JPH07172946A - Joined product between ceramic part and metallic part - Google Patents

Joined product between ceramic part and metallic part

Info

Publication number
JPH07172946A
JPH07172946A JP34831093A JP34831093A JPH07172946A JP H07172946 A JPH07172946 A JP H07172946A JP 34831093 A JP34831093 A JP 34831093A JP 34831093 A JP34831093 A JP 34831093A JP H07172946 A JPH07172946 A JP H07172946A
Authority
JP
Japan
Prior art keywords
metal
ceramic
joined
thermal expansion
thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP34831093A
Other languages
Japanese (ja)
Inventor
Michio Matsuno
路雄 松野
Keiichi Miura
啓一 三浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chichibu Onoda Cement Corp
Original Assignee
Chichibu Onoda Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chichibu Onoda Cement Corp filed Critical Chichibu Onoda Cement Corp
Priority to JP34831093A priority Critical patent/JPH07172946A/en
Publication of JPH07172946A publication Critical patent/JPH07172946A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H33/00High-tension or heavy-current switches with arc-extinguishing or arc-preventing means
    • H01H33/60Switches wherein the means for extinguishing or preventing the arc do not include separate means for obtaining or increasing flow of arc-extinguishing fluid
    • H01H33/66Vacuum switches
    • H01H33/662Housings or protective screens
    • H01H33/66207Specific housing details, e.g. sealing, soldering or brazing
    • H01H2033/66215Details relating to the soldering or brazing of vacuum switch housings

Abstract

PURPOSE:To relax the residual stress in a joined product and secure the insulation properties and the air tightness in the joined part by adjusting the value obtained by dividing the product of the melting point of a brazing material, the difference in thermal expansion coefficient between a ceramic and a metal and the wall thickness of the ceramic material by the thickness of the metallic material to lower than a specific value in the joined material where the metallic material is brazed to a cylindrical ceramic part on both ends with the brazing material. CONSTITUTION:When the wall thickness of the ceramic part (1/2 of the difference between the outer and inner diameters) is represented by D; the wall thickness of the metallic part, C; the difference in thermal expansion coefficient between the ceramic and the metal (the average thermal expansion coefficient from room temperature to the melting point of the brazing material, DELTAalpha(/ deg.C); the melting point M( deg.C) of the brazing material, M.DELTAalpha.D/ deg.C, their product is adjusted to be less than 6X10<-3>. A metallic part of a disk having a round hole (2a) on its center such as kovar 2 of low thermal expansion is applied to the cylindrical ceramic part 1 on its both ends. The joining is done by arranging the foil of the active brazing metallic foil between the ceramic body 1 and the disks 2 and heating them at 950 deg.C for 5 minutes in vacuum.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、ろう付けされた接合体
中の残留応力を緩和させた高い信頼性を有するセラミッ
クス部材と金属部材の接合体に係り、特に、絶縁性及び
接合部分の気密性を確保できるものに関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a highly reliable bonded body of a ceramic member and a metal member in which a residual stress in a brazed bonded body is relaxed, and particularly to an insulating property and an airtightness of a bonded portion. Regarding things that can ensure sex.

【0002】[0002]

【従来の技術】窒化珪素やアルミナ等のセラミックスは
絶縁性、機械的特性に優れ、このようなセラミックスと
加工性の優れた金属との接合体は、絶縁性、接合部分の
気密性及び高い接合強度を要求される接合部材としての
必要性が高まりつつある。例えば、円筒状の窒化珪素部
材の両端に、中央部に孔の開いた円板やフランジのつい
た管等の金属部材を接合した構造の接合部材は、装置部
品としての応用分野が広い。
2. Description of the Related Art Ceramics such as silicon nitride and alumina have excellent insulating properties and mechanical properties, and a bonded body of such ceramics and a metal having excellent workability has an insulating property, airtightness of the bonding portion and high bonding. The need as a joining member that requires strength is increasing. For example, a joining member having a structure in which a metal member such as a disk having a hole in the center or a pipe with a flange is joined to both ends of a cylindrical silicon nitride member has a wide range of applications as a device component.

【0003】窒化珪素と金属の接合は、有機接着剤等を
用いると、接合強度、信頼性が低いため、チタン等の活
性金属を含有するろう材を用いたろう付け及び窒化珪素
の接合面をメタライズ処理した後の銀ろう付け等により
行われる。しかし、ろう付け時の加熱接合後の冷却過程
で発生する窒化珪素と金属の熱膨張係数の差に起因する
残留応力のために、窒化珪素が破壊したり、窒化珪素と
金属が剥離したりして接合体の気密性が保持できない場
合がある。この残留応力は、ろう材の融点が高い程、窒
化珪素と金属の熱膨張係数の差が大きい程、大きくな
る。
When an organic adhesive or the like is used for joining silicon nitride and metal, the joining strength and reliability are low. Therefore, brazing using a brazing material containing an active metal such as titanium and metallizing the joining surface of silicon nitride. It is performed by silver brazing or the like after processing. However, due to residual stress caused by the difference in the thermal expansion coefficient between silicon nitride and the metal generated during the cooling process after heating and joining during brazing, the silicon nitride is destroyed or the silicon nitride and metal are separated. In some cases, the airtightness of the bonded body cannot be maintained. This residual stress increases as the melting point of the brazing material increases and the difference in thermal expansion coefficient between silicon nitride and metal increases.

【0004】窒化珪素の破壊や窒化珪素と金属の剥離を
防止するためには、接合する金属として低熱膨張係数で
あるコバールを用いたり、金属部材の構造、形状等によ
り金属部材の接合面を極端に狭くした構造にするなどの
方法が採用されている。
In order to prevent the destruction of the silicon nitride and the separation of the metal from the silicon nitride, Kovar having a low coefficient of thermal expansion is used as the metal to be joined, or the joining surface of the metal member is extremely made depending on the structure and shape of the metal member. A method such as a narrow structure has been adopted.

