JPH07172394A - Hydraulic power generation method for ship - Google Patents
Hydraulic power generation method for shipInfo
- Publication number
- JPH07172394A JPH07172394A JP35262091A JP35262091A JPH07172394A JP H07172394 A JPH07172394 A JP H07172394A JP 35262091 A JP35262091 A JP 35262091A JP 35262091 A JP35262091 A JP 35262091A JP H07172394 A JPH07172394 A JP H07172394A
- Authority
- JP
- Japan
- Prior art keywords
- water
- intake
- ship
- power generation
- discharge port
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Other Liquid Machine Or Engine Such As Wave Power Use (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、船舶用の発電方法に関
し、特に、船舶用の水力発電方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power generation method for ships, and more particularly to a hydroelectric power generation method for ships.
【0002】[0002]
【従来の技術】従来の船舶用の発電方法は、エンジンを
運転し、このエンジンの回転で、発電機を回転して発電
している。2. Description of the Related Art In a conventional power generation method for a ship, an engine is operated, and the rotation of the engine rotates a generator to generate power.
【0003】[0003]
【発明が解決しようとする課題】従って、従来の船舶用
の発電方法では、発電した電力のエネルギにエンジンの
ロスと発電機のロス分を加えたエネルギ分の燃料を消費
することになり、エネルギの利得が無く、省エネルギが
求められる今の時代に相応しくないという問題点があ
る。Therefore, in the conventional power generation method for a ship, the fuel for the amount of energy obtained by adding the loss of the engine and the loss of the generator to the energy of the generated electric power is consumed. There is a problem that it is not suitable for the current era where there is no gain of, and energy saving is required.
【0004】本発明は、上記の問題点を解決して、船舶
が発電のために消費する燃料エネルギ以上の電力エネル
ギが得られる船舶用の水力発電方法を提供することを課
題としている。An object of the present invention is to solve the above-mentioned problems and to provide a hydroelectric power generation method for a ship, which can obtain electric power energy more than the fuel energy consumed by the ship for power generation.
【0005】[0005]
【課題を解決するための手段】本発明の船舶用の水力発
電方法は、上記の課題を解決するために、水上または水
中を航行する船舶の船体内に、水力発電用の圧力管と水
圧よりも流速を利用する割合が大きな反動水車と発電機
とを設け、この圧力管の取水口を船舶の水面下にある船
体外面の水面に近い位置に走行方向に向かって開口する
ように配し、この圧力管の放流口を前記取水口よりも下
方で、且つ、船尾寄りの位置の船体外面又は船体下方に
走行方向と反対方向に向かって開口するように配し、こ
の船舶を、走行速度秒速Vmで走行し、取水口から取水
口の開口端断面積SINと船舶の走行速度秒速Vmとに
対応する水量を取水し、この水で反動水車を回転し、こ
の反動水車の回転で発電機を運転して水力発電し、水力
発電に使用した後の水を、放流口から、この放流口近傍
を船舶の走行速度秒速Vmに対応した流速で通過する水
の吸出力によって水中に放流することにより、前記秒速
Vmに応じて前記取水口に流入し前記放流口から放流す
る水が有する運動のエネルギ及び前記取水口と前記放流
口間の位置のエネルギを水力発電に利用することを特徴
とする。SUMMARY OF THE INVENTION In order to solve the above-mentioned problems, a method of hydropower generation for a ship according to the present invention includes a pressure pipe for hydropower generation and a pressure pipe for hydropower generation in a hull of a ship traveling on water or underwater. Is also provided with a reaction turbine and a generator that use a large proportion of the flow velocity, and the intake of this pressure pipe is arranged so as to open toward the traveling direction at a position near the water surface of the outer surface of the hull below the water surface of the ship, The discharge port of this pressure pipe is arranged below the water intake port and on the outer surface of the hull near the stern or below the hull so as to open in the direction opposite to the traveling direction. The vehicle travels at Vm, and the amount of water corresponding to the cross-sectional area S IN of the opening end of the intake port and the traveling speed Vm of the ship is taken from the intake port, and the reaction turbine is rotated by this water. After driving the car to hydropower and using it for hydropower Water is discharged from the discharge port into the water by the suction force of water passing through the discharge port in the vicinity of the discharge velocity at a flow velocity corresponding to the traveling speed of the ship per second Vm, so that the water flows into the intake port according to the second speed Vm. The kinetic energy of the water discharged from the discharge port and the energy at the position between the intake port and the discharge port are used for hydroelectric power generation.
