JPH071680B2 - Projection CRT device - Google Patents

Projection CRT device

Info

Publication number
JPH071680B2
JPH071680B2 JP21358989A JP21358989A JPH071680B2 JP H071680 B2 JPH071680 B2 JP H071680B2 JP 21358989 A JP21358989 A JP 21358989A JP 21358989 A JP21358989 A JP 21358989A JP H071680 B2 JPH071680 B2 JP H071680B2
Authority
JP
Japan
Prior art keywords
refractive index
interference filter
optical interference
screen
face plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21358989A
Other languages
Japanese (ja)
Other versions
JPH0377248A (en
Inventor
英一 都出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP21358989A priority Critical patent/JPH071680B2/en
Priority to US07/542,077 priority patent/US5138222A/en
Publication of JPH0377248A publication Critical patent/JPH0377248A/en
Priority to US07/867,450 priority patent/US5248518A/en
Publication of JPH071680B2 publication Critical patent/JPH071680B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Cathode-Ray Tubes And Fluorescent Screens For Display (AREA)

Description

【発明の詳細な説明】 [産業上の利用分野] この発明は、蛍光面の映像をスクリーンに拡大投影する
投写型CRT装置に関する。
The present invention relates to a projection type CRT device for enlarging and projecting an image of a phosphor screen on a screen.

[従来の技術] 第3図は典型的なビデオプロジエクタの構成を示す図
で、図において(1)は投写型CRT(陰極線管)装置
(以下、「CRT」という)であり、(1R),(1G),(1
B)はそれぞれR(赤),G(緑),B(青)の単色映像光
源となる。(2)は投写レンズ、(3)はスクリーンで
あり、CRT(1)の映像を投写レンズ(2)よつて前方
に置かれたスクリーン(3)に拡大投影することにより
大画面のカラー映像を実現する。
[Prior Art] FIG. 3 is a diagram showing a configuration of a typical video projector. In the figure, (1) is a projection type CRT (cathode ray tube) device (hereinafter referred to as “CRT”), and (1R). , (1G), (1
B) are R (red), G (green), and B (blue) monochromatic image light sources, respectively. (2) is a projection lens, and (3) is a screen. A CRT (1) image is enlarged and projected onto a screen (3) placed in front by the projection lens (2) to display a large-screen color image. To be realized.

第4図はCRT(1)の断面構成図で、(4)は真空外囲
器、(5)はその内部に封入された電子銃、(6)は真
空外囲器(4)を構成するフエースプレート、(7)は
フエースプレート(6)の内面に形成された蛍光体層
で、この蛍光体層(7)上には、高圧電極および反射膜
としてアルミニウムの蒸着膜からなるメタルバツク膜
(8)が形成されている。CRT(1)は、メタルバツク
膜(8)に対向配置された電子銃(5)から発せられる
電子線のエネルギにより蛍光体(7)が励起されて発光
する。
FIG. 4 is a cross-sectional configuration diagram of the CRT (1), in which (4) is a vacuum envelope, (5) is an electron gun enclosed therein, and (6) is a vacuum envelope (4). A face plate (7) is a phosphor layer formed on the inner surface of the face plate (6). On the phosphor layer (7), a metal back film (8) made of a vapor deposition film of aluminum as a high voltage electrode and a reflective film is formed. ) Has been formed. The CRT (1) emits light when the phosphor (7) is excited by the energy of the electron beam emitted from the electron gun (5) arranged opposite to the metal back film (8).

ビデオプロジエクタは大画面のカラー映像が得られる一
方で高輝度化の要望が高まつている。ビデオプロジエク
タの明るさを向上させるために、例えば特開昭58-20775
0号公報に示されているように、フエースプレート
(6)と蛍光体層(7)との境界面(11)に光学干渉フ
イルタ(14)(第5図参照)を設け、境界面(11)にほ
ぼ垂直(±30°程度)に入射する光束の透過率を高くし
たCRTが提案されている。
While video projectors can produce large-screen color images, there is a strong demand for higher brightness. In order to improve the brightness of the video projector, for example, JP-A-58-20775.
As disclosed in Japanese Patent Laid-Open No. 0-331, an optical interference filter (14) (see FIG. 5) is provided on the boundary surface (11) between the face plate (6) and the phosphor layer (7), and the boundary surface (11 ) Has been proposed that increases the transmittance of the light beam that is incident almost perpendicularly (about ± 30 °).

