JPH07167393A - Flat bottom cylindrical medium-pressure low-temperature tank - Google Patents

Flat bottom cylindrical medium-pressure low-temperature tank

Info

Publication number
JPH07167393A
JPH07167393A JP5341288A JP34128893A JPH07167393A JP H07167393 A JPH07167393 A JP H07167393A JP 5341288 A JP5341288 A JP 5341288A JP 34128893 A JP34128893 A JP 34128893A JP H07167393 A JPH07167393 A JP H07167393A
Authority
JP
Japan
Prior art keywords
inner tank
tank
fibers
side plate
plate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5341288A
Other languages
Japanese (ja)
Inventor
Jun Miyasaka
潤 宮坂
Yoshikazu Kano
良和 加納
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP5341288A priority Critical patent/JPH07167393A/en
Publication of JPH07167393A publication Critical patent/JPH07167393A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/32Hydrogen storage

Landscapes

  • Filling Or Discharging Of Gas Storage Vessels (AREA)

Abstract

PURPOSE:T heighten follow-up performance to the contraction of an inner tank by providing plural vertical fibers fastened to an anchor metal member with the lower end embedded in floor slab concrete, and cold insulating powder material filled between the fibers. CONSTITUTION:Inner tank roof lifting force is transmitted to an outer tank floor slab concrete 4B via an inner tank side plate 2, a skirt, fibers 9 and an anchor metal member 8. Cold insulating powder is filled around the fibers 9 piercing pits piercingly provided at equal spaces at the inner tank floor slab concrete 4A. The inner tank side plate 2 and the inner tank bottom plate 3 are connected to each other by an annular corner curved plate so as to form a space for fitting the fibers 9 while avoiding the stress concentration of an inner tank. Plural fibers 9 are extended vertically at equal spaces through the pits, and the skirt is coaxially set to the floor slab concrete 4A so that the centerline of a lower end flange coincides with the centerline of the pit. Penetrting heat is thereby reduced, and follow-up performance to the contraction of the inner tank can be heightened.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、LNG,LPG,液体
水素等の貯蔵に使用する平底円筒型中圧低温タンクに関
する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a flat-bottomed cylindrical medium-pressure cryogenic tank used for storing LNG, LPG, liquid hydrogen and the like.

【0002】[0002]

【従来の技術】LNG,LPG,液体水素等を貯溜する
平底円筒型低圧低温タンクにおいては、従来、図4縦断
面図に示すように、内槽屋根01にかかるガス圧は内槽
側板02,内槽アンカーストラップ03を経由して、基
礎床板コンクリート04に伝達されるようになってい
る。ここで、アンカーストラップ03は、図5拡大図に
示すように、約1mピッチで配置されている。
2. Description of the Related Art In a flat-bottomed cylinder type low-pressure low-temperature tank for storing LNG, LPG, liquid hydrogen, etc., conventionally, as shown in the longitudinal sectional view of FIG. It is adapted to be transmitted to the concrete floor board concrete 04 via the inner tank anchor strap 03. Here, the anchor straps 03 are arranged at a pitch of about 1 m, as shown in the enlarged view of FIG.

【0003】[0003]