【0006】又、本発明の船舶用の水力発電方法は、取
水口の開口端断面積SINと放流口の開口端断面積S
OUTとを略等しくし、SINV≒SOUTVとするこ
とが好適である。Further, in the hydroelectric power generation method for a ship of the present invention, the opening end sectional area S IN of the water intake and the opening end sectional area S of the discharge port are provided.
And OUT is substantially equal, it is preferable that the S IN V ≒ S OUT V.
【0007】又、本発明の船舶用の水力発電方法は、取
水口の開口部を、内側から開口端に近づくに従って大き
くして、取水口に流入する水が、取水口の開口部の開口
端内外に仮定した実効取水面積S1を船舶の走行速度秒
速Vmで通過して取水口に流入するようにし、放流口の
開口部を内側から開口端に近づくに従って大きくして、
放流口から放流する水が、放流口の開口部の開口端内外
に仮定した実効放流面積S2を船舶の走行速度秒速Vm
で通過して放流口から放流するようにし、S1V≒S2
Vとすることが好適である。Further, in the hydroelectric power generation method for a ship according to the present invention, the opening of the intake port is enlarged from the inside toward the opening end, and the water flowing into the intake port is opened at the opening end of the intake port. The effective water intake area S 1 assumed inside and outside is passed at a traveling speed Vm of the ship to flow into the water intake, and the opening of the outlet is enlarged from the inside toward the opening end,
The water discharged from the discharge port has an effective discharge area S 2 that is assumed to be inside and outside the opening end of the opening of the discharge port.
S 1 V ≈ S 2
V is preferable.
【0008】[0008]
【作用】本発明の船舶用の水力発電方法は、船体内に、
水力発電装置(水力発電用の圧力管と水圧よりも流速を
利用する割合が大きな反動水車と発電機)を設け、設け
た水力発電装置で使用する水を、船舶の走行速度秒速V
mを利用して、船舶の水面下にある船体外面の水面に近
い位置に走行方向に向かって開口するように配された圧
力管の取水口から流入する水の運動のエネルギ{(1/
2)×SIN×V×V2kW}と、水力発電に使用した
後の水を、前記取水口よりも下方で、且つ、船尾寄りの
位置の船体外面又は船体下方に走行方向と反対方向に向
かって開口するように配した放流口より、この放流口近
傍を船舶の走行速度秒速Vmに対応する流速で通過する
水の吸出力〔吸出力のエネルギは、水の運動のエネルギ
{(1/2)×SOUT×V×V2kW}と水の位置の
エネルギ{9.8×SOUT×V×HkW}との和であ
る。〕によって放流することにより発生する取水口と放
流口間の落差Hによる水の位置のエネルギ{9.8×S
IN×V×HkW}とを利用して水力発電する。The hydroelectric power generation method for a ship according to the present invention is
A hydroelectric power generator (a pressure pipe for hydroelectric power generation and a reaction turbine and a generator that use a flow velocity more than a hydraulic pressure for a large proportion) is provided, and the water used by the provided hydroelectric power generator is supplied at a speed V per second of the vessel.
Using m, the kinetic energy of water flowing in from the intake port of the pressure pipe arranged so as to open in the traveling direction at a position near the water surface on the outer surface of the hull below the water surface {(1 /
2) × S IN × V × V 2 kW}, and the water that has been used for hydroelectric power generation is below the intake port and below the intake port, and on the outer surface of the hull at a position closer to the stern or below the hull, in the opposite direction to the traveling direction. The suction power of water passing through the discharge port near the discharge port at a flow velocity corresponding to the traveling speed Vm of the vessel Vm from the discharge port (the energy of the suction power is the energy of the motion of water {(1 / 2) × S OUT × V × V 2 kW} and the energy at the position of water {9.8 × S OUT × V × H kW}. ] The energy of the water position due to the drop H between the intake port and the discharge port generated by
IN × V × HkW} is used for hydroelectric power generation.
【0009】この場合、船舶には、取水口と放流口とが
無く水力発電しない通常の場合の走行速度秒速Vmに対
応する水の抵抗以外に、取水口と放流口とに対する水の
抵抗と、水力発電に利用される水が圧力管内で圧力管及
び反動水車を介して船体に加える圧力の反走行方向成分
による抵抗とが追加される。In this case, in addition to the water resistance corresponding to the traveling speed Vm in a normal case where there is no water intake and discharge port in the ship and no hydroelectric power generation, water resistance to the intake port and the discharge port, The resistance due to the anti-traveling direction component of the pressure applied to the hull by the water used for hydropower generation in the pressure pipe via the pressure pipe and the reaction turbine is added.