第7図は光学干渉フイルタ(14)の分光特性(12)をG
(緑)色蛍光体の発光スペクトル(13)と共に描いた図
で、図中、θはフエースプレート(6)への入射角であ
る。この光学干渉フイルタ(14)にほぼ垂直に入射する
光束の透過率は100%近いが、入射角が大きくなるほど
透過率が激減し、反射される成分の光束が増える。反射
された光束は高反射率物質である蛍光体層(7)により
再び散乱、反射されるので、ますますフエースプレート
(6)にほぼ垂直に入射する光束は増大する。第8図
(a)は光学干渉フイルタ(14)が無い時のフエースプ
レートからの光度分布、同図(b)は光学干渉フイルタ
(14)が有る時の光度分布を示す図である。
Fig. 7 shows the spectral characteristics (12) of the optical interference filter (14)
It is drawn together with the emission spectrum (13) of the (green) color phosphor, where θ is the incident angle to the face plate (6). The transmittance of a light beam that enters the optical interference filter (14) substantially perpendicularly is close to 100%, but the transmittance decreases drastically as the incident angle increases, and the reflected component light beam increases. The reflected luminous flux is scattered and reflected again by the phosphor layer (7) which is a high-reflectance material, so that the luminous flux incident almost vertically on the face plate (6) increases. FIG. 8 (a) is a diagram showing the luminous intensity distribution from the face plate when the optical interference filter (14) is not present, and FIG. 8 (b) is a diagram showing the luminous intensity distribution when the optical interference filter (14) is present.

ビデオプロジエクタは第5図に示すように、CRTの中央
付近における蛍光体からの発光光束の利用角度α1は±3
0°以下であるので、この結果光学干渉フイルタ(14)
の採用により非常に明るい画像を得ることができる。
As shown in Fig. 5, the video projector has a utilization angle α 1 of the luminous flux from the phosphor of about ± 3 near the center of the CRT.
As a result, the optical interference filter (14) is less than 0 °.
By adopting, it is possible to obtain a very bright image.

さらに、第7図に示すように、G(緑)色の蛍光体発光
スペクトルには、本来必要なスペクトル(a)の他に、
(b)〜(d)の不要なスペクトルを有する。しかし、
光学干渉フイルタ(14)を用いれば、第7図より明らか
なように、(c),(d)の不要スペクトルを低減する
ことができ、緑色の彩度を上げることもできる。
Further, as shown in FIG. 7, in the emission spectrum of the G (green) color phosphor, in addition to the originally necessary spectrum (a),
It has unnecessary spectra of (b) to (d). But,
By using the optical interference filter (14), as is apparent from FIG. 7, the unnecessary spectra of (c) and (d) can be reduced and the saturation of green can be increased.

[発明が解決しようとする課題] 光学干渉フイルタを用いたビデオプロジエクタは、画像
の少くとも中央付近は非常に明るい画像を得られるが、
画面の周辺部は逆に暗くなつてしまうという問題点があ
つた。
[Problems to be Solved by the Invention] Although a video projector using an optical interference filter can obtain a very bright image at least near the center of the image,
On the contrary, there was a problem that the periphery of the screen became dark.

第5図において、θ2はCRT周辺部からの有効利用光束の
主光線(17)のフエースプレート(6)への入射角であ
り、通常30°程度であり、さらに±α2の開き角を有す
るので第7図の特性図から明らかなように、かなり透過
率が減少してしまう。この結果画面の周辺部は非常に暗
いものとなる。
In Fig. 5, θ 2 is the angle of incidence of the principal ray (17) of the effectively utilized light flux from the peripheral part of the CRT on the face plate (6), which is usually about 30 °, and the opening angle of ± α 2 Since it has it, as is clear from the characteristic diagram of FIG. 7, the transmittance is considerably reduced. As a result, the periphery of the screen becomes very dark.

これを解決するために、フエースプレート(6)の内面
の形状、つまり境界面(11)の形状を第6図に示すよう
な曲面形状にする案もある。この結果CRT周辺部の主光
線(17)の入射角θ2はフラツトな第5図の場合よりも
小さくなり、明るさは向上する。
In order to solve this, there is a plan to make the shape of the inner surface of the face plate (6), that is, the shape of the boundary surface (11) into a curved surface shape as shown in FIG. As a result, the incident angle θ 2 of the chief ray (17) at the periphery of the CRT becomes smaller than that in the flat case of FIG. 5, and the brightness is improved.

