JPH07172867A - Silicon oxide film optical element and its production - Google Patents

Silicon oxide film optical element and its production

Info

Publication number
JPH07172867A
JPH07172867A JP31561293A JP31561293A JPH07172867A JP H07172867 A JPH07172867 A JP H07172867A JP 31561293 A JP31561293 A JP 31561293A JP 31561293 A JP31561293 A JP 31561293A JP H07172867 A JPH07172867 A JP H07172867A
Authority
JP
Japan
Prior art keywords
silicon oxide
film
oxide film
sputtering
optical element
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31561293A
Other languages
Japanese (ja)
Inventor
Hiroki Takahashi
裕樹 高橋
Haruki Kataoka
春樹 片岡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Osaka Cement Co Ltd
Original Assignee
Sumitomo Osaka Cement Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Osaka Cement Co Ltd filed Critical Sumitomo Osaka Cement Co Ltd
Priority to JP31561293A priority Critical patent/JPH07172867A/en
Publication of JPH07172867A publication Critical patent/JPH07172867A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a silicon oxide thin film optical element having high film forming rate, low internal stress and large laminated thickness by forming a specific hydrogen bond in the film at the time of laminating the silicon oxide film. CONSTITUTION:The silicon oxide thin film is formed as a structural film of an optical element used in a near infrared wave length region by using a mixture of Ar and H2 as a sputtering gas and SiO2 as a sputtering target and setting a substrate temp. to <=400 deg.C so that hydrogen is contained in the silicon oxide film and a part or whole of them forms Si-H bond or SiO-H bond by sputtering method. For example, a laminated optical polarizing element having 500mum laminated thickness is obtained by being constituted of an alternate multilayered film of Ge (4.5nm) and silicon oxide film (800nm) in the film forming condition of 4:1 mixing ratio of Ar and H2, 560W sputtering electric power, 0.2Pa sputtering pressure and non-heating of the basic temperature and inserting a Si film (1nm) between the boundary of the films in order to improve the sticking strength of both films.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、近赤外波長領域で用い
られる積層型偏光子、積層型偏光分離素子、光学フィル
ター等の光学素子の導波路あるいは低屈折率誘電体層と
して必要不可欠な酸化シリコン膜を有する酸化シリコン
膜光学素子及びその製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention is indispensable as a waveguide or a low refractive index dielectric layer of optical elements such as laminated polarizers, laminated polarization separation elements and optical filters used in the near infrared wavelength region. The present invention relates to a silicon oxide film optical element having a silicon oxide film and a method for manufacturing the same.

【0002】[0002]

【従来の技術】酸化シリコン膜は、近赤外波長域では透
明であるために、積層型偏光子、積層型偏波分離素子、
光学フィルター等の光学薄膜デバイスの光導波路あるい
は低屈折率誘電体層として利用されている。
2. Description of the Related Art Since a silicon oxide film is transparent in the near-infrared wavelength range, a laminated polarizer, a laminated polarization separation element,
It is used as an optical waveguide of an optical thin film device such as an optical filter or a low refractive index dielectric layer.

【0003】ここで、酸化シリコン膜の作製法には、C
VD法、電子ビーム法およびスパッタリング法等がある
が、酸化シリコンの光学薄膜デバイスへの応用において
は高密度および成膜速度の優位性からスパッタリング法
がよく用いられ、スパッタリングガスにアルゴン及び酸
素の混合物を使用するのが一般的である。
Here, the method for producing the silicon oxide film is C
Although there are VD method, electron beam method, sputtering method, etc., in the application of silicon oxide to an optical thin film device, the sputtering method is often used because of its high density and film forming rate, and a mixture of argon and oxygen is used as a sputtering gas. Is generally used.