【0010】上記の追加された抵抗に対抗して、船舶の
走行速度秒速Vmを維持するために、船舶の推進機関
が、通常の場合に追加して消費する燃料エネルギを、別
に使用してエンジンを運転しこのエンジンで発電機を回
転して発電した場合の発電電力のエネルギが、上記の水
力発電に利用できるエネルギ[水の運動のエネルギ
{(1/2)×SIN×V×V2kW}+水の位置のエ
ネルギ{9.8×SIN×V×HkW}]によって水力
発電される発電電力のエネルギに比較して、小さいか大
きいかで、この水力発電にエネルギ利得が有るか無いか
が決まる。In order to counter the above-mentioned added resistance, in order to maintain the traveling speed Vs of the ship Vm, the fuel energy additionally consumed by the propulsion engine of the ship in the normal case is separately used and the engine is used. The energy of the generated power when the generator is rotated by this engine to generate electric power is the energy that can be used for the above-mentioned hydroelectric power generation [water kinetic energy {(1/2) × S IN × V × V 2 kW} + energy of water position {9.8 × S IN × V × HkW}] is smaller or larger than the energy of the generated electric power generated by hydroelectric power, and whether this hydroelectric power has an energy gain. It is decided whether or not there is.
【0011】先ず、取水口と放流口とについては、取水
口には水が船舶の走行速度秒速Vmに対応する流速で流
入し、放流口から水が船舶の走行速度秒速Vmに対応す
る流速で放流しているので、これらの部分での流速の低
下は無く、取水口と放流口とに対する水の抵抗は小さく
て無視することができる。First, regarding the intake port and the discharge port, water flows into the intake port at a flow velocity corresponding to the traveling speed per second Vm of the vessel, and water flows from the outlet at a flow velocity corresponding to the traveling speed per second Vm of the vessel. Since the water is discharged, there is no decrease in the flow velocity in these parts, and the resistance of water to the intake and the discharge is small and can be ignored.
【0012】次に、水力発電に利用される水が圧力管内
で圧力管及び反動水車を介して船体に加える圧力の反走
行方向成分による抵抗については、圧力管の曲がり部分
の形状及び圧力管の内径の変化による流速低下が少ない
ように設計する必要があり、又、反動水車の設計を、例
えばプロペラ水車にして、水圧よりも流速を利用する割
合をできるだけ大きなものにする必要がある。これらの
配慮を充分に行った場合に発生する抵抗の反走行方向成
分のエネルギを正確に求めることは困難であるが、最大
でも、水力発電に利用する水が有するエネルギの15%
程度である。船舶のスクリュウの推進係数が最低でも5
0%あるとすれば、前記の追加された抵抗に対抗して、
船舶の走行速度秒速Vmを維持するための船舶の推進機
関の出力増加分は、最大でも、水力発電に利用する水が
有するエネルギの30%(15%÷0.5)程度とな
る。この30%のエネルギで発電機を回転して発電でき
る発電電力のエネルギは最大でも、水力発電に利用する
水が有するエネルギの約25.5%(30%×0.8
5)である。Next, regarding the resistance due to the anti-traveling direction component of the pressure applied to the hull by the water used for hydroelectric power generation in the pressure pipe through the pressure pipe and the reaction turbine, the shape of the bent portion of the pressure pipe and the resistance of the pressure pipe It is necessary to design so that the flow velocity decrease due to the change of the inner diameter is small, and the reaction turbine must be designed to be, for example, a propeller turbine so that the ratio of utilizing the flow velocity to the hydraulic pressure is as large as possible. Although it is difficult to accurately obtain the energy of the anti-traveling direction component of the resistance that occurs when these considerations are given sufficiently, at most 15% of the energy that water used for hydroelectric power generation has
It is a degree. Propulsion factor of ship's screw is at least 5
0%, against the added resistance above,
The maximum increase in the output of the propulsion engine of the ship for maintaining the traveling speed Vm of the ship is about 30% (15% ÷ 0.5) of the energy of water used for hydroelectric power generation. The maximum amount of power generated by rotating the generator with this 30% energy is about 25.5% (30% x 0.8) of the energy of water used for hydropower generation.
5).