さらに、θ2が零、つまりCRT周辺部の境界面(11)にお
ける法線(16)が投写レンズ(2)の入射瞳中心(15)
を通るような曲率半径となるようにフエースプレート
(6)を作製すれば、光学干渉フイルタ(14)によつて
画面の中心から周辺部まで全域に渡つて非常に明るい画
像が得られることになる。
Further, θ 2 is zero, that is, the normal line (16) at the boundary surface (11) around the CRT is the entrance pupil center (15) of the projection lens (2).
If the face plate (6) is made to have a radius of curvature that passes through, the optical interference filter (14) can obtain a very bright image over the entire area from the center of the screen to the periphery. .

しかし、実際には、この曲率半径は非常に小さくなるた
め、CRTを作製することが非常に困難となる。
However, in reality, this radius of curvature is extremely small, which makes it extremely difficult to fabricate a CRT.

以上述べたように、従来の光学干渉フイルタを用いた投
写型CRT装置は、画面の中心付近は非常に明るい画像が
得られる反面、画面の周辺部は光学干渉フイルタへの入
射角が大きくなるため、透過率が減少し、暗い画像とな
るという問題点があつた。
As described above, the projection type CRT device using the conventional optical interference filter can obtain a very bright image near the center of the screen, but the incident angle to the optical interference filter becomes large in the peripheral part of the screen. However, there was a problem that the transmittance was reduced and a dark image was obtained.

この発明は上記のような問題点を解消するためになされ
たもので、画面の全域にわたつて明るい画像を投写でき
る投写型CRT装置を得ることを目的とする。
The present invention has been made to solve the above problems, and an object thereof is to obtain a projection type CRT device capable of projecting a bright image over the entire screen.

[課題を解決するための手段] この発明に係る投写型CRT装置は、画面の中心部より周
辺部になるほど厚くし、光束の主光線の透過率が画面の
全域にわたつて低下しないように構成した光学干渉フイ
ルタを備えた点を特徴とする。
[Means for Solving the Problem] A projection type CRT device according to the present invention is configured such that the central portion of the screen is thicker toward the peripheral portion so that the transmittance of the principal ray of the light flux does not decrease over the entire area of the screen. It is characterized by having an optical interference filter.

[作用] この発明における光学干渉フイルタは、画面周辺部から
の光束の主光線の透過率を減少させることなく透過する
ので、画面全域に渡つて明るい画像を得ることができ
る。
[Operation] Since the optical interference filter according to the present invention transmits the principal ray of the light flux from the peripheral portion of the screen without reducing the transmittance, a bright image can be obtained over the entire screen.

[発明の実施例] 以下、この発明の一実施を第1図および第2図を用いて
説明する。図において、(14)は光学干渉フイルタで、
画面中心部の厚さt1と、周辺部の厚さt2が異なり、t2
方が厚く形成されている。
Embodiment of the Invention One embodiment of the present invention will be described below with reference to FIGS. 1 and 2. In the figure, (14) is an optical interference filter,
The thickness t 1 at the center of the screen and the thickness t 2 at the periphery are different, and t 2 is formed thicker.

ここで第2図を用いて膜厚の決めかたを説明する。Here, how to determine the film thickness will be described with reference to FIG.

第2図はこの実施例の光学干渉フイルタ(14)の構成を
示す拡大断面図で、Hは屈折率nHの高屈折率層、Lは屈
折率nLの低屈折率層で、H(LH)N(Nは重ね合わせ層
数)の積層構造で、調整層(18)を介して、フエースプ
レート(6)と蛍光体層(7)との間に形成されてい
る。dLは低屈折率Lの膜厚、dHは高屈折率層Hの膜厚で
ある。
FIG. 2 is an enlarged sectional view showing the structure of the optical interference filter (14) of this embodiment, where H is a high refractive index layer having a refractive index n H , L is a low refractive index layer having a refractive index n L , and H ( It is a laminated structure of LH) N (N is the number of overlapping layers), and is formed between the face plate (6) and the phosphor layer (7) via the adjustment layer (18). d L is the film thickness of the low refractive index L, and d H is the film thickness of the high refractive index layer H.