【0005】[0005]

【発明が解決しようとする課題】しかし、接合する金属
としてコバールを用いても、接合体の構造を工夫しない
でろう付け接合すると、窒化珪素等のセラミックスの破
壊が発生し、接合体の気密性が保持できない場合があ
る。セラミックスが即破壊しない場合でも、その接合体
中には大きな残留応力が存在し、使用中にセラミックス
にクラックが進展し、接合体の気密性が劣化する可能性
がある。さらに、接合する金属がコバール等の低熱膨張
金属に限定されることは、接合体の設計上支障が生じる
場合がある。
However, even if Kovar is used as the metal to be joined, ceramics such as silicon nitride will be destroyed if brazing is performed without devising the structure of the joined body, resulting in airtightness of the joined body. May not be retained. Even if the ceramics are not immediately destroyed, a large residual stress exists in the bonded body, cracks may develop in the ceramics during use, and the airtightness of the bonded body may deteriorate. Further, the fact that the metal to be bonded is limited to a low thermal expansion metal such as Kovar may cause a problem in the design of the bonded body.

【0006】また、金属部材の構造、形状等により金属
部材の接合面を極端に狭い構造にして、窒化珪素等のセ
ラミックスにろう付け接合する方法は、非常に小さな面
積でセラミックスと金属が接合されることになるので、
使用中の機械的衝撃等により、接合部が破壊され、気密
性が保持できなくなる場合がある。
Further, in the method of brazing and joining to a ceramic such as silicon nitride by making the joining surface of the metallic member extremely narrow depending on the structure and shape of the metallic member, the ceramic and the metal are joined in a very small area. Because it will be
The mechanical strength and the like during use may destroy the joints, making it impossible to maintain airtightness.

【0007】本発明は、このような問題点を解決するた
めになされたもので、接合体中の残留応力を緩和させた
高い信頼性を有するセラミックス部材と金属部材の接合
体を提供することを目的とする。
The present invention has been made in order to solve the above problems, and it is an object of the present invention to provide a highly reliable bonded body of a ceramic member and a metal member in which residual stress in the bonded body is relaxed. To aim.

【0008】[0008]

【課題を解決するための手段】本発明のセラミックス部
材と金属部材の接合体は、円筒状のセラミックス部材の
両端部に金属部材をろう付けした接合体であって、円筒
状のセラミックス部材の肉厚(外径と内径の差の1/
2)をD、金属部材の厚さをC、セラミックスと金属の
熱膨張係数(室温からろう材の融点までの平均熱膨張係
数)の差をΔα(/℃)、ろう材の融点をM(℃)とす
ると、M・Δα・D/Cが6×10−3以下であること
を特徴とする。
A joined body of a ceramic member and a metal member of the present invention is a joined body in which a metal member is brazed to both ends of a cylindrical ceramic member, and the meat of the cylindrical ceramic member is formed. Thickness (1 / the difference between the outer diameter and the inner diameter)
2) is D, the thickness of the metal member is C, the difference in coefficient of thermal expansion between ceramics and metal (average coefficient of thermal expansion from room temperature to the melting point of the brazing material) is Δα (/ ° C), and the melting point of the brazing material is M ( C)), M · Δα · D / C is 6 × 10 −3 or less.

【0009】本発明のセラミックス部材と金属部材の接
合体では、セラミックスとして、窒化珪素、アルミナ等
があげられる。また、金属部材としては、コバール、ス
テンレス等があげられる。
In the joined body of the ceramic member and the metal member of the present invention, examples of ceramics include silicon nitride and alumina. Further, examples of the metal member include Kovar, stainless steel and the like.

【0010】窒化珪素やアルミナ等のセラミックス部材
とコバールやステンレス等の金属部材をろう付け接合す
る場合、ろう材の融点以上の温度で熱処理を行うが、こ
の後の冷却過程で、ろう材の融点以下の温度になると、
接合面が拘束され、温度の低下に伴い、セラミックスと
金属の熱膨張係数の差に起因する残留応力が接合体中に
増大していく。特に、セラミックスは靭性が低いので、
セラミックス中の残留応力により、セラミックスが破壊
する場合がある。
When a ceramic member such as silicon nitride or alumina and a metal member such as Kovar or stainless steel are brazed and joined, a heat treatment is performed at a temperature higher than the melting point of the brazing material. At the following temperatures,
The joint surface is constrained, and the residual stress due to the difference in thermal expansion coefficient between the ceramic and the metal increases in the joint body as the temperature decreases. In particular, ceramics have low toughness, so
The residual stress in the ceramic may cause the ceramic to break.

【0011】一般に、この残留応力の大きさは、ろう材
の融点M(℃)、セラミックスと金属の熱膨張係数の差
Δα(/℃)に比例する。すなわち、セラミックス部材
と金属部材の接合体においても、ろう材の融点が高い
程、セラミックスと金属の熱膨張係数の差が大きい程、
残留応力は大きくなり、セラミックスの破壊、セラミッ
クスと金属の接合部の剥離等のない高い信頼性を有する
接合体を作製するためには、接合体構造に特別な工夫を
施さなければならない。
Generally, the magnitude of this residual stress is proportional to the melting point M (° C.) of the brazing material and the difference Δα (/ ° C.) in the coefficient of thermal expansion between the ceramic and the metal. That is, also in the joined body of the ceramic member and the metal member, the higher the melting point of the brazing material, the larger the difference in the coefficient of thermal expansion between the ceramic and the metal,
Residual stress becomes large, and in order to produce a bonded body with high reliability without destruction of ceramics, peeling of the bonded portion between ceramics and metal, special measures must be taken in the bonded body structure.