【0013】そして、本発明の方法で水力発電される発
電電力のエネルギは、水力発電に利用できるエネルギの
約85%なので、船舶の走行速度秒速Vmを維持するた
めの船舶の推進機関の出力増加分で発電機を直接運転し
た場合に比較して、約3.3倍(85÷25.5)にな
る。Since the energy of the power generated by the hydroelectric power generation by the method of the present invention is about 85% of the energy available for the hydroelectric power generation, the output of the propulsion engine of the marine vessel is increased to maintain the traveling speed Vm of the marine vessel. It is about 3.3 times (85 / 25.5) compared to the case where the generator is directly operated in minutes.
【0014】又、本発明の船舶用の水力発電方法は、取
水口の開口端断面積SINと放流口の開口端断面積S
OUTとを略等しくし、SINV≒SOUTVとする
と、船体形状によって決まる取水口と放流口における流
速が等しい場合に、圧力管に流入し放流する水に流体の
連続の式が成立し、圧力管に流入する水を無駄なく利用
できる。Further, in the hydroelectric power generation method for a ship according to the present invention, the opening end sectional area S IN of the water intake and the opening end sectional area S of the discharge port are provided.
If OUT is made approximately equal and S IN V ≈ S OUT V, a continuous equation of fluid is established for the water flowing into and discharging the pressure pipe when the flow velocity at the intake port and the discharge port determined by the ship shape are equal. The water flowing into the pressure pipe can be used without waste.
【0015】又、本発明の船舶用の水力発電方法は、取
水口の開口部を、内側から開口端に近づくに従って大き
くして、取水口に流入する水が、取水口の開口部の開口
端内外に仮定した実効取水面積S1を船舶の走行速度秒
速Vmで通過して取水口に流入するようにし、放流口の
開口部を内側から開口端に近づくに従って大きくして、
放流口から放流する水が、放流口の開口部の開口端内外
に仮定した実効放流面積S2を船舶の走行速度秒速Vm
で通過して放流口から放流するようにし、S1V≒S2
Vとすると、船体形状によって決まる取水口と放流口に
おける流速が等しくない場合にも、圧力管に流入し放流
する水に流体の連続の式が成立し、圧力管に流入する水
を無駄なく利用できる。Further, in the hydroelectric power generation method for a ship according to the present invention, the opening of the intake is enlarged from the inside toward the opening end so that the water flowing into the intake is the opening end of the opening of the intake. The effective water intake area S 1 assumed inside and outside is passed at a traveling speed Vm of the ship to flow into the water intake, and the opening of the outlet is enlarged from the inside toward the opening end,
The water discharged from the discharge port has an effective discharge area S 2 that is assumed to be inside and outside the opening end of the opening of the discharge port.
S 1 V ≈ S 2
If V is set, even if the flow velocity at the intake port and the discharge port determined by the shape of the hull are not equal, the equation of fluid continuity is established for the water flowing into and discharging the pressure pipe, and the water flowing into the pressure pipe is used without waste. it can.
【0016】[0016]
【実施例】本発明の船舶用の水力発電方法の一実施例を
使用する船舶の水力発電装置を図1、図2に基づいて説
明する。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A ship hydroelectric power generator using an embodiment of the ship hydroelectric power generation method of the present invention will be described with reference to FIGS.
