JPH07169018A - Magnetic head - Google Patents

Magnetic head

Info

Publication number
JPH07169018A
JPH07169018A JP31569593A JP31569593A JPH07169018A JP H07169018 A JPH07169018 A JP H07169018A JP 31569593 A JP31569593 A JP 31569593A JP 31569593 A JP31569593 A JP 31569593A JP H07169018 A JPH07169018 A JP H07169018A
Authority
JP
Japan
Prior art keywords
magnetic
thin film
gap
magnetic head
gap width
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31569593A
Other languages
Japanese (ja)
Inventor
Hideaki Miyagawa
秀明 宮川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP31569593A priority Critical patent/JPH07169018A/en
Publication of JPH07169018A publication Critical patent/JPH07169018A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To obtain a magnetic head having a constitution which can improve both of the reproducing efficiency and the recording efficiency of a magnetic head in a short wavelength range by narrowing a gap. CONSTITUTION:A layer-built element which composed of a ferroelectric thin film 33 and conductor thin films 32 and 32 between which the thin film 33 is sandwiched is provided in the magnetic gap 3 of a magnetic core composed of core halves 1 and 2. A voltage is applied between the conductor thin films 32 and 32 which are used as electrodes through lead wires (not shown). The thickness of the ferroelectric thin film 33 is increased by a piezoelectric effect caused by the voltage application to increase the gap width of the magnetic gap 3. Moreover, a pressure produced by the increase of the thickness of the thin film 33 is applied to the butting parts of the magnetic core which face the magnetic gap to decline the permeability of those parts substantially and the gap width is practically increased further. That is, the gap width can be varied by the existence of the voltage application and the magnitude of the applied voltage.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、磁気記録媒体に対して
情報の磁気記録、再生を行なう磁気ヘッドに関し、特
に、磁気ギャップを設けた磁気コアに巻線コイルを巻回
して構成される誘導型の磁気ヘッドに関するものであ
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a magnetic head for magnetically recording / reproducing information on / from a magnetic recording medium, and particularly to an induction device constructed by winding a winding coil around a magnetic core having a magnetic gap. Type magnetic head.

【0002】[0002]

【従来の技術】従来のこの種の磁気ヘッドの構造を図1
により説明する。図1において符号1,2は磁気コアを
構成するコア半体であり、軟磁性材から形成されてお
り、図中上面が不図示の磁気記録媒体の摺動する媒体摺
動面7として形成される。コア半体1,2は突き合わさ
れ、媒体摺動面7に形成されたトラック幅を規定するト
ラック溝8と、突き合わせ面の下部に形成された溝9に
配された低融点ガラス4、6の溶着により接合されて磁
気コアを構成する。コア半体1,2の突き合わせ面の媒
体摺動面7に臨む図中上端部どうしの間に磁気ギャップ
3が形成される。そして片方のコア半体2に形成された
巻線溝10を通して巻線コイル5を磁気コアに巻回して
磁気ヘッドが構成される。
2. Description of the Related Art The structure of a conventional magnetic head of this type is shown in FIG.
Will be described. In FIG. 1, reference numerals 1 and 2 denote core halves forming a magnetic core, which are made of a soft magnetic material and whose upper surface in the drawing is formed as a medium sliding surface 7 on which a magnetic recording medium (not shown) slides. It The core halves 1 and 2 are butted against each other, and are made of a low melting glass 4 and 6 arranged in a track groove 8 formed on the medium sliding surface 7 and defining a track width, and a groove 9 formed below the butted surface. They are joined by welding to form a magnetic core. A magnetic gap 3 is formed between the upper ends of the core halves 1 and 2 facing the medium sliding surface 7 of the abutting surfaces. Then, the winding coil 5 is wound around the magnetic core through the winding groove 10 formed in one core half 2 to form a magnetic head.

【0003】このような従来の磁気ヘッドにおいて、磁
気ギャップ3はSiO2やCr2O3等の非磁性材から図
2に示すように所定の厚さの薄膜として構成され、磁気
テープ等の磁気記録媒体との摺動によっても磁気ギャッ
プ3のギャップ幅が常に一定であることが理想とされて
いた。
In such a conventional magnetic head, the magnetic gap 3 is made of a non-magnetic material such as SiO2 or Cr2O3 as a thin film having a predetermined thickness as shown in FIG. 2, and is used as a magnetic recording medium such as a magnetic tape. It has been ideal that the gap width of the magnetic gap 3 is always constant even by sliding.