【0012】本発明者等は、図1及び図2あるいは図3
及び図4に示す円筒状のセラミックス部材としての本体
1の両端部にそれぞれ、金属部材として、中央部に直径
6mmの円形の孔2aの開いた円板2(図1及び図2)
あるいは円筒状の管部3aの端部に円板状のフランジ部
3bを一体的に設けた管体3(図3及び図4、管部3a
の長さ:20mm、管部3aの肉厚:2mm、内径:6
mm)をろう付けした接合体を対象として、円筒状の本
体1の肉厚D(D:外径と内径の差の1/2)及び両端
部の金属部材としての円板2あるいは金属部材としての
管体3のフランジ部3bの厚さCを限定することによ
り、本体1の破壊、本体1と円板2あるいはフランジ部
3bとの接合部4の剥離等のない高い信頼性を有する接
合体の作製が可能となることを見いだした。
The present inventors have found that FIG. 1 and FIG. 2 or FIG.
And a circular plate 2 having a circular hole 2a with a diameter of 6 mm at the center as a metal member at both ends of the main body 1 as a cylindrical ceramic member shown in FIG. 4 (FIGS. 1 and 2).
Alternatively, the tubular body 3 (FIGS. 3 and 4, the tubular portion 3a, in which the disc-shaped flange portion 3b is integrally provided at the end of the cylindrical tubular portion 3a)
Length: 20 mm, wall thickness of tube portion 3 a: 2 mm, inner diameter: 6
mm) for a joined body, the thickness D (D: 1/2 of the difference between the outer diameter and the inner diameter) of the cylindrical main body 1 and the disk 2 or the metal member as the metal members at both ends. By limiting the thickness C of the flange portion 3b of the tubular body 3, the joined body having high reliability without breakage of the main body 1, separation of the joined portion 4 between the main body 1 and the disc 2 or the flange portion 3b, etc. It was found that the production of

【0013】すなわち、本体1の肉厚Dを小さくする
程、さらに、両端部の円板2あるいはフランジ部3bの
厚さCを大きくする程、接合体中の残留応力は緩和さ
れ、セラミックスからなる本体1の破壊、接合部4の剥
離等が抑制される。この際、接合される金属が低熱膨張
金属であるコバール等と比較して、熱膨張係数の大きい
ステンレス等の場合、円筒状の本体1の肉厚Dはより小
さく、両端部の円板2あるいはフランジ部3bの厚さC
はより大きくする必要がある。
That is, the smaller the wall thickness D of the main body 1 is, and the larger the thickness C of the disk 2 or the flange portion 3b at both ends is, the more the residual stress in the bonded body is relaxed and the ceramic body is made of ceramics. The destruction of the main body 1 and the peeling of the joint portion 4 are suppressed. At this time, when the metal to be joined is stainless steel or the like having a large thermal expansion coefficient as compared with Kovar or the like which is a low thermal expansion metal, the wall thickness D of the cylindrical main body 1 is smaller and the discs 2 at both ends are Thickness C of flange 3b
Needs to be larger.

【0014】ここで、窒化珪素からなる円筒状の本体1
の肉厚D及び両端部の金属からなる円板2あるいはフラ
ンジ部3bの厚さCの効果を両者の比D/Cで表し、さ
らに、接合体中の残留応力に顕著な影響を及ぼすセラミ
ックスと金属の熱膨張係数(室温からろう材の融点まで
の平均熱膨張係数)の差Δαとろう材の融点Mを考慮に
入れ、M・Δα・D/Cという値を定義すれば、実施例
及び比較例の結果より、この値が6×10−3以下とな
るように接合体を設計すれば、高い信頼性を有する円筒
状のセラミックス部材と金属部材の接合体の作製が可能
となる。
Here, the cylindrical main body 1 made of silicon nitride is used.
The effect of the wall thickness D and the thickness C of the disk 2 or the flange portion 3b made of metal at both ends is expressed by the ratio D / C of both, and further, ceramics that significantly affects the residual stress in the joined body. Taking into consideration the difference Δα in the coefficient of thermal expansion of metal (average coefficient of thermal expansion from room temperature to the melting point of the brazing material) and the melting point M of the brazing material, and defining the value M · Δα · D / C, From the results of the comparative example, if the bonded body is designed so that this value is 6 × 10 −3 or less, it becomes possible to manufacture a highly reliable bonded body of the cylindrical ceramic member and the metal member.

【0015】[0015]

【実施例】次に、本発明を実施例及び比較例により詳細
に説明する。本発明の実施例1から8及び比較例1から
10は、図1及び図2に示す通り、円筒状のセラミック
ス部材としての窒化珪素からなる本体1の両端部に、中
央部に直径6mmの円形の孔2aの開いた金属部材とし
ての円板2を接合した例であり、実施例9から11及び
比較例11から13は、図3及び図4に示す通り、上記
と同じ本体1の両端部に、金属部材として、円筒状の管
部3aの端部に円板状のフランジ部3bを一体的に設け
た管体3のフランジ部3b(管部3aの長さ:20m
m、管部3aの肉厚:2mm、内径:6mm)を接合し
た例である。
EXAMPLES Next, the present invention will be described in detail with reference to Examples and Comparative Examples. As shown in FIGS. 1 and 2, Examples 1 to 8 and Comparative Examples 1 to 10 of the present invention have a circular shape having a diameter of 6 mm at the center of both ends of a main body 1 made of silicon nitride as a cylindrical ceramic member. 2 is an example in which the disc 2 as a metal member having the hole 2a is joined, and Examples 9 to 11 and Comparative Examples 11 to 13 are both end portions of the same main body 1 as described above, as shown in FIGS. 3 and 4. Further, as the metal member, the flange portion 3b of the tubular body 3 in which the disk-shaped flange portion 3b is integrally provided at the end of the cylindrical tubular portion 3a (the length of the tubular portion 3a: 20 m
m, the tube portion 3a has a wall thickness of 2 mm, and an inner diameter of 6 mm.

【0016】これらの接合体において、窒化珪素からな
る本体1の長さA(mm)、及び肉厚D(mm)(D:
外径と内径の差の1/2)、円板2あるいはフランジ部
3bの直径B(mm)、及び厚さC(mm)を各々変化
させ、種々の構造の接合体を作製した。ここで、本体1
の外径と本体1の両端に接合する円板2あるいはフラン
ジ部3bの直径Bは同じである。
In these bonded bodies, the length A (mm) and the wall thickness D (mm) of the main body 1 made of silicon nitride (D:
The difference between the outer diameter and the inner diameter is ½), the diameter B (mm) and the thickness C (mm) of the disc 2 or the flange portion 3b are changed, and bonded bodies having various structures are manufactured. Where body 1
And the diameter B of the disc 2 or the flange portion 3b joined to both ends of the main body 1 are the same.