【0017】図1、図2において、水面6上を走行速度
秒速Vmで航行する船舶1の船体2内に、水力発電用の
圧力管3とプロペラ水車(プロペラ水車は、フランシス
水車に比べて、水圧よりも流速を利用する割合が大きい
ので適している。)4と発電機5とを船首近くの両舷側
に設け、この圧力管3の取水口SINを船舶1の水面下
にある船体外面の水面に近い位置に走行方向に向かって
開口するように配し、この圧力管3の放流口SOUTを
船舶1の水面下にある船体外面の前記取水口SINより
も下方で、且つ、前記取水口SINよりも船尾寄りの位
置に走行方向と反対方向に向かって開口するように配し
(取水口SINから放流口SOUTまでの深さをHmと
する。)、取水口SINの開口部を、内側から開口端に
近づくに従って大きくして、取水口SINに流入する水
が、取水口SINの開口部の開口端内外に仮定した実効
取水面積S1を船舶の走行速度秒速Vmで通過して取水
口SINに流入するようにし、放流口SOUTの開口部
を内側から開口端に近づくに従って大きくして、放流口
SOUTから放流する水が、放流口SOUTの開口部の
開口端内外に仮定した実効放流面積S2を船舶の走行速
度秒速Vmで通過して放流口SOUTから放流するよう
にし、S1V≒S2Vが常時成立するようにする。1 and 2, in a hull 2 of a ship 1 traveling on a water surface 6 at a traveling speed of Vm per second, a pressure pipe 3 for hydraulic power generation and a propeller turbine (a propeller turbine is compared to a Francis turbine). This is suitable because the rate of using the flow velocity is larger than the water pressure.) 4 and the generator 5 are provided on both port sides near the bow, and the intake port S IN of the pressure pipe 3 is located on the outer surface of the hull below the water surface of the ship 1. Is arranged so as to open toward the traveling direction at a position close to the water surface, and the discharge port S OUT of the pressure pipe 3 is below the water intake port S IN of the outer surface of the hull below the water surface of the ship 1, and The intake S is arranged at a position closer to the stern than the intake S IN so as to open in the direction opposite to the traveling direction (the depth from the intake S IN to the outlet S OUT is Hm). As the IN opening approaches from the inside to the opening end, Increase Te, water flowing into the intake S IN is, through the effective intake area S 1 which is assumed to the open end and out of the opening of the water intake S IN at running speed per second Vm of ship intake S IN so as to flow into the opening of the discharge port S OUT by increasing as approaching from the inside to the open end, the water discharged from the discharge port S OUT is effective discharge assuming the open end and out of the opening of the discharge port S OUT The area S 2 is passed at the traveling speed Vm of the ship and discharged from the discharge port S OUT so that S 1 V ≈S 2 V is always established.
【0018】船舶1は水面6上を走行速度秒速Vmで航
行する場合、水面下にある船体外面に沿って流れる水の
流速は、一般に、船体2の水面下の形状によって部分的
に異なり、取水口SINに流入する流速と放流口S
OUT近傍を流れる水の流速とは、船舶1の走行速度秒
速Vmと夫々相違した秒速VINと秒速VOUTとにな
る。しかし、前記のように、取水口SINの開口部を、
内側から開口端に近づくに従って大きくして、取水口S
INに流入する水が、取水口SINの開口部の開口端内
外に仮定した実効取水面積S1を船舶の走行速度秒速V
mで通過して取水口SINに流入するようにし、放流口
SOUTの開口部を内側から開口端に近づくに従って大
きくして、放流口SOUTから放流する水が、放流口S
OUTの開口部の開口端内外に仮定した実効放流面積S
2を船舶の走行速度秒速Vmで通過して放流口SOUT
から放流するようにしてあれば、水面下にある船体外形
に関係なく、S1V≒S2Vが常時成立するようにでき
る。S1V≒S2Vが常時成立すれば、船体形状によっ
て決まる取水口と放流口における流速が等しくない場合
にも、圧力管に流入し放流する水に流体の連続の式が成
立し、圧力管に流入する水を無駄なく利用できる。When the ship 1 travels on the water surface 6 at a traveling speed of Vm per second, the flow velocity of water flowing along the outer surface of the hull below the water surface is generally partially different depending on the shape of the hull 2 below the water surface. Flow velocity into outlet S IN and outlet S
The flow velocities of the water flowing in the vicinity of OUT are the speed V IN and the speed V OUT which are different from the traveling speed Vm of the ship 1 and the speed Vm. However, as described above, the opening of the water intake S IN is
Increasing the size from the inside toward the open end, the intake S
The water flowing into the IN has an effective water intake area S 1 which is assumed to be inside and outside the opening end of the opening of the water intake S IN , and the traveling speed V
passes in m so as to flow into the intake S IN, the opening of the discharge port S OUT by increasing as approaching from the inside to the open end, the water to be discharged from the discharge port S OUT, discharge outlet S
Effective discharge area S assumed inside and outside the opening end of OUT opening
2 at a traveling speed of the ship Vm of 2 seconds and the outlet S OUT
If it is discharged from S, it is possible to always establish S 1 V ≈ S 2 V regardless of the outer shape of the hull below the water surface. If S 1 V ≈ S 2 V is always satisfied, even if the flow velocity at the intake port and the discharge port determined by the hull shape are not equal, the equation of fluid continuity is established for the water flowing into and discharged from the pressure pipe. The water flowing into the pipe can be used without waste.