まず始めに画面中心部の設計方法を述べる。First, the method of designing the center of the screen will be described.

これは従来例の光学干渉フイルタと同じ設計となる。This has the same design as the conventional optical interference filter.

第7図のような分光特性を得るためには、例えば透過率
が50%になる所望波長をλ50とする。次に、光学干渉フ
イルタの設計波長を入0とし、λ0≒4/3・λ50に設定す
る。このとき、 dL1×nL=λ0/4, dH1×nH=λ0/4 … なる膜厚に設計すれば良い。ここで、dL1,dH1は画面中
心付近の実際の膜厚、dL1×nL,dH1×nHは干渉膜の多重
反射時の位相差に関わる実効的な膜厚である。
In order to obtain the spectral characteristics as shown in FIG. 7, for example, the desired wavelength at which the transmittance is 50% is λ 50 . Next, the design wavelength of the optical interference filter and the input and 0, is set to λ 0 ≒ 4/3 · λ 50. At this time, the film thickness may be designed to be d L1 × n L = λ0 / 4, d H1 × n H = λ0 / 4 ... Here, d L1 and d H1 are actual film thicknesses near the center of the screen, and d L1 × n L and d H1 × n H are effective film thicknesses related to the phase difference at the time of multiple reflection of the interference film.

具体例として、λ50=570[nm],nL=1.45(SiO2)、n
H=2.31(TiO2)とすれば、dL=131[nm],dH=82[n
m]となり、N=3〜7にすれば所望の特性が得られ
る。
As a specific example, λ 50 = 570 [nm], n L = 1.45 (SiO 2 ), n
If H = 2.31 (TiO 2), d L = 131 [nm], d H = 82 [n
m], and if N = 3 to 7, desired characteristics are obtained.

つぎに、画面周辺部での設計方法を述べる。第1図にお
いて、周辺部では主光線(17)が、光学干渉フィルタ
(14)面の法線に対してθ2とある角度を有する。ここ
で、主光線とは有効利用光束のほぼ中央を通る光線であ
り、これが入射瞳の中心(15)を通るものとする。この
時、主光線にとって実効的な膜厚は、干渉膜の設計手法
で良く知られている様に、L,H層について、それぞれ nL×dL2cosθL, nH×dH2cosθH … となる。ここで、dL2,dH2は周辺部における実際の膜
厚、θL,θHは主光線がそれぞれL,H層を透過する時の
進行角度であり、フエースプレート(6)の屈折率をnf
とすると nf・sinθ2=nL・sinθL=nH・sinθH … の関係がある。
Next, the design method in the peripheral area of the screen will be described. In FIG. 1, the chief ray (17) has an angle of θ 2 with respect to the normal line of the surface of the optical interference filter (14) in the peripheral portion. Here, the principal ray is a ray that passes through substantially the center of the effectively used light flux, and this ray passes through the center (15) of the entrance pupil. At this time, the effective film thickness for the chief ray is n L × d L2 cos θ L , n H × d H2 cos θ H ... for the L and H layers, respectively, as is well known in the design method of interference films. Becomes Here, d L2 and d H2 are the actual film thickness in the peripheral portion, θ L and θ H are the traveling angles when the chief ray passes through the L and H layers, respectively, and the refractive index of the face plate (6) is n f
Then, there is a relationship of n f · sin θ 2 = n L · sin θ L = n H · sin θ H.

もし、dL2,dH2が従来と同様に、dL1,dH1に等しければ、
式より実効膜厚は薄くなり、式の条件、つまり実効
膜厚がλ0/4に等しいという条件を満たさなくなり、λ
50は画面中心に比べ短くなる。この結果、先に述べたよ
うに、透過率が落ちてしまうのである。
If d L2 , d H2 is equal to d L1 , d H1 as before,
The effective film thickness becomes smaller than the formula, and the condition of the formula, that is, the condition that the effective film thickness is equal to λ0 / 4 is not satisfied,
50 is shorter than the center of the screen. As a result, as described above, the transmittance decreases.

したがつて、周辺部の主光線が所望の特性を得るには
式と同様に nL・dL2・cosθL=λ0/4, nH・dH2・cosθH=λ0/4 … を満たせば良いことは明らかである。
Therefore, in order to obtain the desired characteristics of the chief ray in the peripheral part, if n L · d L2 · cos θ L = λ0 / 4, n H · d H2 · cos θ H = λ 0/4 ... The good is clear.