【0004】[0004]

【発明が解決しようとする課題】上記のような磁気ヘッ
ドを用いるVTR等の短波長記録では、最も短い記録波
長の再生信号とノイズの比C/Nで復調ビデオのS/N
が決まると考えてもさしつかえないので、磁気ギャップ
のギャップ幅は最短記録波長の再生出力を最大にするよ
うに設定される。即ち、ギャップ幅は最短記録波長×
(約1/4)に設定されている。
In short-wavelength recording such as VTR using the magnetic head as described above, the S / N ratio of the reproduced signal and noise of the shortest recording wavelength is S / N of the demodulated video.
Since it can be considered that the magnetic field is determined, the gap width of the magnetic gap is set so as to maximize the reproduction output at the shortest recording wavelength. That is, the gap width is the shortest recording wavelength ×
It is set to (about 1/4).

【0005】また、記録密度をあげる為に、記録波長は
益々短くなり、それに伴いギャップ幅も益々狭くなり、
短波長でも必要な再生出力が得られるように磁気テープ
の保磁力も益々高くなっている。例えば8mmVTRの
場合の最短記録波長は約0.5ミクロンだから再生出力
を最大にするギャップ幅は0.125ミクロンと極めて
狭い。将来は更に記録密度を上げるため益々記録波長は
短くなり、それに伴いギャップ幅も益々狭くなり、磁気
記録媒体の保磁力も益々大きくされるであろう。
Further, in order to increase the recording density, the recording wavelength becomes shorter and shorter, and the gap width becomes narrower accordingly.
The coercive force of the magnetic tape is increasing more and more so that the required reproduction output can be obtained even at a short wavelength. For example, in the case of 8 mm VTR, the shortest recording wavelength is about 0.5 μm, so the gap width that maximizes the reproduction output is extremely narrow at 0.125 μm. In the future, as the recording density is further increased, the recording wavelength will become shorter, the gap width will become narrower accordingly, and the coercive force of the magnetic recording medium will also become larger.

【0006】ここで磁気ヘッドのギャップ幅と記録効率
の関係を図3に示した磁気ヘッドの等価回路を用いて説
明する。図3において、Rgは磁気ギャップの磁気抵
抗、Rヨは磁気コアのヨ−ク部分(磁性体部分)の磁気
抵抗、Raは磁気ヘッドの磁気ギャップ先端から磁気テ
ープ面までの磁気抵抗、Vは巻線コイルによる起磁力、
Φはヨーク部分を流れる磁束、Φgは磁気ギャップを流
れる磁束、Φaは磁気抵抗Raを流れる磁束である。こ
の等価回路より Φa=Rg×V/〔Rヨ+Rg×(Rヨ+Ra)〕 である。
Now, the relationship between the gap width of the magnetic head and the recording efficiency will be described with reference to the equivalent circuit of the magnetic head shown in FIG. In FIG. 3, Rg is the magnetic resistance of the magnetic gap, Ryo is the magnetic resistance of the yoke portion (magnetic material portion) of the magnetic core, Ra is the magnetic resistance from the magnetic gap tip of the magnetic head to the magnetic tape surface, and V is Magnetomotive force due to winding coil,
Φ is a magnetic flux flowing through the yoke portion, Φg is a magnetic flux flowing through the magnetic gap, and Φa is a magnetic flux flowing through the magnetic resistance Ra. From this equivalent circuit, Φa = Rg × V / [Ryo + Rg × (Ryo + Ra)].

【0007】上記式をグラフにしたのが図4である。こ
のグラフより、Rgを小さくすればΦaは小さくなる。
即ち、ギャップ幅を狭くすれば記録効率は悪くなる。
A graph of the above equation is shown in FIG. From this graph, Φa becomes smaller as Rg becomes smaller.
That is, if the gap width is narrowed, the recording efficiency becomes poor.

【0008】このように、大きな問題として、再生出力
を考慮してギャップ幅(最短記録波長の約1/4)を決
めるとギャップ幅は狭くなり、一方、ギャップ幅が狭く
なると記録効率が悪くなり、磁気記録媒体への記録が十
分にできなくなる。これが磁気記録における高密度記録
の大きな障害となっている。
As described above, as a major problem, when the gap width (about 1/4 of the shortest recording wavelength) is determined in consideration of the reproduction output, the gap width becomes narrower, while when the gap width becomes narrower, the recording efficiency becomes poor. However, recording on the magnetic recording medium cannot be performed sufficiently. This is a major obstacle to high density recording in magnetic recording.