【0019】本実施例では、船舶の走行速度が秒速8m
(約15ノット) S1≒S2=5m2 取水口SINと放流口SOUT間の落差=5m なので、発電効率を85%とすると、 水力発電容量=[水の運動のエネルギ{(1/2)5×
8×82kW}+水の位置のエネルギ{9.8×5×8
×5kW}]×0.85=2754kW 船舶の推進機関が、走行速度を維持するために追加する
出力を使用して直接に発電機を運転した場合の発電容量
=[水の運動のエネルギ{(1/2)5×8×82k
W}+水の位置のエネルギ{9.8×5× 8×5k
W}]×0.255×0.85≒826kW となる。In this embodiment, the traveling speed of the ship is 8 m / s.
(Approximately 15 knots) S 1 ≈S 2 = 5 m 2 Since the head between the intake S IN and the outlet S OUT is 5 m, if the power generation efficiency is 85%, the hydroelectric power generation capacity = [water motion energy {(1 / 2) 5 x
8 × 8 2 kW} + energy of water position {9.8 × 5 × 8
× 5kW}] × 0.85 = 2754kW Power generation capacity when the propulsion engine of the ship directly operates the generator by using the additional power to maintain the traveling speed = [Energy of water kinetics {( 1/2) 5 × 8 × 8 2 k
W} + water position energy {9.8 × 5 × 8 × 5k
W}] × 0.255 × 0.85≈826 kW.
【0020】本発明の船舶用の水力発電方法は、上記の
実施例方法に限らず種々の態様が可能である。例えば、
S1V≒S2Vが常時成立しなくても、SINV≒S
OUTVが成立すれば、船体形状によって決まる取水口
と放流口における流速が等しい場合に、圧力管に流入し
放流する水に流体の連続の式が成立し、圧力管に流入す
る水を無駄なく利用できる。The hydroelectric power generation method for a ship of the present invention is not limited to the above-described method of the embodiment, and various modes are possible. For example,
Even if S 1 V ≈ S 2 V does not always hold, S IN V ≈ S
If OUT V is satisfied, when the flow velocity at the intake port and the discharge port determined by the ship shape are equal, a continuous equation of fluid is established for the water flowing into and discharging the pressure pipe, and the water flowing into the pressure pipe is not wasted. Available.
【0021】又、SINV≒SOUTVが成立しなくて
も、発電利得を得ることができる。Further, the power generation gain can be obtained even if S IN V ≈S OUT V is not established.
【0021】又、取水口SINから流入した水を、その
運動のエネルギを利用して、取水口SINよりも高い位
置に一旦持ち上げて、運動のエネルギを位置のエネルギ
に変えて水力発電に利用しても、発電利得が得られる。[0021] In addition, the water that has flowed from the water intake S IN, using the energy of the movement, once lifted to a position higher than the water intake S IN, to hydroelectric power by changing the energy of motion to the energy of position Even if used, a power generation gain can be obtained.
【0022】又、水の抵抗が小さい形状であれば、圧力
管を船体から下方に突き出して、船底よりも下方に放流
口の開口部を配することもできる。If the water resistance is small, the pressure pipe may be projected downward from the hull, and the opening of the discharge port may be arranged below the bottom of the ship.
【0023】[0023]
【発明の効果】本発明の船舶用の水力発電方法は、船体
内に、水力発電用の圧力管と水圧よりも流速を利用する
割合が大きな反動水車と発電機とを設け、この圧力管の
取水口を船舶の水面下にある船体外面の水面に近い位置
に走行方向に向かって開口するように配し、この圧力管
の放流口を前記取水口よりも下方で、且つ、前記取水口
よりも船尾寄りの位置に走行方向と反対方向に向かって
開口するように配することによって、取水口に流入し放
流口から放流される水の運動のエネルギと前記取水口と
前記放流口間の落差によって生じる水の位置のエネルギ
から水力発電利得をうることができるという効果を奏す
る。According to the method of hydropower generation for a ship of the present invention, a pressure pipe for hydropower generation, a reaction turbine for which a flow velocity is utilized more than a hydraulic pressure, and a generator are provided inside the hull. The water intake is arranged at a position close to the water surface of the outer surface of the hull below the water surface of the ship so as to open toward the traveling direction, and the discharge port of this pressure pipe is below the water intake port and from the water intake port. Is also placed at a position near the stern so as to open in the direction opposite to the traveling direction, so that the kinetic energy of the water flowing into the intake and discharged from the outlet and the drop between the intake and the outlet. There is an effect that a hydroelectric power generation gain can be obtained from the energy of the position of water generated by the above.
