining
JPH07278962A (en) Heat-bondable polyacrylonitrile fiber
KR20230097195A (en) Polyvinyl alcohol-based fiber, fiber structure and manufacturing method thereof
TWI298072B (en)
JPH082138A (en) Water-soluble nonwoven fabric for backlining of book
JPS584820A (en) Production of thermally fusible low-shrinkage conjugate spun yarn
JP2003247124A (en) Polyvinyl alcohol conjugated fiber
JPH10140438A (en) Fabric and its production
JPH03206128A (en) Production of polyvinyl alcohol fiber having excellent hot-water resistance