【0017】円板2あるいはフランジ部3bを構成する
金属については、低熱膨張金属であるコバール(組成:
鉄54重量%−ニッケル29重量%−コバルト17重量
%)、またはステンレス鋼の一種SUS430(組成:
鉄81.75重量%−クロム17重量%−モリブデン1
重量%−珪素0.75重量%)を使用した。なお、室温
から800℃(ろう材の融点)までの平均熱膨張係数
は、コバールが10.5×10−6/℃、SUS430
が12.5×10−6/℃である。また、本体1を構成
する窒化珪素の平均熱膨張係数は3.5×10−6/℃
である。
The metal constituting the disk 2 or the flange portion 3b is Kovar (composition:
Iron 54% by weight-Nickel 29% by weight-Cobalt 17% by weight) or stainless steel SUS430 (composition:
Iron 81.75 wt% -Chromium 17 wt% -Molybdenum 1
Wt% -0.75 wt% silicon) was used. The average coefficient of thermal expansion from room temperature to 800 ° C. (melting point of the brazing material) is 10.5 × 10 −6 / ° C. for Kovar and SUS430.
Is 12.5 × 10 −6 / ° C. Further, the average thermal expansion coefficient of silicon nitride forming the main body 1 is 3.5 × 10 −6 / ° C.
Is.

【0018】接合は、接合面に合わせた厚さ0.05m
mのリング状の活性金属ろう(組成:銀70.5重量%
−銅26.5重量%−チタン3重量%、融点:800
℃)の箔を本体1と円板2あるいはフランジ部3bの間
に配置し、真空中、950℃、5分の条件で行った。
The thickness of the joint is 0.05 m according to the joint surface.
m ring-shaped active metal wax (composition: silver 70.5% by weight)
-Copper 26.5% by weight-Titanium 3% by weight, melting point: 800
(° C) foil was placed between the main body 1 and the disk 2 or the flange portion 3b, and the test was performed in vacuum at 950 ° C for 5 minutes.

【0019】接合体の評価は以下の通りに行った。すな
わち、室温で窒化珪素からなる本体1の破壊の観察され
ない接合体について、接合した円板2、管体3の一方の
孔2a、管部3aをふさぎ、他方の孔2a、管部3aを
ヘリウムディテクタに接続し、気密性を検査した。さら
に、室温で気密性を保持した接合体について、これを液
体窒素の中に浸漬後、本体1の破壊の観察、ヘリウムデ
ィテクタによる気密性の検査を行った。
The bonded body was evaluated as follows. That is, for a bonded body of the main body 1 made of silicon nitride, which is not observed to be broken at room temperature, the bonded disk 2 and one hole 2a and the tube portion 3a of the tube body 3 are closed, and the other hole 2a and the tube portion 3a are filled with helium. It was connected to a detector and checked for air tightness. Further, with respect to the bonded body which kept airtightness at room temperature, after immersing the bonded body in liquid nitrogen, observation of breakage of the main body 1 and inspection of airtightness by a helium detector were performed.

【0020】ここで、室温での評価に引き続き、液体窒
素に浸漬後評価を行ったのは、液体窒素温度では、接合
体中の残留応力は、室温での残留応力と比較して拡大さ
れ、より厳しい条件で接合体を評価したことになり、こ
れが接合体の信頼性に関連すると考えたからである。す
なわち、液体窒素浸漬後も気密性を保持した接合体は、
室温での使用中に本体1にクラックが進展したり、接合
体の気密性が劣化する可能性はほとんどないと類推され
る。なお、実施例、比較例の結果は表1に示す通りであ
る。
Here, after the evaluation at room temperature, the evaluation after immersion in liquid nitrogen was carried out. At the liquid nitrogen temperature, the residual stress in the bonded body was enlarged as compared with the residual stress at room temperature. This is because the bonded body was evaluated under more severe conditions and it was thought that this was related to the reliability of the bonded body. That is, the bonded body that maintains airtightness even after immersion in liquid nitrogen is
It is assumed that there is almost no possibility that a crack will develop in the main body 1 or the airtightness of the bonded body will deteriorate during use at room temperature. The results of Examples and Comparative Examples are as shown in Table 1.

【0021】[0021]

【表1】 [Table 1]

【0022】(実施例1及び比較例1、2)これらは、
金属部材としてコバールの円板2を使用し、Aを30m
m、Bを30mm、Cを2mmと固定し、窒化珪素から
なる本体1の肉厚Dを2、6、10mmと変化させた例
である。この場合、Dが2mmの実施例1は、液体窒素
浸漬後も機密性を保持したが、Dを6、10mmと大き
くした比較例1、2は、液体窒素浸漬により本体1が破
壊した。本体1の肉厚Dを小さくすると、接合体中の残
留応力は緩和される。
(Example 1 and Comparative Examples 1 and 2)
Using Kovar's disk 2 as the metal member, A is 30 m
In this example, m and B are fixed to 30 mm and C is fixed to 2 mm, and the thickness D of the main body 1 made of silicon nitride is changed to 2, 6, and 10 mm. In this case, Example 1 in which D was 2 mm retained airtightness even after immersion in liquid nitrogen, but Comparative Examples 1 and 2 in which D was increased to 6 and 10 mm broke the main body 1 by immersion in liquid nitrogen. When the wall thickness D of the main body 1 is reduced, the residual stress in the bonded body is relieved.

【0023】(実施例2、3)これらは、金属部材とし
てコバールの円板2を使用し、Aを30mm、Bを30
mm、Cを10mmと固定し、本体1の肉厚Dを2、1
0mmと変化させた例である。この場合、両者とも、液
体窒素浸漬後も気密性を保持した。比較例2及び実施例
3の結果より、接合する円板2の厚さCを大きくする
と、接合体中の残留応力は緩和される。
(Examples 2 and 3) In these examples, Kovar's disc 2 was used as a metal member, and A was 30 mm and B was 30 mm.
mm and C are fixed to 10 mm, and the thickness D of the main body 1 is set to 2, 1
In this example, the length is changed to 0 mm. In this case, both of them maintained airtightness even after immersion in liquid nitrogen. From the results of Comparative Example 2 and Example 3, when the thickness C of the disc 2 to be joined is increased, the residual stress in the joined body is relaxed.