【0004】[0004]

【発明が解決しようとする課題】近年、積層型偏光子
(S.Kawakami, Appl.Opt., 22,2426(1983)参照)、積層
型偏波分離素子(T.Sato, K.Shiroishi, K.Tsutida ann
d S.Kawakami, Appl.Phys.Lett., 612633(1992) 参照)
等の様な酸化シリコン膜と金属あるいは半導体膜との交
互多層膜から構成される光学薄膜素子の需要が高くなっ
てきている。
Recently, a laminated polarizer (see S. Kawakami, Appl. Opt., 22,2426 (1983)) and a laminated polarization demultiplexer (T. Sato, K. Shiroishi, K). .Tsutida ann
d S. Kawakami, Appl. Phys. Lett., 612633 (1992))
There is an increasing demand for an optical thin film element composed of an alternating multi-layer film of a silicon oxide film and a metal or semiconductor film such as the above.

【0005】ここで、積層型偏光子および積層型偏波分
離素子は、積層断面を光ファイバーのコア部に接合し使
用されるが、この接合操作を容易にするためにはこれら
の素子の積層厚が大きいことが望ましい。また、これら
の素子の使用を広範囲にするために光ファイバーを用い
ず、レンズ等によって信号光を素子断面へ入射させるこ
となども考えられているが、その際にも素子の積層厚が
大きいほど入射光との結合は容易になる。
Here, the laminated polarizer and the laminated polarization separation element are used by bonding the laminated cross section to the core portion of the optical fiber, and in order to facilitate the bonding operation, the laminated thickness of these elements is used. Is preferably large. It is also considered that the signal light is made incident on the cross section of the element by a lens etc. without using an optical fiber in order to widen the use of these elements, but in that case, the incident light becomes larger as the laminated thickness of the element becomes larger. Coupling with light becomes easy.

【0006】しかし、アルゴンと酸素混合ガスを用いた
従来のスパッタリング膜の内部応力が大きいために多層
膜の積層厚の増加には制限があった。即ち、スパッタリ
ング法は、素子の生産性が高いメリットを持つが、スパ
ッタリングガスにアルゴンと酸素の混合ガスを用いる一
般的なスパッタリング条件で作製される酸化シリコン膜
には、他の成膜手法に比べて高い膜内部応力が発生する
という問題がある。
However, since the internal stress of a conventional sputtering film using a mixed gas of argon and oxygen is large, there is a limit to the increase in the laminated thickness of the multilayer film. That is, the sputtering method has a merit of high element productivity, but a silicon oxide film formed under a general sputtering condition using a mixed gas of argon and oxygen as a sputtering gas is superior to other film forming methods. There is a problem that high internal stress of the film is generated.

【0007】スパッタリング法により作製される膜の応
力の原因は、peening効果、即ち、アルゴン等の
スパッタリングガスが膜中へ不純物として取り込まれ、
膜の体積を膨張させるためと考えられている(金原
「スパッタリング現象」 東京大学出版会 p194参
照)。
The cause of the stress of the film formed by the sputtering method is the peening effect, that is, the sputtering gas such as argon is taken into the film as an impurity,
It is thought to expand the volume of the membrane (Kanehara
"Sputtering phenomenon" (See p. 194, The University of Tokyo Press).

【0008】そのため、膜の体積膨張を少なくするため
には膜中に取り込まれるアルゴン量を減少させることが
有効であり、具体的な手法として高いスパッタリング圧
力を用いる方法が報告されている(例えば、C.T.Wu, Th
in Solid Films 64,103 (1979参照) 。
Therefore, it is effective to reduce the amount of argon taken into the film in order to reduce the volume expansion of the film, and a method using a high sputtering pressure has been reported as a concrete method (for example, CTWu, Th
in Solid Films 64,103 (see 1979).

【0009】しかし、この手法は酸化シリコン膜の成膜
速度を著しく低下させるために素子の生産性の観点から
望ましい手法とは言えず、低い内部応力および高い成膜
速度を有することを両立させた酸化シリコン膜の作製法
が望ましい。そこで、本発明は、高い成膜速度と低い内
部応力を有し、大きい積層厚を有する酸化シリコン薄膜
光学素子とその製造方法を提供することを目的とする。
However, this method cannot be said to be a desirable method from the viewpoint of the productivity of the device because the film forming rate of the silicon oxide film is remarkably reduced, and it has both low internal stress and high film forming rate. A method for forming a silicon oxide film is desirable. Therefore, an object of the present invention is to provide a silicon oxide thin film optical element having a high film forming rate, a low internal stress, and a large laminated thickness, and a manufacturing method thereof.