【発明が解決しようとする課題】従来、この種の平底円
筒型低温タンクは、内圧が0.2kg/cm2g以下であるので、
内槽屋根にかかるガス圧を支持するアンカーストラップ
は約1mごとに設置すれば済んでいた。このため、同タ
ンクが低温になって径方向に収縮するときは、アンカー
ストラップの可撓性により追従することができた。ま
た、アンカーストラップの断面積もあまり大きくないの
で、そこからの侵入熱もあまり問題にならなかった。し
かしながら、液体水素貯蔵のように、真空保冷が必要と
なる場合には、内槽ガス圧としては、大気圧分を加算す
る必要があるので、1.2kg/cm2 程度を考えざるを得な
い。この圧力を受け持つ内槽アンカーは、従来の構造で
は、内槽収縮への追従性及び侵入熱の点で成立しない。
すなわち、平底円筒型中圧低温タンクでは、新たに、内
槽収縮への追従性を有し、低侵入熱の内槽アンカー構造
を採用する必要がある。
Conventionally, this type of flat-bottomed cylindrical low-temperature tank has an internal pressure of 0.2 kg / cm 2 g or less.
Anchor straps supporting the gas pressure on the inner tank roof had to be installed every 1 m. Therefore, when the tank becomes cold and contracts in the radial direction, the flexibility of the anchor strap can follow the tank. Also, since the cross-sectional area of the anchor strap is not so large, the heat entering from the anchor strap did not pose a problem. However, when vacuum cooling is required as in the case of liquid hydrogen storage, it is necessary to consider atmospheric pressure as the internal tank gas pressure, so it is necessary to consider about 1.2 kg / cm 2 . In the conventional structure, the inner tank anchor that bears this pressure is not satisfied in terms of followability to inner tank contraction and invasion heat.
That is, in the flat-bottomed cylindrical medium-pressure low-temperature tank, it is necessary to newly adopt an inner tank anchor structure having a followability to the inner tank shrinkage and a low penetration heat.

【0004】本発明はこのような事情に鑑みて提案され
たもので、液体水素貯蔵のように、真空保冷が必要であ
り、比較的大きな内圧にも耐え、侵入熱を少なくすると
ともに、内槽収縮に対する追従性を高めた安全かつ経済
的な平底円筒型中圧低温タンクを提供することを目的と
する。
The present invention has been proposed in view of the above circumstances, and it requires vacuum cooling such as liquid hydrogen storage, can withstand a relatively large internal pressure, reduces the heat of intrusion, and has an internal tank. An object of the present invention is to provide a safe and economical flat-bottomed cylindrical medium-pressure low-temperature tank with improved followability to shrinkage.

【0005】[0005]

【課題を解決するための手段】そのために本発明は、比
較的小径の竪円筒状側板の下端,上端をそれぞれ水平円
形底板,上凸半球殻状頂板にて閉鎖してなる内槽と、上
記内槽を適宜半径方向及び竪方向の間隔を存して同軸的
に内包し比較的大径の竪円筒状側板の下端,上端をそれ
ぞれ水平円形底板,上凸半球殻状頂板にて閉鎖してなる
外槽とからなる2重円筒構造の真空保冷式タンクにおい
て、上記内槽側板の下端と内槽底板の外周の間に上下端
が同軸的に滑らかに溶接され1/4円弧状断面を有する
環状コーナー板と、上記内槽側板の下端部を上記内槽を
上載する床板コンクリート上に支持する短円筒状スカー
トと、上記スカートの下端フランジに沿って等間隔で垂
設され下端が上記外槽を上載する床板コンクリートに埋
め込まれたアンカー金物に固着された複数の鉛直方向繊
維と、上記複数の繊維の相互間に充填された粉末保冷材
とを具えたことを特徴とする。
To this end, the present invention provides an inner tank in which a lower end and an upper end of a vertical cylindrical side plate having a relatively small diameter are closed by a horizontal circular bottom plate and an upper convex hemispherical shell-shaped top plate, respectively. The inner tank is coaxially enclosed with appropriate radial and vertical intervals, and the lower and upper ends of the relatively large-diameter vertical cylindrical side plates are closed by horizontal circular bottom plates and upward convex hemispherical shell-shaped top plates, respectively. In a vacuum cold-reservoir type tank having a double cylindrical structure consisting of an outer tank, the upper and lower ends are coaxially smoothly welded between the lower end of the inner tank side plate and the outer periphery of the inner tank bottom plate, and have a quarter arc cross section. An annular corner plate, a short cylindrical skirt that supports the lower end portion of the inner tank side plate on the floor plate concrete on which the inner tank is mounted, and the lower end is erected at equal intervals along the lower end flange of the skirt and the lower end is the outer tank. Anchor embedded in concrete A plurality of vertical fibers secured in hardware, characterized in that comprises the filled powder cold insulating material therebetween the plurality of fibers.