【0024】(実施例4、5及び比較例3)これらは、
金属部材としてSUS430の円板2を使用し、Aを3
0mm、Bを30mm、Dを2mmと固定し、円板2の
厚さCを10、6、2mmと変化させた例である。この
場合、Cが10、6mmの実施例4、5は、液体窒素浸
漬後も気密性を保持したが、Cを2mmと小さくした比
較例3は、液体窒素浸漬により本体1が破壊した。接合
する円板2の厚さをCを小さくすると、接合体中の残留
応力は増大する。
(Examples 4 and 5 and Comparative Example 3)
The disk 2 of SUS430 is used as the metal member, and A is 3
In this example, 0 mm, B is 30 mm, D is fixed to 2 mm, and the thickness C of the disc 2 is changed to 10, 6, and 2 mm. In this case, in Examples 4 and 5 in which C was 10 and 6 mm, the airtightness was maintained even after immersion in liquid nitrogen, but in Comparative Example 3 in which C was reduced to 2 mm, the main body 1 was broken by immersion in liquid nitrogen. If the thickness C of the discs 2 to be joined is reduced, the residual stress in the joined body increases.

【0025】さらに、同じ接合体構造の比較例3(SU
S430使用)と実施例1(コバール使用)を比較する
と、実施例1は液体窒素浸漬後も気密性を保持したの
で、窒化珪素との熱膨張係数の差の大きいSUS430
を使用した接合体は残留応力は増大する。
Furthermore, Comparative Example 3 (SU having the same bonded structure)
When S430 is used) and Example 1 (using Kovar) is compared, Example 1 maintains airtightness even after immersion in liquid nitrogen, and thus SUS430 having a large difference in thermal expansion coefficient from silicon nitride.
The residual stress of the joined body using is increased.

【0026】(比較例4、5)これらは、金属部材とし
てSUS430の円板2を使用し、Aを30mm、Bを
30mm、Cを2mmと固定し、本体1の肉厚Dを6、
10mmと変化させた例である。Dが2mmの上記比較
例3は、室温では窒化珪素が破壊しなかったが、この場
合、比較例4、5は両者とも、室温で窒化珪素の本体1
が破壊した。窒化珪素からなる本体1の肉厚Dを大きく
すると、接合体中の残留応力は増大する。
(Comparative Examples 4 and 5) In these, the disc 2 of SUS430 was used as the metal member, A was fixed to 30 mm, B was 30 mm, and C was 2 mm, and the thickness D of the main body 1 was 6,
In this example, the length is changed to 10 mm. In Comparative Example 3 in which D was 2 mm, the silicon nitride did not break at room temperature, but in this case, Comparative Examples 4 and 5 were both silicon nitride main body 1 at room temperature.
Was destroyed. Increasing the thickness D of the main body 1 made of silicon nitride increases the residual stress in the bonded body.

【0027】(比較例6)これは、金属部材としてSU
S430の円板2を使用し、Aを30mm、Bを30m
m、Cを10mm、Dを10mmとした例である。この
場合、液体窒素浸漬により窒化珪素の本体1が破壊し
た。同じ接合体構造の上記実施例3(コバール使用)で
は、液体窒素浸漬後も気密性を保持したので、これと比
較すると、窒化珪素との熱膨張係数の差の大きいSUS
430を使用した接合体は残留応力が増大する。
(Comparative Example 6) This is SU as a metal member.
Using the disc 2 of S430, A is 30 mm, B is 30 m
In this example, m and C are 10 mm and D is 10 mm. In this case, the main body 1 of silicon nitride was broken by immersion in liquid nitrogen. In Example 3 (using Kovar) having the same bonded structure, airtightness was maintained even after immersion in liquid nitrogen. Therefore, as compared with this, SUS having a large difference in thermal expansion coefficient from silicon nitride.
The bonded body using 430 has an increased residual stress.

【0028】(実施例6及び比較例7)これらは、金属
部材としてコバールの円板2を使用し、実施例6は実施
例1に対し、比較例7は比較例1に対し、本体1の高さ
Aのみを30mmから60mmに変化させたものであ
る。この場合、実施例1、比較例1と同様に、実施例6
では、液体窒素浸漬後も気密性を保持したが、比較例7
では、液体窒素浸漬により本体1が破壊した。接合する
円筒状の本体1の高さAは、残留応力に大きな影響を及
ぼさない様である。
(Example 6 and Comparative Example 7) These use Kovar's disc 2 as a metal member. Example 6 is compared with Example 1, Comparative Example 7 is compared with Comparative Example 1, and main body 1 is Only the height A is changed from 30 mm to 60 mm. In this case, as in Example 1 and Comparative Example 1, Example 6
The airtightness was maintained even after immersion in liquid nitrogen, but Comparative Example 7
Then, the main body 1 was broken by immersion in liquid nitrogen. The height A of the cylindrical body 1 to be joined does not seem to have a great influence on the residual stress.

【0029】(実施例7及び比較例8)これらは、金属
部材としてコバールの円板2を使用し、実施例7は実施
例1に対し、比較例8は比較例1に対し、円板2の直径
B及び本体1の外径のみを30mmから60mmに変化
させたのもである。この場合、実施例1、比較例1と同
様に、実施例7では、液体窒素浸漬後も気密性を保持し
たが、比較例8では、液体窒素浸漬により本体1が破壊
した。接合する円板2の直径B及び本体1の外径は、残
留応力に大きな影響を及ぼさない様である。
(Example 7 and Comparative Example 8) These use Kovar's disc 2 as a metal member. Example 7 is used for Example 1, Comparative Example 8 is used for Comparative Example 1, and disc 2 is used. It is also possible to change only the diameter B and the outer diameter of the main body 1 from 30 mm to 60 mm. In this case, like Example 1 and Comparative Example 1, in Example 7, the airtightness was maintained even after immersion in liquid nitrogen, but in Comparative Example 8, the main body 1 was broken by immersion in liquid nitrogen. The diameter B of the disc 2 to be joined and the outer diameter of the main body 1 do not seem to have a great influence on the residual stress.