【0010】[0010]

【課題を解決するための手段】本発明において上記の課
題を解決するための手段は、近赤外波長域で用いられる
光学素子の構成膜として酸化シリコン膜を有する酸化シ
リコン膜光学素子において、酸化シリコン膜積層中に膜
中に少なくとも水素を含みかつ含まれる水素の一部ある
いは全部がSi−HまたはSiO−H結合を形成して、
膜の内部応力を低減して積層することである。
Means for Solving the Problems In the present invention, a means for solving the above-mentioned problems is to use a silicon oxide film optical element having a silicon oxide film as a constituent film of an optical element used in a near infrared wavelength region, In the silicon film stack, at least hydrogen is contained in the film, and part or all of the hydrogen contained in the film forms a Si—H or SiO—H bond,
It is to reduce the internal stress of the film and stack them.

【0011】また、本発明の第2の手段は、第1の手段
に係る酸化シリコン膜光学素子の製造方法に係り、酸化
シリコン薄膜を、スパッタリングガスとしてアルゴン及
び水素の混合物を用い、スパッタリングターゲットとし
てSiO2 を用いスパッタリング法で形成することであ
る。
A second means of the present invention relates to a method for manufacturing a silicon oxide film optical element according to the first means, wherein a silicon oxide thin film is used as a sputtering gas using a mixture of argon and hydrogen as a sputtering target. That is, it is formed by sputtering using SiO 2 .

【0012】さらに、本発明の第3の手段は、第2の手
段の酸化シリコン膜光学素子の製造方法において、基板
の温度を400℃以下とし、酸化シリコン膜内に少なく
とも水素を含みかつ含まれる水素の一部あるいは全部が
Si−HまたはSiO−H結合を形成することである。
Furthermore, a third means of the present invention is the method of manufacturing a silicon oxide film optical element according to the second means, wherein the temperature of the substrate is 400 ° C. or lower, and the silicon oxide film contains and contains at least hydrogen. That is, some or all of hydrogen forms Si—H or SiO—H bonds.

【0013】以下、本発明を詳説する。 (1)酸化シリコン膜の応力と成膜速度に対する水素ガ
ス流量比依存性 本発明で作製される酸化シリコン膜の応力と成膜速度に
対する水素ガス流量比依存性を図1および図2にそれぞ
れ示す。膜応力の測定は、膜の体積前後の基板のそり量
から求める一般的な方法を用いた(L.M.Mac and A.Reis
man, J.Electrochem. Soc.,136,3433(1989) 参照)。図
は、慣例に従い圧縮性応力を負の値で示した(絶対値が
大きくなるに伴い応力は大きい)。
The present invention will be described in detail below. (1) Dependence of Hydrogen Gas Flow Rate Ratio on Stress and Deposition Rate of Silicon Oxide Film FIGS. 1 and 2 show the dependency of hydrogen gas flow rate ratio on the stress and deposition rate of the silicon oxide film manufactured by the present invention, respectively. . The film stress was measured by the general method of obtaining the warpage of the substrate before and after the film volume (LMMac and A. Reis).
man, J. Electrochem. Soc., 136, 3433 (1989)). The figure shows the compressive stress as a negative value according to the convention (the stress increases as the absolute value increases).

【0014】実験条件は、スパッタガス流量120SC
CM、スパッタガス圧力0.2Pa、スパッタリング電
力750Wであり、基板は無加熱とした。スパッタリン
グガスにアルゴン・水素混合ガスを用いた場合、水素の
流量比の増加に伴い応力は減少する。一方、従来法であ
るアルゴン・酸素混合系では応力に対する酸素流量比の
依存性は見られない。
The experimental condition is that the sputtering gas flow rate is 120 SC.
CM, the sputtering gas pressure was 0.2 Pa, the sputtering power was 750 W, and the substrate was not heated. When an argon / hydrogen mixed gas is used as the sputtering gas, the stress decreases as the flow rate of hydrogen increases. On the other hand, in the conventional argon / oxygen mixed system, the dependency of the oxygen flow rate ratio on the stress is not observed.