【0006】[0006]

【作用】このような構成によれば、内槽屋根にかかる上
向きのガス圧は内槽側板,スカート,繊維,アンカー金
物を通って、基礎床板コンクリートに伝達される。ここ
で、繊維の引張強度は金属のそれより大であるので、断
面積は金属の場合より小になる。また、従来のアンカー
ストラップが一列であるのに対して、繊維を複数列設け
ることと、素材の物性差により、繊維の方が剛性が低
く、内槽収縮への追従性が向上する。繊維の周囲には粉
末保冷材が充填されているので、内槽収縮に伴う繊維の
動きがあっても、繊維の周囲の保冷性は変化しない。
With this structure, the upward gas pressure applied to the roof of the inner tank is transmitted to the concrete of the foundation floor plate through the side plates of the inner tank, the skirt, the fibers and the anchor metal. Here, since the tensile strength of the fiber is larger than that of the metal, the cross-sectional area is smaller than that of the metal. In addition, the conventional anchor strap has a single row, whereas the fibers are provided with a plurality of rows and the difference in the physical properties of the materials makes the fibers less rigid, and the followability to shrinkage of the inner tank is improved. Since the powder cold insulating material is filled around the fibers, the cold insulating property around the fibers does not change even if the fibers move due to the contraction of the inner tank.

【0007】[0007]

【実施例】本発明を液体水素の貯蔵に適用した一実施例
を図面について説明すると、図1はその全体縦断面図、
図2は図1のII部である内槽アンカー構造を示す拡大
図、図3は図2のピットの種々の例を示す部分平面図で
ある。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Referring to the drawings, an embodiment in which the present invention is applied to the storage of liquid hydrogen will be described with reference to FIG.
2 is an enlarged view showing the inner tank anchor structure which is the II part of FIG. 1, and FIG. 3 is a partial plan view showing various examples of the pits of FIG.

【0008】上図において、図4〜図5と同一の符号は
それぞれ同図と同一の部材を示し、内槽1と外槽11と
の間、すなわち、内外槽空間12が真空であることを考
えると、内槽ガス圧は1.2kg/cm2 程度以上になる。この
圧力による内槽屋根持ち上げ力は内槽側板2,スカート
7,繊維9,アンカー金物8を経由して、外槽床板コン
クリート4B に伝達される。
In the above figure, the same reference numerals as those in FIGS. 4 to 5 indicate the same members as those in the figures, and it is confirmed that the space between the inner tank 1 and the outer tank 11, that is, the inner and outer tank space 12 is a vacuum. Considering this, the gas pressure in the inner tank will be about 1.2 kg / cm 2 or more. Inner tank roof lifting force inner tank side plate 2 by the pressure, the skirt 7, fiber 9 via the anchor hardware 8 is transmitted to the outer tub floor concrete 4 B.

【0009】ここで、内槽床板コンクリート4A に等間
隔で貫設されたピット14を貫通する繊維9の周囲には
粉末保冷材10を充填する。内槽側板2と内槽底板3と
は環状コーナー曲面板6で連結され、内槽の応力集中を
避けるとともに、繊維9を取付けるスペースができる。
なお、繊維9は繊維又はそれを撚ったものの他に、FR
Pボルトも考えられる。
[0009] Here, the periphery of the fibers 9 extending through the pit 14 that is transmural set at equal intervals in the inner tub floor concrete 4 A filling powder cold insulating material 10. The inner tank side plate 2 and the inner tank bottom plate 3 are connected by an annular corner curved plate 6, so that stress concentration in the inner tank can be avoided and a space for mounting the fibers 9 can be provided.
Fiber 9 is not limited to fiber or twisted fiber, and FR
P-bolts are also conceivable.