【0030】(実施例8及び比較例9)これらは、金属
部材としてコバールの円板2を使用し、実施例8は実施
例1に対し、比較例9は比較例1に対し、A、B、C、
Dを各々2倍したものである。この場合、実施例1、比
較例1と同様に、実施例8では、液体窒素浸漬後も気密
性を保持したが、比較例9では、液体窒素浸漬により本
体1が破壊した。接合体の各寸法を変化させても、それ
らの比が同じであれば、残留応力に大きな影響を及ぼさ
ない様である。
(Example 8 and Comparative Example 9) These use Kovar's disc 2 as a metal member, and Example 8 is for Example 1, Comparative Example 9 is for Comparative Example 1, A, B , C,
D is doubled. In this case, like Example 1 and Comparative Example 1, in Example 8, the airtightness was maintained even after immersion in liquid nitrogen, but in Comparative Example 9, the main body 1 was broken by immersion in liquid nitrogen. Even if the dimensions of the bonded body are changed, if the ratio is the same, the residual stress does not seem to be significantly affected.

【0031】(比較例10)これは、金属部材としてコ
バールの円板2を使用し、窒化珪素からなる本体1の両
端に接合する円板2の厚さCを一方は2mm、他方は1
0mmとしたものである。本体1の片端に接合する円板
2の厚さC以外は比較例2(両端とも円板2の厚さCは
2mm)、実施例3(両端とも円板2の厚さCは10m
m)と同じである。この場合、液体窒素浸漬により円板
2の厚さCが2mmの側で本体1が破壊した。本体1の
両端部に異なる厚さの円板2を接合する場合、厚さCの
薄いほうの円板2が本体1の破壊に支配的である様であ
る。
(Comparative Example 10) In this example, a Kovar disk 2 is used as a metal member, and the thickness C of the disk 2 bonded to both ends of the main body 1 made of silicon nitride is 2 mm for one side and 1 for the other side.
It is 0 mm. Comparative Example 2 (the thickness C of the disk 2 is 2 mm at both ends) except for the thickness C of the disk 2 bonded to one end of the main body 1, Example 3 (the thickness C of the disk 2 at both ends is 10 m)
Same as m). In this case, the main body 1 broke on the side where the thickness C of the disc 2 was 2 mm by immersion in liquid nitrogen. When the discs 2 having different thicknesses are joined to both ends of the body 1, the disc 2 having the smaller thickness C seems to dominate the destruction of the body 1.

【0032】(実施例9及び比較例11、12)これら
は、金属部材としてコバールからなるフランジ部3b付
きの管体3を使用し、Aを30mm、Bを30mm、C
を2mmと固定し、窒化珪素からなる本体1の肉厚Dを
2、6、10mmと変化させた例である。この場合、D
が2mmの実施例9は、液体窒素浸漬後も気密性を保持
したが、Dを6、10mmと大きくした比較例11、1
2は、液体窒素浸漬により窒化珪素の本体1が破壊し
た。本体1の肉厚Dを小さくすると、接合体中の残留応
力は緩和される。この結果は、円板2の場合の実施例1
及び比較例1、2と同じである。
(Example 9 and Comparative Examples 11 and 12) In these examples, a tube body 3 having a flange portion 3b made of Kovar is used as a metal member, A is 30 mm, B is 30 mm, and C is 30 mm.
Is fixed to 2 mm, and the thickness D of the main body 1 made of silicon nitride is changed to 2, 6, and 10 mm. In this case, D
In Example 9 having a diameter of 2 mm, the airtightness was maintained even after immersion in liquid nitrogen, but Comparative Examples 11 and 1 in which D was increased to 6 and 10 mm.
In No. 2, the main body 1 of silicon nitride was broken by immersion in liquid nitrogen. When the wall thickness D of the main body 1 is reduced, the residual stress in the bonded body is relieved. This result is shown in Example 1 in the case of the disc 2.
And the same as Comparative Examples 1 and 2.

【0033】(実施例10、11及び比較例13)これ
らは、金属部材としてSUS430からなるフランジ部
3b付きの管体3を使用し、Aを30mm、Bを30m
m、Dを2mmと固定し、接合するSUS430のフラ
ンジ部3bの厚さCを10、6、2mmと変化させた例
である。この場合、Cが10、6mmの実施例10、1
1は、液体窒素浸漬後も気密性を保持したが、Cを2m
mと小さくした比較例13は、液体窒素浸漬により窒化
珪素の本体1が破壊した。接合する金属からなるフラン
ジ部3bの厚さCを小さくすると、接合体中の残留応力
は増大する。この結果は、円板の場合の実施例4、5及
び比較例3と同じである。
(Examples 10 and 11 and Comparative Example 13) In these, a tubular body 3 made of SUS430 with a flange portion 3b was used as a metal member, and A was 30 mm and B was 30 m.
In this example, m and D are fixed to 2 mm, and the thickness C of the flange portion 3b of the SUS430 to be joined is changed to 10, 6, and 2 mm. In this case, Examples 10 and 1 in which C is 10 and 6 mm
No. 1 kept airtightness after immersion in liquid nitrogen, but C was 2m
In Comparative Example 13 having a small m, the silicon nitride main body 1 was broken by immersion in liquid nitrogen. When the thickness C of the flange portion 3b made of metal to be joined is reduced, the residual stress in the joined body increases. The results are the same as those of Examples 4 and 5 and Comparative Example 3 in the case of the disc.