【0015】これらの条件での成膜速度を見ると、水素
および酸素混合系のいずれも混合流量比の増加に伴い成
膜速度は減少するが、水素添加による成膜速度の低下率
は低い。成膜速度の絶対値の比較をすると、同じ流量比
の場合、水素混合系のものが酸素混合系に比べて約2倍
の成膜速度をもつ。これらのことから、アルゴン・水素
混合ガス雰囲気下のスパッタリング法によって作製され
る酸化シリコン膜は、従来法のものに比べて高い成膜速
度を有しかつ低い応力を示すことがわかる。
Looking at the film forming rate under these conditions, the film forming rate decreases with the increase of the mixing flow rate in both hydrogen and oxygen mixed systems, but the rate of decrease of the film forming rate due to hydrogen addition is low. Comparing the absolute values of the film formation rates, in the case of the same flow rate ratio, the film formation rate of the hydrogen mixed system is about twice that of the oxygen mixed system. From these, it can be seen that the silicon oxide film formed by the sputtering method in the atmosphere of mixed gas of argon and hydrogen has a higher film formation rate and lower stress as compared with the conventional method.

【0016】(2) 酸化シリコン膜の応力に対するス
パッタリング電力およびスパッタリング圧力の依存性 酸化シリコン膜の応力に対するスパッタリング電力およ
びスパッタリング圧力依存性を調べた。結果を図3およ
び図4にそれぞれ示す。
(2) Dependence of sputtering power and sputtering pressure on stress of silicon oxide film The dependence of sputtering power and sputtering pressure on the stress of silicon oxide film was investigated. The results are shown in FIGS. 3 and 4, respectively.

【0017】スパッタリング電力依存性実験はスパッタ
ガス流量120SCCM、スパッタリング圧力0.2P
aの条件で、水素流量比20および40%のものについ
て行った。また、スパッタリングガス圧力依存性実験
は、スパッタガス流量120SCCM、スパッタリング
電力375W、水素流量比20%の条件で行い、いずれ
の場合も基板温度は無加熱である。
The sputtering power dependence experiment was carried out by using a sputtering gas flow rate of 120 SCCM and a sputtering pressure of 0.2 P.
Under the condition of a, the hydrogen flow rate ratio was 20 and 40%. Moreover, the sputtering gas pressure dependence experiment is performed under the conditions of a sputtering gas flow rate of 120 SCCM, a sputtering power of 375 W, and a hydrogen flow rate ratio of 20%, and in any case, the substrate temperature is not heated.

【0018】図から、酸化シリコン膜の内部応力は、ス
パッタリング電力の減少およびスパッタリング圧力の増
加に伴いほぼ直線的に減少することがわかる。
From the figure, it can be seen that the internal stress of the silicon oxide film decreases almost linearly as the sputtering power decreases and the sputtering pressure increases.

【0019】(3) 酸化シリコン膜の応力の基板温度
依存性 基板温度を自然放置(無加熱)から450℃の範囲で変
化させた場合の酸化シリコン膜の応力を調べた。アルゴ
ン・水素混合比、スパッタリング電力およびスパッタリ
ング圧力は、それぞれ4:1、560Wおよび0.2P
aに固定した(熱応力)を測定値から差し引いたものを
示してある。
(3) Substrate Temperature Dependence of Stress of Silicon Oxide Film The stress of the silicon oxide film was examined when the substrate temperature was changed from natural standing (no heating) to 450 ° C. Argon / hydrogen mixture ratio, sputtering power and sputtering pressure are 4: 1, 560 W and 0.2 P, respectively.
The value obtained by subtracting (thermal stress) fixed to a from the measured value is shown.