【0009】そこで本発明の課題は、この種の磁気ヘッ
ドにおいて、狭ギャップ化による短波長領域での再生効
率の向上と、記録効率の向上を両立できる構成を提供す
ることにある。
SUMMARY OF THE INVENTION An object of the present invention is to provide a magnetic head of this type, which can improve the reproducing efficiency in the short wavelength region by narrowing the gap and the recording efficiency.

【0010】[0010]

【課題を解決するための手段】上記の課題を解決するた
め、本発明の磁気ヘッドによれば、磁気コアの磁気ギャ
ップ内に、強誘電体薄膜と、該薄膜を間に挟む2層の非
磁性の導電体薄膜とを積層して成膜し、前記強誘電体薄
膜と導電体薄膜の厚さ方向が磁気ギャップのギャップ幅
方向となるように配置し、前記導電体薄膜を電極として
該導電体薄膜に電圧を印加することにより圧電効果で前
記強誘電体薄膜の厚さが増大するようにした。
In order to solve the above-mentioned problems, according to the magnetic head of the present invention, a ferroelectric thin film and a two-layer non-contact sandwiching the thin film are provided in the magnetic gap of the magnetic core. A magnetic conductor thin film is laminated to form a film, and the ferroelectric thin film and the conductor thin film are arranged so that the thickness direction thereof is the gap width direction of the magnetic gap, and the conductor thin film is used as an electrode to form the conductive film. By applying a voltage to the body thin film, the thickness of the ferroelectric thin film is increased by the piezoelectric effect.

【0011】[0011]

【作用】このような構成によれば、導電体薄膜に電圧を
印加すると、強誘電体薄膜の厚さが増大するので、それ
だけ磁気ギャップのギャップ幅が広くなる。また、強誘
電体薄膜の厚さの増大による圧力が磁気コアの磁気ギャ
ップに臨む突き合わせ面部分に加わることにより、その
部分の透磁率がストレスにより大幅に低下し、これによ
ってギャップ幅がさらに実質的に増大する。すなわち、
前記電圧の印加の有無、及び印加電圧の高さによってギ
ャップ幅を変化させることができる。
With this structure, when a voltage is applied to the conductor thin film, the thickness of the ferroelectric thin film increases, so that the gap width of the magnetic gap becomes wider. In addition, the pressure due to the increase in the thickness of the ferroelectric thin film is applied to the abutting surface portion facing the magnetic gap of the magnetic core, and the magnetic permeability of that portion is significantly reduced due to the stress, which further reduces the gap width. Increase to. That is,
The gap width can be changed depending on whether or not the voltage is applied and the height of the applied voltage.

【0012】[0012]

【実施例】以下、図を参照して本発明の実施例を説明す
る。
Embodiments of the present invention will be described below with reference to the drawings.

【0013】図5は本発明の実施例の磁気ヘッドの構造
を説明するもので、トラック幅を2等分するように磁気
ヘッドを媒体摺動方向に沿って媒体摺動面に垂直に切断
した状態を示している。
FIG. 5 illustrates the structure of a magnetic head according to an embodiment of the present invention. The magnetic head is cut along the medium sliding direction perpendicularly to the medium sliding surface so as to divide the track width into two equal parts. It shows the state.

【0014】図5に示すように、軟磁性材からなるコア
半体1,2が突き合わされ、その媒体摺動面7に形成さ
れたトラック溝8と、突き合わせ面の下部に形成された
溝9に配された低融点ガラス4,6の溶着により接合さ
れて磁気コアを構成している。コア半体1,2の突き合
わせ面の媒体摺動面7に臨む図中上端部どうしの間に磁
気ギャップ3が形成されている。そして片方のコア半体
2に形成された巻線溝10を通して巻線コイル5を磁気
コアに巻回して磁気ヘッドが構成される。
As shown in FIG. 5, core halves 1 and 2 made of a soft magnetic material are butted against each other, and a track groove 8 is formed on the medium sliding surface 7 and a groove 9 is formed below the butted surface. The low-melting-point glasses 4 and 6 arranged in the above are joined by welding to form a magnetic core. A magnetic gap 3 is formed between the upper ends of the core half bodies 1 and 2 facing the medium sliding surface 7 of the abutting surfaces. Then, the winding coil 5 is wound around the magnetic core through the winding groove 10 formed in one core half 2 to form a magnetic head.