【0034】以上の実施例、比較例より明らかな様に、
接合体中の残留応力に起因する窒化珪素等のセラミック
スの破壊に大きな影響を及ぼす因子は、円筒状のセラミ
ックス部材の肉厚D及び両端部に接合した金属部材の厚
さCである。円筒状のセラミックス部材の肉厚Dを小さ
くする程、両端部に接合する金属部材の厚さCを大きく
する程、接合体中の残留応力は緩和され、窒化珪素等の
セラミックスの破壊が抑制される。
As is clear from the above Examples and Comparative Examples,
Factors that greatly affect the destruction of ceramics such as silicon nitride due to the residual stress in the bonded body are the wall thickness D of the cylindrical ceramic member and the thickness C of the metal member bonded to both ends. The smaller the wall thickness D of the cylindrical ceramic member and the larger the thickness C of the metal members bonded to both ends, the more the residual stress in the bonded body is relaxed, and the destruction of ceramics such as silicon nitride is suppressed. It

【0035】ここで、フランジ部3bのついた管体3
は、フランジ部3bを円板2とみなすと、管部3aはそ
れに付随した部分となる。すなわち、本発明は、円板に
付随する部分をもつ金属部材にも適用され得る。この場
合、金属部材の厚さCはフランジ部3bのような円板部
分の厚さである。また、セラミックスの破壊に関連する
残留応力の大きさは、セラミックスと接合する金属の熱
膨張係数の差に比例するので、コバールを接合した接合
体と比較して、SUS430を接合したものは、接合体
構造がより限定されることになる。
Here, the tubular body 3 with the flange portion 3b
When the flange portion 3b is regarded as the circular plate 2, the pipe portion 3a becomes a portion associated with it. That is, the present invention can be applied to a metal member having a portion associated with the disc. In this case, the thickness C of the metal member is the thickness of the disc portion such as the flange portion 3b. In addition, since the magnitude of the residual stress related to the fracture of ceramics is proportional to the difference in the coefficient of thermal expansion of the metal to be joined to the ceramics, compared to the joined body in which Kovar is joined, the one in which SUS430 is joined is The body structure will be more limited.

【0036】さらに、窒化珪素等のセラミックスの破壊
に関連する残留応力は、接合時の冷却過程で、ろう材の
融点に達して、接合面が拘束され、以後の冷却過程でセ
ラミックスと金属の収縮が整合しない結果として増大す
るので、室温でのその大きさは、ろう材の融点にほぼ比
例することになる。ここで、円筒状の窒化珪素部材の肉
厚(外径と内径の差の1/2)D(mm)及びその両端
部に接合する金属部材の厚さC(mm)の効果を両者の
比D/Cで表し、さらに、接合体中の残留応力に顕著な
影響を及ぼすセラミックスと金属の熱膨張係数(室温か
らろう材の融点までの平均熱膨張係数)の差Δα(/
℃)とろう材の融点M(℃)を考慮に入れ、M・Δα・
D/Cという値を定義する。本実施例、比較例の場合、
Mは800℃、コバールを使用した接合体のΔαは7.
0×1−6、SUS430を使用した接合体のΔαは
9.0×10−6となる。表1に示す通り、M・Δα・
D/Cという値が6×10−3以下となるように接合体
を設計すれば、液体室素浸漬後も室化珪素が破壊せず、
気密性を保持した高い信頼性を有する円筒状の窒化珪素
部材と金属部材の接合体の作製が可能となる。
Further, the residual stress associated with the destruction of ceramics such as silicon nitride reaches the melting point of the brazing filler metal during the cooling process at the time of bonding, the bonding surface is constrained, and the shrinkage of the ceramics and metal in the subsequent cooling process. Will increase as a result of the mismatch, and its size at room temperature will be approximately proportional to the melting point of the braze. Here, the effect of the thickness (1/2 of the difference between the outer diameter and the inner diameter) D (mm) of the cylindrical silicon nitride member and the thickness C (mm) of the metal member bonded to both ends thereof is compared with each other. It is expressed by D / C, and further, the difference Δα (/ in the coefficient of thermal expansion between ceramics and metal (the average coefficient of thermal expansion from room temperature to the melting point of the brazing material) that significantly affects the residual stress in the joined body.
℃) and the melting point M (℃) of the brazing filler metal are taken into consideration.
Define the value D / C. In the case of this example and the comparative example,
M is 800 ° C., Δα of the joined body using Kovar is 7.
0 × 1 −6 , Δα of the joined body using SUS430 is 9.0 × 10 −6 . As shown in Table 1, M ・ Δα ・
If the bonded body is designed so that the value of D / C is 6 × 10 −3 or less, the silicon nitride does not break even after immersion in the liquid chamber,
It is possible to produce a highly reliable cylindrical bonded body of a silicon nitride member and a metal member that maintains airtightness.

【0037】[0037]

【発明の効果】以上説明したように、本発明により、ろ
う付けされた接合体中の残留応力を緩和させた高い信頼
性を有する窒化珪素等のセラミックス部材と金属部材の
接合体構造の提供が可能となる。また、この接合体構造
を使用した接合体は、気密性及び絶縁性を必要とする接
合部材等として利用される。
As described above, according to the present invention, it is possible to provide a highly reliable bonded body structure of a ceramic member such as silicon nitride and a metal member in which residual stress in the brazed bonded body is relaxed. It will be possible. A joined body using this joined body structure is used as a joined member or the like that requires airtightness and insulation.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明のセラミックス部材と金属部材の接合体
の一例を示す平面図である。
FIG. 1 is a plan view showing an example of a joined body of a ceramic member and a metal member of the present invention.

【図2】図1の接合体の縦断面図である。FIG. 2 is a vertical cross-sectional view of the joined body of FIG.

【図3】接合体の他の例を示す平面図である。FIG. 3 is a plan view showing another example of a joined body.

【図4】図3の接合体の縦断面図である。4 is a vertical cross-sectional view of the joined body of FIG.