【0020】本法によって作製される酸化シリコン膜の
応力の基板温度依存性を図5に示す。図の応力の値は、
基板と膜の熱膨張係数の違いに起因する熱応力を差し引
き、膜そのものが示す応力(真応力)をプロットしてあ
る。図から酸化シリコンの真応力は、基板温度の増加に
ともない大きくなる傾向を示すこと、また基板温度45
0℃で作製された場合には著しく高いことがわかる。基
板温度の増加にともない酸化シリコン中に含まれるSi
−H結合数が減少することおよび基板温度450℃では
膜中にSi−H結合が生成されないことが赤外吸収スペ
クトル法から確認された。これらのことから、膜の真応
力の増加は酸化シリコン膜中の水素量の減少に起因する
と考えられる。
FIG. 5 shows the substrate temperature dependence of the stress of the silicon oxide film produced by this method. The stress values in the figure are
The stress (true stress) indicated by the film itself is plotted by subtracting the thermal stress due to the difference in the coefficient of thermal expansion between the substrate and the film. The figure shows that the true stress of silicon oxide tends to increase as the substrate temperature increases.
It can be seen that it is extremely high when manufactured at 0 ° C. Si contained in silicon oxide as the substrate temperature increases
It was confirmed by infrared absorption spectroscopy that the number of —H bonds decreased and that Si—H bonds were not formed in the film at a substrate temperature of 450 ° C. From these, it is considered that the increase in the true stress of the film is due to the decrease in the amount of hydrogen in the silicon oxide film.

【0021】[0021]

【作用】酸化シリコン膜は、Si−O−Siネットワー
ク構造を形成しているが、本発明によれば、このネット
ワーク中にSi−H等の結合を形成させ、ネットワーク
を切断、即ち、Siの結合を水素で終端させることによ
りpeening効果による膜の体積膨張を緩和させる
ものである。
The silicon oxide film forms a Si-O-Si network structure. According to the present invention, however, a bond such as Si-H is formed in the network to disconnect the network, that is, to remove Si. By terminating the bond with hydrogen, the volume expansion of the film due to the Peening effect is relaxed.

【0022】上述のように、本発明の酸化シリコン膜の
応力は従来のものに比べて低減される。この原因を調べ
るため膜中に込まれたアルゴン量をラザフォードバック
スキャタリング(RBS)法によって測定し、図6に示
すように、膜応力と膜中アルゴン量との関係を調べた。
図中の白丸および黒丸は、それぞれアルゴン・水素およ
びアルゴン・酸素雰囲気で作製された膜のデータであ
る。従来報告されているように、膜応力と膜中アルゴン
量とにはある程度相関がみられ、膜中アルゴン量の増加
に伴い膜応力は大きくなる傾向を持つ。しかし、図6に
はその関係からはずれ、膜中アルゴン量が多いにもかか
わらず低い応力を示す酸化シリコン膜が存在しており、
本試料の応力は、膜中アルゴン量の観点のみでは説明し
きれないことが示唆される。
As described above, the stress of the silicon oxide film of the present invention is reduced as compared with the conventional one. In order to investigate this cause, the amount of argon incorporated in the film was measured by the Rutherford backscattering (RBS) method, and the relationship between the film stress and the amount of argon in the film was investigated as shown in FIG.
White circles and black circles in the figure are data of films formed in an argon / hydrogen atmosphere and an argon / oxygen atmosphere, respectively. As previously reported, there is some correlation between the film stress and the amount of argon in the film, and the film stress tends to increase as the amount of argon in the film increases. However, there is a silicon oxide film which shows a low stress in FIG. 6 despite the large amount of argon in the film.
It is suggested that the stress of this sample cannot be explained only from the viewpoint of the amount of argon in the film.

【0023】本発明の酸化シリコン膜の赤外分光スペク
トルには、すべてSi−H振動モードに起因するピーク
が見られ、部分的にSiの結合が水素によって終端され
ていることが確認された。Si−O−Siネットワーク
中のSiが、どれくらいHによって終端されているかを
表すための指標をSi−O Bendingの積分強度
(SSi-O)とSi−H Bendingモードの積分強
度(SSi-H)を用い、{SSi-H/SSi-H+SSi-O}と表
した。
In the infrared spectroscopic spectrum of the silicon oxide film of the present invention, all peaks due to the Si-H vibration mode were observed, and it was confirmed that the Si bond was partially terminated by hydrogen. The integrated intensity of Si-O Bending (S Si-O ) and the integral intensity of Si-H Bending mode (S Si- are used as indices for indicating how much Si in the Si-O-Si network is terminated by H. H ) was used and expressed as {S Si-H / S Si-H + S Si-O }.