したがつて、,式から、実際の膜厚は、下記の式
を満たすようにすればよい。
Therefore, from the equation, the actual film thickness may satisfy the following equation.

dL1=dL2cosθL dH1=dH2cosθH … 式より明らかなように、周辺部の膜厚dL2,dH2は中心
部よりもθ2が大きくなるにつれて厚くしなければなら
ない。
d L1 = d L2 cos θ L d H1 = d H2 cos θ H As is clear from the equation, the film thicknesses d L2 and d H2 at the peripheral portion must be made thicker as θ 2 becomes larger than at the central portion.

繰り返し数Nは当然同じであるので第1図において、フ
イルタ厚はt2>t1となる。
Since the number of repetitions N is naturally the same, the filter thickness is t 2 > t 1 in FIG.

式を満すように膜厚を周辺部にいくにしたがつて厚く
していけば、主光線は常に見かけ上第7図中のθ=0°
の分光特性となるので、従来のように暗くなることはな
く、画面の全域にわたつて明るい画像が得られる。
If the film thickness is made thicker toward the periphery so that the formula is satisfied, the chief ray will always appear to be θ = 0 ° in FIG.
Since it has the spectral characteristic of, a bright image can be obtained over the entire area of the screen without becoming dark as in the conventional case.

なお、上記実施例では、フエースプレート(6)を曲面
にした例について述べたが、第5図のような平面のフエ
ースプレートにも適用でき、式を満たすように膜厚を
場所によつて変えれば良く、上記実施例と同様の効果が
得られる。
Although the face plate (6) is a curved surface in the above embodiment, it can be applied to a flat face plate as shown in FIG. 5, and the film thickness can be changed depending on the location so as to satisfy the formula. It is sufficient to obtain the same effect as that of the above embodiment.

また、フエースプレート(6)の曲率半径中心が入射瞳
中心(15)と一致するような構造とすれば、θ2=0°
となり、膜厚は場所によらず一定で良いことは明らかで
ある。
If the structure is such that the radius of curvature of the face plate (6) coincides with the center of the entrance pupil (15), then θ 2 = 0 °
Therefore, it is clear that the film thickness may be constant regardless of the place.

また、上記実施例では、H層にTiO2を用いたがTa2O5
もよく、また調整層(18)は設けなくとも良い。
Further, in the above-mentioned embodiment, TiO 2 is used for the H layer, but Ta 2 O 5 may be used, and the adjustment layer (18) may not be provided.

[発明の効果] 以上のように、この発明によれば光学干渉フイルタの層
厚を主光線にとつての実効膜厚がλ0/4となるように、
画面周辺部にいくにしたがつて実際の膜厚が厚くなるよ
うに構成したので、画面の全域にわたつて非常に明るい
画像を得られる効果がある。
[Effects of the Invention] As described above, according to the present invention, the layer thickness of the optical interference filter is such that the effective film thickness for the chief ray is λ0 / 4,
Since the actual film thickness is increased as it goes to the peripheral portion of the screen, there is an effect that a very bright image can be obtained over the entire screen.

【図面の簡単な説明】[Brief description of drawings]