【0010】ここで、繊維9は内槽床板コンクリート4
A の外周に形成されたピット14を通って等間隔で鉛直
方向に延び、ピット14の形状としては、図3(A)に
示す同心的環状溝,同図(B)に示す円形孔,同図
(C),同図(D)に示す長方形孔等があり、その中心
線上にスカート7の下端フランジ13の中心線が一致す
るようにスカートは内槽床板コンクリート4A に対して
同軸的にセットされる。いずれの場合も、フランジ13の
内周端,外周端はともに床板コンクリート4A上に支持
され、繊維9の合力はスカート7に同軸的に作用する。
繊維9の周囲には粉末保冷材10を充填する。内槽外板
2と内槽底板3とは環状で1/4円弧状断面図を有する
コ−ナ−曲面板6で同軸的に滑らかに溶接されている。
Here, the fiber 9 is the inner tank floorboard concrete 4
The pits 14 extend in the vertical direction at equal intervals through the pits 14 formed on the outer periphery of the A , and the pits 14 have a concentric annular groove shown in FIG. 3A, a circular hole shown in FIG. There are rectangular holes and the like shown in FIGS. (C) and (D), and the skirt is coaxial with the inner tank floor concrete 4 A so that the center line of the lower end flange 13 of the skirt 7 is aligned with the center line. Set. In any case, the inner peripheral end of the flange 13, the outer peripheral edge are both supported on the floor plate concrete 4 A, the resultant force of the fibers 9 acts coaxially to the skirt 7.
A powder cold insulator 10 is filled around the fibers 9. The inner tank outer plate 2 and the inner tank bottom plate 3 are coaxially and smoothly welded to each other by a corner curved plate 6 having an annular 1/4 arc sectional view.

【0011】[0011]

【発明の効果】このような構造によれば、下記の効果が
奏せられる。 (1)平底円筒型低温タンクを1kg/cm2以上の充填な
る。 (2)内槽は強力にしかも十分な半径方向の伸縮を可能
として、その内槽床板コンクリート上に支持される。 (3)真空保冷が必要な液体水素貯蔵において、大容量
タンクを建造しうる。 (4)LPG,LNG等の貯蔵においては、従来、常圧
保冷の低圧低温タンクが一般的であるが、操業性の良い
中圧低温タンクが可能となる。
According to such a structure, the following effects can be obtained. (1) Fill a flat-bottomed cylindrical low-temperature tank at 1 kg / cm 2 or more. (2) The inner tank is supported strongly on the concrete of the inner tank floor plate while being capable of expanding and contracting sufficiently in the radial direction. (3) A large-capacity tank can be constructed for liquid hydrogen storage that requires vacuum cooling. (4) In the storage of LPG, LNG, etc., a low-pressure low-temperature tank that is kept at normal pressure has been generally used in the past, but a medium-pressure low-temperature tank with good operability is possible.

【0012】要するに本発明によれば、比較的小径の竪
円筒状側板の下端,上端をそれぞれ水平円形底板,上凸
半球殻状頂板にて閉鎖してなる内槽と、上記内槽を適宜
半径方向及び竪方向の間隔を存して同軸的に内包し比較
的大径の竪円筒状側板の下端,上端をそれぞれ水平円形
底板,上凸半球殻状頂板にて閉鎖してなる外槽とからな
る2重円筒構造の真空保冷式タンクにおいて、上記内槽
側板の下端と内槽底板の外周の間に上下端が同軸的に滑
らかに溶接され1/4円弧状断面を有する環状コーナー
板と、上記内槽側板の下端部を上記内槽を上載する床板
コンクリート上に支持する短円筒状スカートと、上記ス
カートの下端フランジに沿って等間隔で垂設され下端が
上記外槽を上載する床板コンクリートに埋め込まれたア
ンカー金物に固着された複数の鉛直方向繊維と、上記複
数の繊維の相互間に充填された粉末保冷材とを具えたこ
とにより、液体水素貯蔵のように、真空保冷が必要であ
り、比較的大きな内圧にも耐え、侵入熱を少なくすると
ともに、内槽収縮に対する追従性を高めた安全かつ経済
的な平底円筒型中圧低温タンクを得るから、本発明は産
業上極めて有益なものである。
In short, according to the present invention, the inner tank formed by closing the lower end and the upper end of the vertical cylindrical side plate having a relatively small diameter with the horizontal circular bottom plate and the upper convex hemispherical shell top plate, respectively, and the inner tank having an appropriate radius. From the outer tank, which has a relatively large-diameter vertical cylindrical side plate with a horizontal circular bottom plate and an upper convex hemispherical shell-shaped top plate that respectively close the lower and upper ends of the cylindrical cylindrical side plate with a relatively large diameter. In a vacuum cold-reservoir type tank having a double cylindrical structure, an annular corner plate having upper and lower ends coaxially and smoothly welded between the lower end of the inner tank side plate and the outer circumference of the inner tank bottom plate and having a quarter arc section, A short cylindrical skirt that supports the lower end of the inner tank side plate on the floorboard concrete on which the inner tank is mounted, and a floorboard concrete on which the lower end is vertically suspended at equal intervals along the lower end flange of the skirt and on which the outer tank is mounted. Anchor embedded in metal Since it has a plurality of vertically oriented fibers and a powder cold insulation material filled between the above plurality of fibers, it needs to be vacuum-insulated, like liquid hydrogen storage, and can be used for relatively large internal pressure. INDUSTRIAL APPLICABILITY The present invention is extremely useful industrially, since a safe and economical flat-bottomed cylindrical medium-pressure low-temperature tank having improved endurance and less invasion heat and improved followability to inner tank shrinkage is obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例を示すタンクの全体縦断面図
である。
FIG. 1 is an overall vertical cross-sectional view of a tank showing an embodiment of the present invention.