【0024】これと膜応力の関係を調べると、図7に示
すように、良い直線関係が得られる。これは、本試料の
応力は膜中のアルゴン量以外に水素終端量が大きく関連
し、水素終端量の増加に伴い膜の応力が低下することを
示している。即ち、本発明の大きな特徴は酸化シリコン
膜中にSi−H結合等の水素結合種を形成させることに
ある。
When the relationship between this and the film stress is examined, a good linear relationship is obtained as shown in FIG. This indicates that the stress of this sample is largely related to the amount of hydrogen termination in addition to the amount of argon in the film, and the stress of the film decreases as the amount of hydrogen termination increases. That is, a major feature of the present invention is that hydrogen bond species such as Si—H bond are formed in the silicon oxide film.

【0025】本発明の酸化シリコン膜は光学素子に応用
されるため、その光学特性を測定した。本発明の酸化シ
リコン膜は700nm以上の近赤外領域では光吸収が見
られず、この波長領域では透過光に対し無損失な材料で
あることおよび屈折率が従来法のものと同じ値であるこ
とが、透過・反射スペクトルの測定から確認された。こ
れは、本発明の酸化シリコン膜が、光学素子の構成膜と
して使用された場合でも、従来法の酸化シリコンを用い
た光学素子とまったく同様の性能を発現し得ることを示
す。
Since the silicon oxide film of the present invention is applied to an optical element, its optical characteristics were measured. The silicon oxide film of the present invention shows no light absorption in the near-infrared region of 700 nm or more, and is a lossless material for transmitted light in this wavelength region and has the same refractive index as that of the conventional method. This was confirmed from the measurement of the transmission / reflection spectrum. This shows that the silicon oxide film of the present invention, even when used as a constituent film of an optical element, can exhibit exactly the same performance as an optical element using conventional silicon oxide.

【0026】[0026]

【実施例】本発明の酸化シリコン膜光学素子の実施例と
して、積層型光偏光素子を作製した。本素子は、Ge
(4.5nm)と酸化シリコン膜(800nm)の交互
多層膜から構成され、膜の界面には両者の膜の付着力を
向上させるためにSi膜(1nm)を挿入した。
EXAMPLE As a practical example of the silicon oxide film optical element of the present invention, a laminated optical polarizing element was produced. This element is Ge
(4.5 nm) and a silicon oxide film (800 nm), and a Si film (1 nm) was inserted at the interface between the films in order to improve the adhesion between the films.

【0027】従来の手法による酸化シリコン膜を用いた
場合、300μm以上の積層はできないのに対し、本発
明の酸化シリコン膜を用いることによって500μmの
積層厚を持つ素子を作製できた。
When a silicon oxide film according to the conventional method is used, a layer having a thickness of 300 μm or more cannot be formed. On the other hand, by using the silicon oxide film of the present invention, an element having a layer thickness of 500 μm can be manufactured.

【0028】ここで、酸化シリコン膜の成膜条件は、ア
ルゴン・水素混合比=4:1、スパッタリング電力=5
60W、スパッタリング圧力=0.2Pa、基板温度=
無加熱である。
The conditions for forming the silicon oxide film are as follows: Argon / hydrogen mixture ratio = 4: 1, sputtering power = 5.
60 W, sputtering pressure = 0.2 Pa, substrate temperature =
No heating.

【0029】この素子の850nmでの光学的特性は、
消光比51dB、挿入損失0.33dB(素子長30μ
m)であり、従来の酸化シリコン膜を用いて作製された
積層型偏光子の特性とまったく変わらないことが確認さ
れた。また、この条件での酸化シリコン膜の成膜速度
は、従来法のものに比べ約2倍であるために素子の作製
時間を約1/2に短縮することができ、生産効率を大き
く増加させることができた。これは、素子の作製時間は
ほとんど酸化シリコン膜の成膜時間に等しいからであ
る。
The optical characteristics of this device at 850 nm are
Extinction ratio 51 dB, insertion loss 0.33 dB (element length 30 μ
m), and it was confirmed that the characteristics of the laminated polarizer produced using the conventional silicon oxide film were not different at all. In addition, since the film formation rate of the silicon oxide film under this condition is about twice as high as that of the conventional method, it is possible to reduce the manufacturing time of the element to about 1/2, which greatly increases the production efficiency. I was able to. This is because the manufacturing time of the device is almost equal to the film forming time of the silicon oxide film.