【0015】ここまで述べた基本的な構造は先述の従来
例と同様であるが、磁気ギャップ3の構造が従来と異な
っている。その構造を図6に拡大して示してある。
The basic structure described so far is the same as that of the conventional example described above, but the structure of the magnetic gap 3 is different from the conventional one. The structure is shown enlarged in FIG.

【0016】図6に示すように、磁気ギャップ3は5層
の薄膜の積層から構成されている。最も外側、即ちコア
半体1,2の突き合わせ面に接する両側にはSiO2あ
るいはCr2O3などからなる非磁性の絶縁体薄膜31,
31が成膜されている。この薄膜31,31のそれぞれ
の内側には金,銅,アルミニウムあるいはITO(イン
ジウム・スズ・オキサイド)などからなる非磁性の導電
体薄膜32,32が成膜されている。さらに、この薄膜
32,32の間に挟まれて例えばPZT系の強誘電体か
らなる強誘電体薄膜33が成膜されている。これらの薄
膜は磁気ヘッドの製造工程においてコア半体1,2の突
き合わせ面上にスパッタリング等で順次成膜され、これ
らの厚さの合計が磁気ギャップ3のギャップ幅となる。
即ち、各薄膜の厚さ方向がギャップ幅方向となる。
As shown in FIG. 6, the magnetic gap 3 is composed of a stack of five thin films. On the outermost side, that is, on both sides in contact with the abutting surfaces of the core halves 1 and 2, a non-magnetic insulating thin film 31 made of SiO2 or Cr2O3,
31 is deposited. Non-magnetic conductor thin films 32, 32 made of gold, copper, aluminum, ITO (indium tin oxide) or the like are formed inside the thin films 31, 31, respectively. Further, sandwiched between the thin films 32, 32, a ferroelectric thin film 33 made of, for example, a PZT type ferroelectric is formed. These thin films are sequentially formed on the abutting surfaces of the core halves 1 and 2 by sputtering or the like in the manufacturing process of the magnetic head, and the total thickness thereof is the gap width of the magnetic gap 3.
That is, the thickness direction of each thin film is the gap width direction.

【0017】また、導電体薄膜32,32には不図示の
リード線が接続されており、この薄膜32,32を電極
として、これに電圧を印加できるようになっている。そ
して、電圧を印加すると、その電界により強誘電体薄膜
33が圧電効果で厚さ方向に伸び、その厚さが増大し、
電圧の印加を止めれば収縮して元の厚さに復帰するよう
になっている。すなわち、導電体薄膜32,32と強誘
電体薄膜33とで圧電素子が構成されている。
Further, a lead wire (not shown) is connected to the conductor thin films 32, 32, and a voltage can be applied to the thin films 32, 32 as electrodes. When a voltage is applied, the electric field causes the ferroelectric thin film 33 to expand in the thickness direction due to the piezoelectric effect, and the thickness increases,
When the application of voltage is stopped, it contracts and returns to the original thickness. In other words, the conductor thin films 32, 32 and the ferroelectric thin film 33 form a piezoelectric element.

【0018】このような構成により導電体薄膜32,3
2に電圧を印加すると、強誘電体薄膜33の厚さが増大
するので、それだけ磁気ギャップ3のギャップ幅が広く
なる。また、薄膜33の厚さの増大による圧力がコア半
体1,2の磁気ギャップ3に臨む突き合わせ面部分に加
わることにより、その部分の透磁率がストレスにより大
幅に低下し、これによってギャップ幅がさらに実質的に
増大する。
With such a structure, the conductor thin films 32, 3
When a voltage is applied to 2, the thickness of the ferroelectric thin film 33 increases, and the gap width of the magnetic gap 3 becomes wider accordingly. Further, the pressure due to the increase in the thickness of the thin film 33 is applied to the abutting surface portion of the core halves 1 and 2 facing the magnetic gap 3, and the magnetic permeability of that portion is significantly reduced due to the stress, whereby the gap width is reduced. Further increased substantially.

【0019】このように導電体薄膜32,32に電圧を
印加することにより、磁気ギャップ3のギャップ幅を増
大させることができ、印加する電圧の高さによりギャッ
プ幅を可変に制御することができる。
By thus applying the voltage to the conductive thin films 32, 32, the gap width of the magnetic gap 3 can be increased, and the gap width can be variably controlled by the height of the applied voltage. .