【0024】又、本発明の船舶用の水力発電方法は、流
体の連続の式SINV≒SOUTVを成立させることに
よって、船体形状によって決まる取水口と放流口におけ
る流速が等しい場合に、圧力管に流入する水を無駄なく
利用できるという効果を奏する。Further, according to the hydroelectric power generation method for a ship of the present invention, when the fluid continuity equation S IN V ≈S OUT V is established, the flow velocity at the intake port and the discharge port determined by the ship shape are equal, The effect is that the water flowing into the pressure pipe can be used without waste.
【0025】又、本発明の船舶用の水力発電方法は、流
体の連続の式S1V≒S2Vを成立させることによっ
て、船体形状によって決まる取水口と放流口における流
速が等しくない場合にも、圧力管に流入する水を無駄な
く利用できるという効果を奏する。Further, according to the hydroelectric power generation method for a ship of the present invention, when the flow continuity equation S 1 V ≈S 2 V is satisfied, the flow velocity at the intake port and the discharge port determined by the ship shape are not equal. Also, there is an effect that the water flowing into the pressure pipe can be used without waste.
【図1】本発明の一実施例方法を使用する船舶の水力発
電装置の側面図である。FIG. 1 is a side view of a hydroelectric power generation system for a ship using a method according to an embodiment of the present invention.
【図2】図1の平面図である。FIG. 2 is a plan view of FIG.
1 船舶 2 船体 3 圧力管 4 反動水車 5 発電機 SIN 取水口 SOUT 放流口 S1 実効取水面積 S2 実効放流面積 V 船舶の走行速度 H 取水口と放流口間の落差1 Ship 2 Hull 3 Pressure Pipe 4 Recoil Water Turbine 5 Generator S IN Inlet S OUT Outlet S 1 Effective Water Intake Area S 2 Effective Outlet Area V Vessel Travel Speed H Drop between Inlet and Outlet
Claims (3)
に、水力発電用の圧力管と水圧よりも流速を利用する割
合が大きな反動水車と発電機とを設け、この圧力管の取
水口を船舶の水面下にある船体外面の水面に近い位置に
走行方向に向かって開口するように配し、この圧力管の
放流口を前記取水口よりも下方で、且つ、船尾寄りの位
置の船体外面又は船体下方に走行方向と反対方向に向か
って開口するように配し、この船舶を、走行速度秒速V
mで走行し、取水口から取水口の開口端断面積SINと
船舶の走行速度秒速Vmとに対応する水量を取水し、こ
の水で反動水車を回転し、この反動水車の回転で発電機
を運転して水力発電し、水力発電に使用した後の水を、
放流口から、この放流口近傍を船舶の走行速度秒速Vm
に対応した流速で通過する水の吸出力によって水中に放
流することにより、前記秒速Vmに応じて前記取水口に
流入し前記放流口から放流する水が有する運動のエネル
ギ及び前記取水口と前記放流口間の位置のエネルギを水
力発電に利用することを特徴とする船舶用の水力発電方
法。1. A pressure pipe for hydroelectric power generation, a reaction turbine and a generator having a greater ratio of utilizing a flow velocity than water pressure are provided in a hull of a ship traveling on or under water, and an intake port of this pressure pipe is provided. The hull outer surface, which is located below the water surface of the ship and close to the water surface, is arranged so as to open toward the traveling direction, and the discharge port of this pressure pipe is below the water intake port and near the stern. Alternatively, the boat may be arranged below the hull so as to open in a direction opposite to the traveling direction, and the boat is operated at a traveling speed V
The vehicle travels at m and takes in the amount of water corresponding to the intake end cross-sectional area S IN of the intake and the traveling speed per second Vm of the ship, rotates the reaction turbine with this water, and rotates the reaction turbine to generate a generator. To generate hydroelectric power, and to use the water after using it for hydroelectric power generation.
From the discharge port, near the discharge port, the traveling speed of the ship is Vm / s.
The water is discharged into the water by the suction force of the passing water at a flow velocity corresponding to the flow velocity, and the kinetic energy of the water flowing into the water intake port and discharged from the water discharge port according to the second speed Vm and the water intake port and the water discharge A hydroelectric power generation method for ships, characterized in that the energy at the position between the mouths is used for hydroelectric power generation.
開口端断面積SOUTとを略等しくし、SINV≒S
OUTVとする請求項1に記載の船舶用の水力発電方
法。Wherein the open end cross-sectional area S OUT of the open end cross-sectional area S IN of intake discharge port substantially equal, S IN V ≒ S
The hydroelectric power generation method for a ship according to claim 1, wherein OUT V is set.