【0030】[0030]

【発明の効果】以上説明したように、本発明によれば、
酸化シリコン膜光学素子を、酸化シリコン膜積層中に膜
中に少なくとも水素を含みかつ含まれる水素の一部ある
いは全部がSi−HまたはSiO−H結合を形成して積
層したので、光学特性が良好な酸化シリコン膜を、内部
応力を低いものとして積層することができ、酸化シリコ
ン膜の厚みを十分に厚いものとして積層でき、さらに積
層速度を短縮でき、生産効率を良好なものとすることが
できる。
As described above, according to the present invention,
Since the silicon oxide film optical element is laminated by including at least hydrogen in the film and forming a Si—H or SiO—H bond in a part of the silicon oxide film, the optical characteristics are good. Silicon oxide film can be laminated with low internal stress, the silicon oxide film can be laminated with a sufficiently large thickness, and the stacking speed can be shortened and the production efficiency can be improved. .

【図面の簡単な説明】[Brief description of drawings]

【図1】酸化シリコン膜応力の添加ガス流量比依存性を
示すグラフである。
FIG. 1 is a graph showing the dependency of a stress of a silicon oxide film on a flow rate ratio of an added gas.

【図2】酸化シリコン成膜速度の添加ガス流量比依存性
を示すグラフである。
FIG. 2 is a graph showing dependency of a silicon oxide film forming rate on an additive gas flow rate ratio.

【図3】酸化シリコン膜応力のスパッタリング電力依存
性を示すグラフである。
FIG. 3 is a graph showing the dependence of silicon oxide film stress on sputtering power.

【図4】酸化シリコン膜応力のスパッタリングガス圧力
依存性を示すグラフである。
FIG. 4 is a graph showing the dependence of stress of a silicon oxide film on sputtering gas pressure.

【図5】酸化シリコン膜応力の基板温度依存性を示すグ
ラフである。
FIG. 5 is a graph showing the substrate temperature dependence of the stress of a silicon oxide film.

【図6】酸化シリコン膜中のアルゴンと膜応力との関係
を示すグラフである。
FIG. 6 is a graph showing a relationship between argon in a silicon oxide film and film stress.

【図7】酸化シリコン膜中のSi−H系都合数と膜内部
応力との関係を示すグラフである。
FIG. 7 is a graph showing the relationship between the Si-H system fraction in a silicon oxide film and the film internal stress.

───────────────────────────────────────────────────── フロントページの続き (51)Int.Cl.6 識別記号 庁内整理番号 FI 技術表示箇所 G02B 6/13 ─────────────────────────────────────────────────── ─── Continuation of the front page (51) Int.Cl. 6 Identification code Office reference number FI technical display location G02B 6/13