【0020】このような本実施例の磁気ヘッドによれ
ば、再生時には導電体薄膜32,32に電圧を印加せ
ず、磁気ギャップ3のギャップ幅を本来の狭いものと
し、最短記録波長の1/4として効率良く再生を行な
い、記録時には薄膜32,32に電圧を印加してギャッ
プ幅を増大させて効率良く記録を行なうことができる。
すなわち、従来では実現できなかった狭ギャップ化によ
る短波長領域での再生効率の向上と、記録効率の向上と
の両立を実現できる。
According to the magnetic head of this embodiment, no voltage is applied to the conductor thin films 32, 32 during reproduction, and the gap width of the magnetic gap 3 is set to be the original narrow width, which is 1 / the shortest recording wavelength. 4, recording can be efficiently performed, and a voltage can be applied to the thin films 32 and 32 at the time of recording to increase the gap width, thereby enabling efficient recording.
That is, it is possible to achieve both improvement in reproduction efficiency in the short wavelength region due to narrowing of the gap and improvement in recording efficiency, which have not been realized conventionally.

【0021】また別の有効な利用法として、自己記録再
生でなく、他の装置で記録した磁気記録媒体の再生を行
なう場合で、その媒体の最短記録波長が長い場合、その
波長に合わせてギャップ幅を増大させることにより効率
良く再生を行なうことができる。
As another effective use, when the magnetic recording medium recorded by another device is reproduced instead of the self-recording reproduction and the shortest recording wavelength of the medium is long, the gap is adjusted according to the wavelength. Increasing the width enables efficient reproduction.

【0022】なお上記の実施例では圧電素子を構成する
強誘電体薄膜33と導電体薄膜32,32の積層体を磁
気ギャップ3内に1組だけ設けるものとしたが、複数組
設けることも考えられる。
In the above embodiment, only one set of the laminated body of the ferroelectric thin film 33 and the conductive thin films 32, 32 constituting the piezoelectric element is provided in the magnetic gap 3, but it is also possible to provide a plurality of sets. To be

【0023】[0023]

【発明の効果】以上の説明から明らかなように、本発明
の磁気ヘッドによれば、磁気コアの磁気ギャップ内に、
強誘電体薄膜と、該薄膜を間に挟む2層の非磁性の導電
体薄膜とを積層して成膜し、前記強誘電体薄膜と導電体
薄膜の厚さ方向が磁気ギャップのギャップ幅方向となる
ように配置し、前記導電体薄膜を電極として該導電体薄
膜に電圧を印加することにより圧電効果で前記強誘電体
薄膜の厚さが増大するようにしたので、前記電圧の印加
の有無、及び印加電圧の高さによって磁気ギャップのギ
ャップ幅を変化させることができ、記録波長に応じて記
録、再生のそれぞれに最適なギャップ幅に設定でき、記
録、再生を共に効率良く行なえ、狭ギャップ化による短
波長領域での再生効率の向上と、記録効率の向上を両立
できるなどの優れた効果が得られる。
As is apparent from the above description, according to the magnetic head of the present invention, in the magnetic gap of the magnetic core,
A ferroelectric thin film and two layers of non-magnetic conductor thin films sandwiching the thin film are laminated to form a film, and the thickness direction of the ferroelectric thin film and the conductor thin film is the gap width direction of the magnetic gap. Since the thickness of the ferroelectric thin film is increased by the piezoelectric effect by applying a voltage to the conductive thin film using the conductive thin film as an electrode, the presence or absence of the voltage application , And the width of the magnetic gap can be changed according to the height of the applied voltage, and the optimum gap width can be set for both recording and reproducing according to the recording wavelength, and both recording and reproducing can be performed efficiently and a narrow gap can be achieved. It is possible to obtain an excellent effect such that the improvement of the reproducing efficiency in the short wavelength region due to the realization and the improvement of the recording efficiency can both be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の磁気ヘッドの構造を示す斜視図である。FIG. 1 is a perspective view showing the structure of a conventional magnetic head.

【図2】従来の磁気ヘッドの磁気ギャップを示す斜視図
である。
FIG. 2 is a perspective view showing a magnetic gap of a conventional magnetic head.

【図3】磁気ヘッドの等価回路を示す回路図である。FIG. 3 is a circuit diagram showing an equivalent circuit of a magnetic head.

【図4】磁気ヘッドの磁気ギャップ先端から磁気テープ
に流れる磁束Φaと磁気ギャップの磁気抵抗Rgとの関
係を示すグラフ図である。
FIG. 4 is a graph showing a relationship between a magnetic flux Φa flowing from a magnetic gap tip of a magnetic head to a magnetic tape and a magnetic resistance Rg of the magnetic gap.