づくに従って大きくして、取水口に流入する水が、取水
口の開口部の開口端内外に仮定した実効取水面積S1を
船舶の走行速度秒速Vmで通過して取水口に流入するよ
うにし、放流口の開口部を内側から開口端に近づくに従
って大きくして、放流口から放流する水が、放流口の開
口部の開口端内外に仮定した実効放流面積S2を船舶の
走行速度秒速Vmで通過して放流口から放流するように
し、S1V≒S2Vとする請求項1に記載の船舶用の水
力発電方法。3. The intake opening is enlarged from the inside toward the opening end so that the water flowing into the intake has an effective intake area S 1 assumed inside and outside the opening end of the intake opening. Of the traveling speed of Vm per second to flow into the intake port, and the opening of the outlet is enlarged from the inside toward the opening end so that the water discharged from the outlet is the opening end of the opening of the outlet. The hydroelectric power generation method for a ship according to claim 1, wherein the effective discharge area S 2 assumed to be inside and outside is passed at a traveling speed Vm of the ship and discharged from the discharge port, and S 1 V ≈S 2 V.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35262091A JPH07172394A (en) | 1991-11-12 | 1991-11-12 | Hydraulic power generation method for ship |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP35262091A JPH07172394A (en) | 1991-11-12 | 1991-11-12 | Hydraulic power generation method for ship |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07172394A true JPH07172394A (en) | 1995-07-11 |
Family
ID=18425292
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP35262091A Pending JPH07172394A (en) | 1991-11-12 | 1991-11-12 | Hydraulic power generation method for ship |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07172394A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115907A1 (en) * | 2011-10-14 | 2013-04-18 | Rolf Rohden | Device for use as e.g. transverse thruster device for controlling ship, has drive element connected with machine device, where transverse thruster function and generator function are realized in two operating modes of device, respectively |
DE202013101378U1 (en) * | 2013-03-28 | 2014-06-30 | Rolf Rohden | Foredeck or ship |
NO344865B1 (en) * | 2018-11-30 | 2020-06-08 | Golar Man Norway As | System and method for controlling the flow of water in a process facility onboard a vessel |
-
1991
- 1991-11-12 JP JP35262091A patent/JPH07172394A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE102011115907A1 (en) * | 2011-10-14 | 2013-04-18 | Rolf Rohden | Device for use as e.g. transverse thruster device for controlling ship, has drive element connected with machine device, where transverse thruster function and generator function are realized in two operating modes of device, respectively |
DE202013101378U1 (en) * | 2013-03-28 | 2014-06-30 | Rolf Rohden | Foredeck or ship |
NO344865B1 (en) * | 2018-11-30 | 2020-06-08 | Golar Man Norway As | System and method for controlling the flow of water in a process facility onboard a vessel |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP2793364B2 (en) | Ship and ship operation method | |
JPS58152699A (en) | Bottom exhaust type high-speed boat | |
JP2010023764A (en) | Frictional resistance reduction ship and operating method | |
JP7334339B2 (en) | Method and device for reducing wave-making resistance and frictional resistance during navigation of a ship | |
JP3042800B2 (en) | Ship propulsion | |
JPS5950889A (en) | Stern fin to control stern eddy | |
JPH07172394A (en) | Hydraulic power generation method for ship | |
CN116331405B (en) | Ship generating power by means of water flow | |
KR200441873Y1 (en) | The vessel advance device to use the sea water | |
US4069788A (en) | Method and apparatus for conducting water through ships | |
JP7485402B2 (en) | Device for reducing fluid resistance on ships | |
JP2001106173A (en) | Frictional resistance reduced-ship | |
JPS62238192A (en) | Marine propulsive device | |
JPS6042188A (en) | Scooper for vessel | |
JP6928469B2 (en) | Energy saving device using air bubbles and ship equipped with this device | |
CN218559117U (en) | Float bowl end part installation part and floating structure | |
RU2785404C1 (en) | Device for reduction in hydrodynamic resistance of vessel | |
JP2001233282A (en) | Exhaust gas blowout device for ship | |
JPS6026758B2 (en) | ship | |
JPH0521517Y2 (en) | ||
JPH07144694A (en) | Exhaust structure of ship propulsion unit | |
JPS6146473A (en) | Speedup device of ship | |
JPH0234160Y2 (en) | ||
JPH1159588A (en) | Bilge vortex energy recovery device for ship | |
JPS62284968A (en) | Generating structure of bow utilizing wave-making form produced in hull and fluid power |