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 近赤外波長域で用いられる光学素子の構
成膜として酸化シリコン膜を有する酸化シリコン膜光学
素子において、 酸化シリコン膜積層中に膜中に少なくとも水素を含みか
つ含まれる水素の一部あるいは全部がSi−HまたはS
iO−H結合を形成して、膜の内部応力を低減して積層
したことを特徴とする酸化シリコン膜光学素子。
1. A silicon oxide film optical element having a silicon oxide film as a constituent film of an optical element used in a near-infrared wavelength region, wherein a silicon oxide film stack contains at least hydrogen and one of hydrogen contained therein. Part or all of Si-H or S
A silicon oxide film optical element characterized by forming an iO-H bond to reduce internal stress of the film and stacking.
【請求項2】 酸化シリコン薄膜を、スパッタリングガ
スとしてアルゴン及び水素の混合物を用い、スパッタリ
ングターゲットとしてSiO2 を用いスパッタリング法
で形成することを特徴とする請求項1記載の酸化シリコ
ン膜光学素子の製造方法。
2. A silicon oxide thin film optical element according to claim 1, wherein the silicon oxide thin film is formed by a sputtering method using a mixture of argon and hydrogen as a sputtering gas and SiO 2 as a sputtering target. Method.
【請求項3】 基板の温度を400℃以下とし、酸化シ
リコン膜内に少なくとも水素を含みかつ含まれる水素の
一部あるいは全部がSi−HまたはSiO−H結合を形
成することを特徴とする請求項2記載の酸化シリコン膜
光学素子の製造方法。
3. The temperature of the substrate is set to 400 ° C. or lower, and at least hydrogen is contained in the silicon oxide film, and part or all of hydrogen contained in the silicon oxide film forms Si—H or SiO—H bonds. Item 3. A method for manufacturing a silicon oxide film optical element according to Item 2.
JP31561293A 1993-12-15 1993-12-15 Silicon oxide film optical element and its production Pending JPH07172867A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31561293A JPH07172867A (en) 1993-12-15 1993-12-15 Silicon oxide film optical element and its production

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31561293A JPH07172867A (en) 1993-12-15 1993-12-15 Silicon oxide film optical element and its production

Publications (1)

Publication Number Publication Date
JPH07172867A true JPH07172867A (en) 1995-07-11

Family

ID=18067462

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31561293A Pending JPH07172867A (en) 1993-12-15 1993-12-15 Silicon oxide film optical element and its production

Country Status (1)

Country Link
JP (1) JPH07172867A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125727A (en) * 1997-10-22 1999-05-11 Nhk Spring Co Ltd Production of optical waveguide
JP2010062410A (en) * 2008-09-05 2010-03-18 Panasonic Corp Metalized film capacitor
JP2017197789A (en) * 2016-04-25 2017-11-02 Sppテクノロジーズ株式会社 Method for manufacturing silicon oxide film and silicon oxide film

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11125727A (en) * 1997-10-22 1999-05-11 Nhk Spring Co Ltd Production of optical waveguide
JP2010062410A (en) * 2008-09-05 2010-03-18 Panasonic Corp Metalized film capacitor
JP2017197789A (en) * 2016-04-25 2017-11-02 Sppテクノロジーズ株式会社 Method for manufacturing silicon oxide film and silicon oxide film

Similar Documents

Publication Publication Date Title
US7190524B2 (en) Process for fabrication of high reflectors by reversal of layer sequence and application thereof
JP2677353B2 (en) Optical waveguide
WO1999012062A1 (en) Integrated optical polariser
JP2004538226A (en) Germanium high content waveguide material
JP6099657B2 (en) Silicon oxide layer direct bonding method
EP1569018A2 (en) Waveguide equipment and polymer waveguide
JP3496829B2 (en) Optical waveguide device
EP0266214A2 (en) Interference film filters, optical waveguides and methods for producing them
US6909831B2 (en) Optical waveguide
Kominato et al. Ring resonators composed of GeO/sub 2/-doped silica waveguides
JP3962257B2 (en) Materials for SiON optical waveguides and methods of manufacturing such waveguides
Memon et al. Silicon oxycarbide platform for integrated photonics
CN110989061A (en) All-dielectric polarization-independent total internal reflection grating and manufacturing method thereof
JPH07172867A (en) Silicon oxide film optical element and its production
US6580864B1 (en) Birefringence free optical waveguide structures
US11555953B2 (en) Optical device with wires and organic moieties
JP2608633B2 (en) Dielectric multilayer filter, method of manufacturing the same, and optical element using the same
JP2002311403A (en) Faraday rotator
Wosinski et al. Amorphous silicon in nanophotonic technology
JP2758632B2 (en) Optical member using thin film
JPH04256904A (en) Polarizing element
Chu et al. Plasma-enhanced chemical-vapor deposition oxide prepared at low-flow conditions for course wavelength-division multiplexing optical-waveguide devices
JP2003207660A (en) Optical waveguide
JP3008962B2 (en) Dielectric multilayer filter
Memon et al. Ultra-High Efficient Thermal Tuning of Dielectric Optical Waveguides

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040622