【符号の説明】[Explanation of symbols]

1 セラミックス部材としての本体 2 金属部材としての円板 3 金属部材としての管体 3b 管体3のフランジ部 4 セラミックス部材と金属部材の接合部 A セラミックス部材としての本体1の長さ(mm) B 金属部材としての円板2あるいは管体3のフランジ
部3bの直径 C 金属部材としての円板2あるいは管体3のフランジ
部3bの厚さ D セラミックス部材としての本体1の肉厚
1 Main Body as Ceramics Member 2 Disc as Metal Member 3 Tubular Body as Metal Member 3b Flange Part of Tubular Body 4 Joint between Ceramics Member and Metal Member A Length of Main Body 1 as Ceramics Member (mm) B Diameter of the disk 2 or the flange 3b of the tube 3 as a metal member C Thickness of the disk 2 or the flange 3b of the tube 3 as a metal member D Thickness of the main body 1 as a ceramic member

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 円筒状のセラミックス部材の両端部に金
属部材をろう付けした接合体であって、円筒状のセラミ
ックス部材の肉厚(外径と内径の差の1/2)をD、金
属部材の厚さをC、セラミックスと金属の熱膨張係数
(室温からろう材の融点までの平均熱膨張係数)の差を
Δα(/℃)、ろう材の融点をM(℃)とすると、M・
Δα・D/Cが6×10−3以下であることを特徴とす
るセラミックス部材と金属部材の接合体。
1. A joined body in which metal members are brazed to both ends of a cylindrical ceramic member, wherein the thickness (1/2 of the difference between the outer diameter and the inner diameter) of the cylindrical ceramic member is D. Let C be the thickness of the member, Δα (/ ° C) be the difference between the coefficient of thermal expansion of ceramics and metal (average coefficient of thermal expansion from room temperature to the melting point of the brazing material), and M be the melting point of the brazing material.・
Δα · D / C is 6 × 10 −3 or less, a joined body of a ceramic member and a metal member.
【請求項2】セラミックス部材が窒化珪素からなること
を特徴とする請求項1に記載のセラミックス部材と金属
部材の接合体。
2. The joined body of a ceramic member and a metal member according to claim 1, wherein the ceramic member is made of silicon nitride.
【請求項3】金属部材がコバールからなることを特徴と
する請求項1又は2に記載のセラミックス部材と金属部
材の接合体。
3. The joined body of a ceramic member and a metal member according to claim 1, wherein the metal member is made of Kovar.
【請求項4】金属部材がステンレスからなることを特徴
とする請求項1又は2に記載のセラミックス部材と金属
部材の接合体。
4. The joined body of a ceramic member and a metal member according to claim 1, wherein the metal member is made of stainless steel.
JP34831093A 1993-12-15 1993-12-15 Joined product between ceramic part and metallic part Pending JPH07172946A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP34831093A JPH07172946A (en) 1993-12-15 1993-12-15 Joined product between ceramic part and metallic part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP34831093A JPH07172946A (en) 1993-12-15 1993-12-15 Joined product between ceramic part and metallic part

Publications (1)

Publication Number Publication Date
JPH07172946A true JPH07172946A (en) 1995-07-11

Family

ID=18396171

Family Applications (1)

Application Number Title Priority Date Filing Date
JP34831093A Pending JPH07172946A (en) 1993-12-15 1993-12-15 Joined product between ceramic part and metallic part

Country Status (1)

Country Link
JP (1) JPH07172946A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211705A2 (en) 2000-11-30 2002-06-05 Ngk Spark Plug Co., Ltd. Metal-ceramic composite and vacuum switch unit using the same
US6566621B2 (en) 2000-11-30 2003-05-20 Ngk Spark Plug Co., Ltd. Metal-ceramic composite and vacuum switch unit using the same
CN105418135A (en) * 2015-12-07 2016-03-23 哈尔滨工业大学 Brazing method of SiO2 ceramic matrix composite material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1211705A2 (en) 2000-11-30 2002-06-05 Ngk Spark Plug Co., Ltd. Metal-ceramic composite and vacuum switch unit using the same
US6566621B2 (en) 2000-11-30 2003-05-20 Ngk Spark Plug Co., Ltd. Metal-ceramic composite and vacuum switch unit using the same
US6635841B2 (en) 2000-11-30 2003-10-21 Ngk Spark Plug Co., Ltd. Metal-ceramic composite and vacuum switch unit using the same
EP1211705A3 (en) * 2000-11-30 2004-08-18 Ngk Spark Plug Co., Ltd. Metal-ceramic composite and vacuum switch unit using the same
CN105418135A (en) * 2015-12-07 2016-03-23 哈尔滨工业大学 Brazing method of SiO2 ceramic matrix composite material

Similar Documents

Publication Publication Date Title
US10388560B2 (en) Shaft-end mounting structure
KR20160009074A (en) Joined structure between ceramic plate and metallic cylindrical member
JP3622353B2 (en) Electrostatic chuck stage and manufacturing method thereof
US5102747A (en) High temperature-resistant composite
JP2001031484A (en) Corrosion-resistant composite member
JPH07172946A (en) Joined product between ceramic part and metallic part
US5998041A (en) Joined article, a process for producing said joined article, and a brazing agent for use in producing such a joined article
JPS6359996B2 (en)
KR100212628B1 (en) Ceramic joint body and process for manufacturing the same
JP3678413B2 (en) Brazed bonded body of aluminum nitride sintered body and Fe-Ni-Co alloy and wafer support member
US4785989A (en) Clad system for brazing to alumina
JPH0930870A (en) Bonded material of ceramic metal and accelerating duct
JP3545866B2 (en) Wafer holding device
JP2000169252A (en) Bonded material of ceramic member and metal member and wafer supporting member using the same
JP2945466B2 (en) Airtight joint structure between ceramic tube and metal
JP3941542B2 (en) Hermetic bonding structure of ceramics and metal and apparatus parts having the structure
JPS5813488A (en) Production of metal clad ceramic pipe
JP4493236B2 (en) Wafer support member and manufacturing method thereof
JPH07172948A (en) Adhesion of metallic material to ceramic material
JP2008184691A (en) Sight glass of vacuum vessel and vacuum vessel
JP2004149827A (en) Peephole of vacuum vessel, and vacuum vessel
JPS6197174A (en) Diffusion bonding method for ceramics and metals
JP2997769B2 (en) Hermetic sealing device for neutron detector
JPS6253074B2 (en)
JPH03242386A (en) Bond structure of substrate of aluminum nitride and metallic plate