【図5】本発明の実施例の磁気ヘッドの構造を示すもの
で媒体摺動面に垂直に切断した状態での斜視図である。
FIG. 5 is a perspective view showing a structure of a magnetic head according to an embodiment of the present invention and showing a state cut perpendicularly to a medium sliding surface.

【図6】同磁気ヘッドの磁気ギャップの構造を示す斜視
図である。
FIG. 6 is a perspective view showing a structure of a magnetic gap of the magnetic head.

【符号の説明】[Explanation of symbols]

1,2 コア半体 3 磁気ギャップ 4,6 低融点ガラス 5 巻線コイル 7 媒体摺動面 8 トラック溝 10 巻線溝 31 絶縁体薄膜 32 導電体薄膜 33 強誘電体薄膜 1, 2 core half body 3 magnetic gap 4, 6 low melting point glass 5 winding coil 7 medium sliding surface 8 track groove 10 winding groove 31 insulator thin film 32 conductor thin film 33 ferroelectric thin film

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 磁気コアの磁気ギャップ内に、強誘電体
薄膜と、該薄膜を間に挟む2層の非磁性の導電体薄膜と
を積層して成膜し、前記強誘電体薄膜と導電体薄膜の厚
さ方向が磁気ギャップのギャップ幅方向となるように配
置し、前記導電体薄膜を電極として該導電体薄膜に電圧
を印加することにより圧電効果で前記強誘電体薄膜の厚
さが増大するようにしたことを特徴とする磁気ヘッド。
1. A ferroelectric thin film and two non-magnetic conductive thin films sandwiching the thin film are laminated to form a film in a magnetic gap of a magnetic core, and the ferroelectric thin film and the conductive thin film are electrically connected to each other. The ferroelectric thin film is arranged so that the thickness direction of the body thin film is the gap width direction of the magnetic gap, and a voltage is applied to the conductor thin film by using the conductor thin film as an electrode to reduce the thickness of the ferroelectric thin film by a piezoelectric effect. A magnetic head characterized by increasing the number.
【請求項2】 前記2層の導電体薄膜のそれぞれの外側
に積層して絶縁体薄膜を成膜したことを特徴とする請求
項1に記載の磁気ヘッド。
2. The magnetic head according to claim 1, wherein an insulator thin film is formed by laminating each of the two conductor thin films on the outer side.
JP31569593A 1993-12-16 1993-12-16 Magnetic head Pending JPH07169018A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31569593A JPH07169018A (en) 1993-12-16 1993-12-16 Magnetic head

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31569593A JPH07169018A (en) 1993-12-16 1993-12-16 Magnetic head

Publications (1)

Publication Number Publication Date
JPH07169018A true JPH07169018A (en) 1995-07-04

Family

ID=18068446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31569593A Pending JPH07169018A (en) 1993-12-16 1993-12-16 Magnetic head

Country Status (1)

Country Link
JP (1) JPH07169018A (en)

Similar Documents

Publication Publication Date Title
US5796564A (en) Magnetic head having a recessed portion corresponding to a magnetic path and method of manufacturing the same
EP0334512A2 (en) Magnetic head
JPH07169018A (en) Magnetic head
JP2618860B2 (en) Magnetic head and method of manufacturing the same
JPH05242429A (en) Thin-film magnetic head
JPH01224904A (en) Magnetic head
JPH0817017A (en) Thin film laminated magnetic head
JP2543880Y2 (en) Magnetic head
JPH0474302A (en) Magnetic head
JPH01235005A (en) Magnetic head
JPH0438606A (en) Laminated magnetic head and production thereof
JPH05210821A (en) Magnetic head
JPS62117120A (en) Thin film magnetic head
JPH03130913A (en) Composite floating magnetic head
JPH03225610A (en) Thin-film magnetic head
JPH06223324A (en) Magnetic head and its manufacture
JP2000011314A (en) Magnetic head and its production
JPH08321013A (en) Magnetic head and its production
JPS59227023A (en) Hall effect type thin film magnetic head
JPS63188805A (en) Perpendicular magnetic recording and reproducing head and its manufacture
JPH07282414A (en) Magnetic head and its production
JP2005025803A (en) Magnetic head, its manufacturing method, and magnetic recording/reproducing device using the magnetic head
JPH0660326A (en) Thin film magnetic head and its production
JPH06203320A (en) Erasing head
JPH05242448A (en) Floating type magnetic head device