【図2】図1のII部である内槽アンカー構造を示す拡大
図である。
FIG. 2 is an enlarged view showing an inner tank anchor structure which is a II part of FIG.

【図3】図2の内槽アンカー構造の種々の例を示す平面
図である。
FIG. 3 is a plan view showing various examples of the inner tank anchor structure of FIG. 2.

【図4】従来の液体水素貯蔵用の平底円筒型低温タンク
を示す全体縦断面図である。
FIG. 4 is an overall vertical cross-sectional view showing a conventional flat-bottomed cylindrical cryogenic tank for storing liquid hydrogen.

【図5】図4のV部である内槽アンカー構造を示す拡大
図である。
5 is an enlarged view showing an inner tank anchor structure which is a V portion of FIG. 4. FIG.

【符号の説明】[Explanation of symbols]

1 内槽 2 内槽側板 3 内槽底板 4A 内槽床板コンクリート 4B 外槽床板コンクリート 6 環状コーナー曲面板 7 スカート 8 アンカー金物 9 繊維 10 粉末保冷材 11 外槽 11A 外槽側板 11B 外槽底板 12 内外槽空間(真空空間) 13 フランジ 14 ピット1 Inner tank 2 Inner tank side plate 3 Inner tank bottom plate 4 A Inner tank floor plate concrete 4 B Outer tank floor plate concrete 6 Annular corner curved plate 7 Skirt 8 Anchor hardware 9 Fiber 10 Powder cooling material 11 Outer tank 11 A Outer tank side plate 11 B Outside Tank bottom plate 12 Inner / outer tank space (vacuum space) 13 Flange 14 Pit

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 比較的小径の竪円筒状側板の下端,上端
をそれぞれ水平円形底板,上凸半球殻状頂板にて閉鎖し
てなる内槽と、上記内槽を適宜半径方向及び竪方向の間
隔を存して同軸的に内包し比較的大径の竪円筒状側板の
下端,上端をそれぞれ水平円形底板,上凸半球殻状頂板
にて閉鎖してなる外槽とからなる2重円筒構造の真空保
冷式タンクにおいて、上記内槽側板の下端と内槽底板の
外周の間に上下端が同軸的に滑らかに溶接され1/4円
弧状断面を有する環状コーナー板と、上記内槽側板の下
端部を上記内槽を上載する床板コンクリート上に支持す
る短円筒状スカートと、上記スカートの下端フランジに
沿って等間隔で垂設され下端が上記外槽を上載する床板
コンクリートに埋め込まれたアンカー金物に固着された
複数の鉛直方向繊維と、上記複数の繊維の相互間に充填
された粉末保冷材とを具えたことを特徴とする平底円筒
型中圧低温タンク。
1. An inner tank formed by closing a lower end and an upper end of a vertical cylindrical side plate having a relatively small diameter with a horizontal circular bottom plate and an upper convex hemispherical shell-shaped top plate, and the inner tank in a radial direction and a vertical direction as appropriate. Double cylindrical structure consisting of a vertical cylindrical side plate of a relatively large diameter, which is coaxially enclosed at intervals and has an outer tank in which the lower end and upper end are closed by a horizontal circular bottom plate and an upper convex hemispherical shell top plate, respectively. In the vacuum cold-reservoir type tank, the upper and lower ends of the inner tank side plate are coaxially smoothly welded between the lower end of the inner tank side plate and the outer periphery of the inner tank bottom plate, and an annular corner plate having a quarter-arc section is provided. A short cylindrical skirt that supports the lower end on the floorboard concrete on which the inner tank is placed, and an anchor that is hung vertically along the lower end flange of the skirt and has lower ends embedded in the floorboard concrete on which the outer tank is placed. Multiple vertical fibers attached to a hardware A flat-bottomed cylindrical medium-pressure cryogenic tank, comprising: a powder cold insulating material filled between the plurality of fibers;
JP5341288A 1993-12-10 1993-12-10 Flat bottom cylindrical medium-pressure low-temperature tank Withdrawn JPH07167393A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5341288A JPH07167393A (en) 1993-12-10 1993-12-10 Flat bottom cylindrical medium-pressure low-temperature tank

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5341288A JPH07167393A (en) 1993-12-10 1993-12-10 Flat bottom cylindrical medium-pressure low-temperature tank

Publications (1)

Publication Number Publication Date
JPH07167393A true JPH07167393A (en) 1995-07-04

Family

ID=18344900

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5341288A Withdrawn JPH07167393A (en) 1993-12-10 1993-12-10 Flat bottom cylindrical medium-pressure low-temperature tank

Country Status (1)

Country Link
JP (1) JPH07167393A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225075A (en) * 2006-02-27 2007-09-06 Ishii Iron Works Co Ltd Vertical double-shell cylindrical low-temperature storage
JP2017186017A (en) * 2016-03-31 2017-10-12 清水建設株式会社 Low Temperature Liquid Storage Tank

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007225075A (en) * 2006-02-27 2007-09-06 Ishii Iron Works Co Ltd Vertical double-shell cylindrical low-temperature storage
JP2017186017A (en) * 2016-03-31 2017-10-12 清水建設株式会社 Low Temperature Liquid Storage Tank

Similar Documents

Publication Publication Date Title
WO2006046872A1 (en) Tank for storage of lng or other cryogenic fluids
JP3684318B2 (en) Outer tank support structure for vertical insulated low temperature tank
US3583592A (en) Cryogenic storage tank
JP4567287B2 (en) Vertical double-shell cylindrical cryogenic storage tank
US3025993A (en) Anchor system
JPH07167393A (en) Flat bottom cylindrical medium-pressure low-temperature tank
JPS5827159B2 (en) Liquefied gas transfer equipment
JPS5838233Y2 (en) Liquefied gas cold storage tank
JP2007162772A (en) Outer vessel bottom plate construction of vertical type thermal insulation low-temperature tank
JPH0447520Y2 (en)
JP4379899B2 (en) Low temperature tank
JP2008019917A (en) Vertical double-shell cylindrical low-temperature storage
JPS6136880Y2 (en)
JPH0440077Y2 (en)
JP4337168B2 (en) Low temperature tank
JPH0447518Y2 (en)
JPH0215118Y2 (en)
JPH0799237B2 (en) Cooling structure inside the low temperature underground storage tank roof
JPS5838232Y2 (en) cryogenic tank
JP2500041Y2 (en) Cooling structure inside the low temperature underground storage tank roof
JPH1194198A (en) Vertical heat insulating low temperature tank
JPH0510500A (en) Roof membrane anchor structure of low-temperature tank
JP2000346294A (en) Earthquake-resistant structure for flat bottom cylinder type low temperature tank
JPS5810074Y2 (en) Lower support structure for supply and discharge pipes in low-temperature tanks
JPS5821996Y2 (en) Lower support structure of liquid dispensing nozzle of low temperature tank

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010306