第1図はこの発明の一実施例の断面図、第2図はこの実
施例の光学干渉フイルタの構成を示す断面図、第3図は
この典型的なビデオプロジエクタの構成を示す図、第4
図は従来の投写型CRT装置の断面図、第5図および第6
図は従来の光学干渉フイルタを備えたそれぞれ異なる投
写型CRT装置の断面図、第7図は光学干渉フイルタの分
光特性および蛍光体スペクトルを示す図、第8図は光学
干渉フイルタの効果を説明するための図である。 (1)……投写型CRT装置、(5)……電子銃、(6)
……フエースプレート、(7)……蛍光体層、(14)…
…光学干渉フイルタ、(18)……調整層。 なお、各図中、同一符号は同一、または相当部分を示
す。
FIG. 1 is a sectional view of an embodiment of the present invention, FIG. 2 is a sectional view showing the construction of an optical interference filter of this embodiment, and FIG. 3 is a diagram showing the construction of this typical video projector. Four
The figure is a cross-sectional view of a conventional projection type CRT device, FIG. 5 and FIG.
FIG. 7 is a cross-sectional view of different projection type CRT devices equipped with a conventional optical interference filter, FIG. 7 is a diagram showing spectral characteristics and phosphor spectrum of the optical interference filter, and FIG. FIG. (1) …… Projection CRT device, (5) …… Electron gun, (6)
…… Face plate, (7) …… Phosphor layer, (14)…
… Optical interference filter, (18) …… Adjustment layer. In each figure, the same reference numerals indicate the same or corresponding parts.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】フェースプレートの内面に光学干渉フィル
タを介して蛍光体層が形成された投写型CRT装置であっ
て、 上記フェースプレートの内面は、投写側から見て凹面形
状を有し、 上記光学干渉フィルタが、(高屈折率層)+(低屈折率
層+高屈折率層)×N(ただし3≦N≦7)の積層構造
を有し、かつ、 k番目(k=1,2,…,(2N+1))の屈折率層の膜厚を
dkとし、その屈折率をnkとし、k番目の屈折率層を通過
する主光線の進行角度をθkとしたときに、k番目の屈
折率層が、上記蛍光体層の面上の中心部から周辺部にい
たる各位置における主光線に対してnk・dk・cosθkの値
が等しくなる膜厚に形成されている ことを特徴とする投写型CRT装置。
1. A projection type CRT device having a phosphor layer formed on an inner surface of a face plate through an optical interference filter, wherein the inner surface of the face plate has a concave shape when viewed from a projection side, The optical interference filter has a laminated structure of (high refractive index layer) + (low refractive index layer + high refractive index layer) × N (where 3 ≦ N ≦ 7), and k-th (k = 1,2 , ..., (2N + 1))
Let d k , its refractive index be n k, and the traveling angle of the chief ray passing through the kth refractive index layer be θ k , then the kth refractive index layer is on the surface of the above-mentioned phosphor layer. A projection-type CRT device characterized in that it is formed to have a film thickness such that the values of n k , d k, and cos θ k are equal to the principal ray at each position from the central part to the peripheral part.
JP21358989A 1989-06-27 1989-08-18 Projection CRT device Expired - Fee Related JPH071680B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP21358989A JPH071680B2 (en) 1989-08-18 1989-08-18 Projection CRT device
US07/542,077 US5138222A (en) 1989-06-27 1990-06-22 Projection cathode ray tube having an interference filter
US07/867,450 US5248518A (en) 1989-06-27 1992-04-13 Projection cathode ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21358989A JPH071680B2 (en) 1989-08-18 1989-08-18 Projection CRT device

Publications (2)

Publication Number Publication Date
JPH0377248A JPH0377248A (en) 1991-04-02
JPH071680B2 true JPH071680B2 (en) 1995-01-11

Family

ID=16641703

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21358989A Expired - Fee Related JPH071680B2 (en) 1989-06-27 1989-08-18 Projection CRT device

Country Status (1)

Country Link
JP (1) JPH071680B2 (en)

Also Published As

Publication number Publication date
JPH0377248A (en) 1991-04-02

Similar Documents

Publication Publication Date Title
JP4200266B2 (en) Dichroic mirror and projection display device
US4642695A (en) Projection cathode-ray tube having enhanced image brightness
US4804884A (en) Display tube having improved brightness distribution
JPH0278139A (en) Projection type television desplay tube having band passage interference filter and device
JPS6146689A (en) Color image projector
JP4282925B2 (en) Projection display
JP2565976B2 (en) Projection television
US5138222A (en) Projection cathode ray tube having an interference filter
JPH071680B2 (en) Projection CRT device
US5248518A (en) Projection cathode ray tube
US5144417A (en) Projection type television apparatus
JPH0679104B2 (en) Projection Television
JPH07325301A (en) Projection type display device
USRE34131E (en) Display tube having improved brightness distribution
US5031033A (en) Projection television apparatus
JPH04242202A (en) Projection tube with interference filter
JPS58222689A (en) Projector of television picture
JPH05145873A (en) Projection television
JPH0310588A (en) Projection type television
JP2882929B2 (en) Projection optics
JP2839284B2 (en) Projection type cathode ray tube
EP1408531A1 (en) Cathode ray tube
JPS58134593A (en) Television picture projector
JPH0451107A (en) Projection type television device
JP3133418B2 (en) Exposure equipment for fluorescent screen formation of color picture tubes

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees