JPH07166252A - Production of raw material composition for iron making consisting of dissolution residue of bauxite - Google Patents
Production of raw material composition for iron making consisting of dissolution residue of bauxiteInfo
- Publication number
- JPH07166252A JPH07166252A JP5313389A JP31338993A JPH07166252A JP H07166252 A JPH07166252 A JP H07166252A JP 5313389 A JP5313389 A JP 5313389A JP 31338993 A JP31338993 A JP 31338993A JP H07166252 A JPH07166252 A JP H07166252A
- Authority
- JP
- Japan
- Prior art keywords
- bauxite
- raw material
- dissolution residue
- solution
- residue
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y02W30/54—
Landscapes
- Compounds Of Alkaline-Earth Elements, Aluminum Or Rare-Earth Metals (AREA)
- Manufacture And Refinement Of Metals (AREA)
Abstract
Description
【0001】[0001]
【産業上の利用分野】本発明は、ボーキサイト溶解残渣
よりなる製鉄用原料組成物の製造方法に関する。更に詳
細には、ボーキサイトをナトリウム含有溶液で処理して
アルミナを製造する所謂バイヤー法に於いて、製鉄用原
料または副原料(以下、両者を合わせて製鉄用原料と称
する場合がある)として利用し得るボーキサイト溶解残
渣の製造方法に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a raw material composition for ironmaking comprising a bauxite dissolution residue. More specifically, in a so-called Bayer method of treating alumina with bauxite treated with a sodium-containing solution, it is used as a raw material for iron making or an auxiliary raw material (hereinafter, both may be collectively referred to as raw material for iron making). The present invention relates to a method for producing a bauxite dissolution residue to be obtained.
【0002】[0002]
【従来の技術】よく知られているように、ボーキサイト
からアルミナ分を抽出するバイヤー法においては、多量
の溶解残渣が排出される。この残渣については過去、種
々の観点から、その有効利用法が営々と研究、検討され
てきた。As is well known, in the Bayer method for extracting alumina from bauxite, a large amount of dissolved residue is discharged. In the past, effective utilization methods of this residue have been studied and studied from various viewpoints.
【0003】例えば溶解残渣を分解し、有価成分を回収
する方法(特開昭63−261350号公報)や溶解残
渣を固めコンクリート、タイル、道路舗装剤等の骨材と
して有効利用する方法(特開昭62−319259号公
報)や、更には溶解残渣中の特殊成分を触媒や触媒担体
として利用する方法等がある。For example, a method of decomposing a dissolution residue to recover a valuable component (Japanese Patent Laid-Open No. 63-261350) or a method of solidifying the dissolution residue and effectively utilizing it as an aggregate for concrete, tiles, road paving agents, etc. JP-A-62-319259), and a method of utilizing a special component in the dissolution residue as a catalyst or a catalyst carrier.
【0004】[0004]
【発明が解決しようとする課題】しかし、以上のように
文献上では種々の利用法が教示されているにもかかわら
ず、今日これら溶解残渣は、埋め立て用以外の用途とし
ては道路用材料等としてわずかの量が利用されているに
すぎない。その理由は、この溶解残渣は固形分が通常
300〜600g/l程度のスラリー状であり、脱水が
困難なこと。利用目的に対して相反する種々の成分を
持つ混合物であり、何れの成分の特徴も生かしきること
ができないこと。ソーダ分が多く、耐火物、セラミッ
ク用原料等としては不適であること。粒子が非常に細
かく、ハンドリングが難しいこと。大量の溶解残渣を
一括利用できる用途や技術が必要であること、等が挙げ
られる。それ故、現在では殆どが埋め立て用材料として
使用されている。However, although various uses are taught in the literature as described above, these dissolution residues are used as road materials and the like for purposes other than landfill today. Only a small amount is used. The reason is that this dissolved residue is in the form of a slurry having a solid content of usually about 300 to 600 g / l, and it is difficult to dehydrate. It is a mixture with various components that conflict with the purpose of use, and the characteristics of any of the components cannot be fully utilized. It contains a large amount of soda and is not suitable as a refractory material or a raw material for ceramics. The particles are very fine and difficult to handle. For example, it is necessary to have a use and technology that can use a large amount of dissolution residue all at once. Therefore, most of them are now used as landfill materials.
【0005】しかし、昨今では埋立て可能な海岸線や内
陸部は減少しつつあり、加えて溶解残渣は酸化鉄、酸化
珪素等を多量に含有しており資源保護の立場から、ボー
キサイト溶解残渣の有効利用について、一段と真剣な解
決方法が求められている。Recently, however, the number of coastlines and inland areas that can be landfilled is decreasing, and in addition, the dissolution residue contains a large amount of iron oxide, silicon oxide, etc. From the standpoint of resource conservation, bauxite dissolution residue is effective. There is a need for a more serious solution to use.
【0006】他方、ボーキサイト溶解残渣中のFe2 O
3 含量に着眼し、製鉄用原料又は副原料に適用できない
かとの考えも古くからある。On the other hand, Fe 2 O in the bauxite dissolution residue
It has long been thought that it could be applied to raw materials for iron making or auxiliary raw materials by focusing on the 3 content.
【0007】製鉄用原料としては、主原料と副原料(造
サイ剤、希釈剤等)がある。主原料として用いられる鉄
鉱石としては、磁鉄鉱(Fe3 O4 ),赤鉄鉱(α−F
e2 O3 )等の酸化鉄鉱石、針鉄鉱(α−Fe2 O3 ・
H2 O)、鱗鉄鉱(γ−Fe2 O3 ・H2 O)等の水酸
化鉄鉱石その他の硫化鉄鉱石、炭酸鉄鉱石、鉄硅酸塩鉱
石等がある。これらの鉱石の鉄の含有量は通常、酸化鉄
鉱石のFeとして70重量%前後から鉄硅酸塩鉱石のF
eとして20重量%程度まで様々である。As raw materials for iron making, there are a main raw material and an auxiliary raw material (such as a forming agent and a diluent). Iron ores used as main raw materials include magnetite (Fe 3 O 4 ) and hematite (α-F
e 2 O 3 ) and other iron oxide ores, goethite (α-Fe 2 O 3 ·.
H 2 O), hematite (γ-Fe 2 O 3 .H 2 O), and other iron hydroxide ores, other iron sulfide ores, iron carbonate ores, and iron silicate ores. The iron content of these ores is usually around 70% by weight as Fe of iron oxide ore to F of iron silicate ore.
The value of e varies from about 20% by weight.
【0008】また製鉄(製銑、製鋼)用副原料として
は、石灰石(CaO)、ドロマイト(CaCO3 ・Mg
CO3 ),軽焼ドロマイト(CaO・MgO)、マグネ
シアクリンカ(MgO)、カンラン岩、蛇紋岩、蛍石
(CaF)、硅石(SiO2 )、鉄マンガン鉱石及びチ
タン鉄鉱(FeTiO3 )等々の原料があり、それぞれ
に使い分けられている。(鉄鋼便覧(丸善)II巻55頁
参照)Limestone (CaO) and dolomite (CaCO 3 .Mg) are used as auxiliary materials for iron making (pig making, steel making).
CO 3 ), light burned dolomite (CaO / MgO), magnesia clinker (MgO), peridotite, serpentine, fluorite (CaF), silica (SiO 2 ), ferromanganese ore and ilmenite (FeTiO 3 ), etc. There is, and is used properly for each. (See Iron and Steel Handbook (Maruzen) II, page 55)
【0009】従来のバイヤー法では使用するボーキサイ
トやその処理条件によって一義的ではないものの、乾燥
後の溶解残渣(赤泥という場合がある)の組成は、灼熱
減量(LOI)8〜12重量%、Al2 O3 18〜25
重量%、SiO2 15〜20重量%、Fe2 O3 30〜
40重量%、Na2 O8〜12重量%、TiO2 2〜8
重量%程度である(アルミニウム工業、北川二郎著、誠
文堂新光社発行、第76頁参照)。In the conventional Bayer method, although not unique depending on the bauxite used and the processing conditions thereof, the composition of the dissolved residue after drying (sometimes referred to as red mud) is 8-12% by weight loss on ignition (LOI), Al 2 O 3 18-25
% By weight, SiO 2 15-20% by weight, Fe 2 O 3 30-
40% by weight, Na 2 O 8-12% by weight, TiO 2 2-8
It is about wt% (see Aluminum Industry, Jiro Kitagawa, published by Seibundo Shinkosha, page 76).
【0010】しかして、本発明者が調査したところによ
れば、従来のボーキサイト溶解残渣を製鉄用原料又は副
原料として用いる場合、最大の問題点はFe2 O3 含量
の低さではなく、Na2 O含量とAl2 O3 含量の多さ
である。更に乾体としてもなお存在する結晶水を主成分
とする灼熱減量は少ない方が好ましい。製鉄用原料中に
ナトリウム分が存在すると、例えば高炉内で気化し蒸気
となり、これが高炉上部の低温域で析出、蓄積して耐火
物を脆化させる等の悪影響を与えると同時に炉内ガスの
流通を阻害する。この事情は転炉等においても同様であ
る。それ故製鉄用原料又は副原料のNa2 O含量は3重
量%以下、好ましくは1重量%以下ものが要求される。However, according to the investigation conducted by the present inventor, when the conventional bauxite dissolution residue is used as a raw material or an auxiliary raw material for iron making, the biggest problem is not the low Fe 2 O 3 content but the Na content. 2 O content and Al 2 O 3 content are high. Further, it is preferable that the loss of ignition due to water of crystallization which is still present as a dry body is small. If sodium is present in the raw material for iron making, it vaporizes in the blast furnace and becomes vapor, which has the adverse effect of precipitating and accumulating in the low temperature region of the upper part of the blast furnace and making the refractory brittle, etc. Inhibit. This situation also applies to converters and the like. Therefore, the Na 2 O content of the ironmaking raw material or the auxiliary raw material is required to be 3% by weight or less, preferably 1% by weight or less.
【0011】Al2 O3 はその存在量が多いとスラグが
酸性となり、脱硫黄、脱燐が困難となり、生石灰等のア
ルカリ性フラックスを多量に要し、生産性が悪くなる。
またAl2 O3 が多くなると、焼結鉱やペレットの還元
粉化性が増し、塊の強度劣化を起こし、高炉内で均質か
つ円滑なガスの通過を妨げる結果となり、銑鉄の品質及
び生産性に悪影響を与えることとなる。If the amount of Al 2 O 3 present is large, the slag becomes acidic, desulfurization and dephosphorization become difficult, and a large amount of alkaline flux such as quick lime is required, resulting in poor productivity.
In addition, when the amount of Al 2 O 3 increases, the reducing and pulverizing property of sinter or pellets increases, causing the strength of lumps to deteriorate, and as a result of hindering the uniform and smooth passage of gas in the blast furnace, the quality and productivity of pig iron are improved. Will be adversely affected.
【0012】Al2 O3 は鉄鉱石中の0〜2重量%程度
含まれており、2重量%は高炉のスラグ中Al2 O3 の
適正範囲の上限に近いため、他の原料中のAl2 O3 含
量はより少ない方が好ましい。一般的には、希釈した場
合を考慮しても製鉄原料のAl2 O3 含量は10重量%
以下、好ましくは5重量%以下にすることが要求され
る。Al 2 O 3 is contained in the iron ore in an amount of 0 to 2% by weight, and 2% by weight is close to the upper limit of the appropriate range of Al 2 O 3 in the slag of the blast furnace. A lower 2 O 3 content is preferred. In general, the Al 2 O 3 content of the ironmaking raw material is 10% by weight even when considering the diluted case.
Below, it is required to be preferably 5% by weight or less.
【0013】また、灼熱減量が多い場合には、該灼熱減
量は焼結鉱やペレットの焼成設備の炉内温度を下げる方
向に働き、著しいエネルギーの損失となる。これらの理
由より、製鉄用原料又は副原料としての灼熱減量は10
重量%以下、好ましくは8重量%以下のものが要求され
る。When the amount of ignition loss is large, the amount of ignition loss acts to lower the temperature in the furnace of the sinter or pellet firing equipment, resulting in a significant energy loss. For these reasons, the loss on ignition as an ironmaking raw material or auxiliary raw material is 10
It is required to be less than 8% by weight, preferably less than 8% by weight.
【0014】しかるに、上記「アルミニウム工業」に見
られるごとく、従来のボーキサイト溶解残渣はNa2 O
含量は勿論、Al2 O3 含量、灼熱減量においても必ず
しも満足しておらず、組成中のFe2 O3 含量には着目
されるものの適用を断念されていた。However, as seen in the above "Aluminum Industry", the conventional bauxite dissolution residue is Na 2 O.
Not only the content but also the Al 2 O 3 content and the loss on ignition were not always satisfied, and the application of what was noted for the Fe 2 O 3 content in the composition was abandoned.
【0015】[0015]
【課題を解決するための手段】以上の事象を鑑み、本発
明者は製鉄用原料又は副原料として利用可能なボーキサ
イト溶解残渣を得るべく鋭意検討した結果、かかる原料
として使用可能なボーキサイト溶解残渣の製造方法を見
出し、本発明を完成するに至った。[Means for Solving the Problems] In view of the above problems, the present inventor has conducted diligent studies to obtain a bauxite dissolution residue that can be used as a raw material for ironmaking or an auxiliary raw material, and as a result, The manufacturing method was found and the present invention was completed.
【0016】即ち、本発明はボーキサイトとナトリウム
含有溶液とを抽出装置内に仕込み、ボーキサイトから可
溶性のアルミナ分を抽出しアルミナ濃度の高いアルミン
酸ナトリウム溶液となし、次いで該溶液中より溶解残渣
を除去した後、該溶液に種子としての水酸化アルミニウ
ムを添加して水酸化アルミニウムを析出せしめる、所謂
バイヤー法に於いて、抽出装置内に仕込んだボーキサイ
トから可溶性のアルミナ分を可能な限り抽出した後、該
溶液中より溶解残渣を分離除去し、分離された溶解残渣
を酸処理することを特徴とする、溶解残渣中のNa2 O
含量が3重量%以下、Al2 O3 含量が10重量%以下
のボーキサイト溶解残渣よりなる製鉄用原料組成物の製
造方法を提供するにある。That is, according to the present invention, bauxite and a sodium-containing solution are charged into an extraction apparatus, soluble alumina is extracted from bauxite to obtain a sodium aluminate solution having a high alumina concentration, and then the dissolved residue is removed from the solution. After that, by adding aluminum hydroxide as seeds to the solution to precipitate aluminum hydroxide, in the so-called Bayer method, after extracting the soluble alumina component as much as possible from the bauxite charged in the extraction device, Na 2 O in the dissolution residue, characterized in that the dissolution residue is separated and removed from the solution, and the separated dissolution residue is treated with an acid.
It is another object of the present invention to provide a method for producing a raw material composition for iron making, which comprises a bauxite dissolution residue having a content of 3% by weight or less and an Al 2 O 3 content of 10% by weight or less.
【0017】以下、本発明方法を更に詳細に説明する。
本発明において、製鉄用原料組成物としてのボーキサイ
ト溶解残渣の組成(何れも乾体基準)は、Na2 O含量
が3重量%以下、Al2 O3 含量が10重量%以下であ
る。ボーキサイト原料やアルミナ製造設備等により一義
的ではないが、主要な他の成分含量は、Fe2 O3 含量
が35重量%以上、灼熱減量が10重量%以下、SiO
2 20重量%以下、TiO2 10重量%以下であり、よ
り好ましくはFe2 O3 含量が40重量%以上、Na2
O含量が1重量%以下、Al2 O 3 含量が5重量%以
下、灼熱減量8重量%以下、SiO2 含量15重量%以
下及びTiO2 8重量%以下である。The method of the present invention will be described in more detail below.
In the present invention, bauxai as a raw material composition for iron making
The composition of the dissolution residue (on a dry basis) is Na2O content
Is 3% by weight or less, Al2O3Less than 10% by weight
It Unique due to bauxite raw materials and alumina production equipment
The main other component content is Fe2O3content
Is 35% by weight or more, ignition loss is 10% by weight or less, SiO
220% by weight or less, TiO2It is 10% by weight or less,
More preferably Fe2O340% by weight or more, Na2
O content is less than 1% by weight, Al2O 3Content is less than 5% by weight
Lower, ignition loss 8% by weight or less, SiO215% by weight or less
Bottom and TiO2It is 8% by weight or less.
【0018】このような組成を有するボーキサイト溶解
残渣は次のようにして得られる。即ち、ボーキサイトと
ナトリウム含有溶液とを混合しスラリー状となし、該ス
ラリーを抽出装置内に仕込み、可能な限りのアルミナ分
を抽出し、次いで必要に応じて、溶液中に溶出した反応
性シリカを脱珪反応により脱珪生成物として析出させた
後、該スラリー中より溶解残渣(脱珪生成物を含む場合
も総称して溶解残渣と称する)を溶液と分離し、該溶液
からは公知方法により主旨としての水酸化アルミニウム
を添加し、水酸化アルミニウムを析出させる。他方、ス
ラリーより分離された溶解残渣は次いで酸で処理して、
脱珪生成物中のAl2 O3 を酸性アルミニウム溶液とし
て、Na2 Oは酸で中和され、結果として、固体物質は
Al2 O3 含量が10重量%以下、好ましくは5重量%
以下、またNa2 O含量が3重量%以下、好ましくは1
重量%以下の溶解残渣とすることができる。The bauxite dissolution residue having such a composition is obtained as follows. That is, bauxite and a sodium-containing solution are mixed to form a slurry, the slurry is charged into an extraction device, the alumina content is extracted as much as possible, and then, if necessary, the reactive silica eluted in the solution. After precipitation as a desiliconization product by a desiliconization reaction, a dissolution residue (collectively referred to as a dissolution residue when the desiliconization product is included) is separated from the solution from the slurry, and the solution is separated from the solution by a known method. Aluminum hydroxide as the main purpose is added to precipitate aluminum hydroxide. On the other hand, the dissolved residue separated from the slurry is then treated with acid,
Al 2 O 3 in the desiliconized product is used as an acidic aluminum solution, and Na 2 O is neutralized with an acid. As a result, the solid substance has an Al 2 O 3 content of 10% by weight or less, preferably 5% by weight.
The Na 2 O content is 3 wt% or less, preferably 1 or less.
It may be a dissolution residue of not more than wt%.
【0019】本発明で適用し得るボーキサイトは、アル
ミナ分として一般的にギブサイト(Al2 O3 ・3H2
O)及び/又はベーマイト(γ−Al2 O3 ・H2 O)
を主体として含有し、この他ダイスポア(α−Al2 O
3 ・H2 O)やカオリナイト(Al2 O3 ・2SiO2
・2H2 O)等の粘土鉱物を含む。The bauxite which can be applied in the present invention is generally gibbsite (Al 2 O 3 .3H 2) as an alumina component.
O) and / or boehmite (γ-Al 2 O 3 · H 2 O)
Other than this, it also contains die-spores (α-Al 2 O
3・ H 2 O) and kaolinite (Al 2 O 3・ 2SiO 2
・ Clay minerals such as 2H 2 O) are included.
【0020】アルミナ抽出の条件としては、抽出温度、
抽出時間、アルカリ濃度、アルミナ濃度及び仕込みモル
比等々があるが、これらの要素はボーキサイト鉱石の影
響を受ける。即ち一水和物のベーマイトタイプでは、抽
出液のNa2 O濃度は80〜200g/l程度、抽出温
度は160〜240℃程度、三水和物のギブサイトタイ
プでは、抽出液のNa2 O濃度は80〜160g/l程
度、抽出温度は110〜160℃程度の条件が採用され
る。抽出時間は使用する反応器の形状(オートクレーブ
又は管状反応器等)、抽出液のNa2 O濃度、抽出温度
等により一義的ではないが、ボーキサイト中の溶解可能
な限りのアルミナ分を抽出する必要があるので、通常管
状反応器で約10分以上、オートクレーブで30分〜1
0時間抽出すればよい。本発明に於いて、ボーキサイト
中の溶解可能な限りのアルミナ分の抽出とは、ボーキサ
イト中に含有されるアルミナ成分の96重量%以上、好
ましくは98重量%以上、より好ましくは99重量%以
上の抽出を意味する。The conditions for extracting alumina include the extraction temperature,
There are extraction time, alkali concentration, alumina concentration, charged molar ratio, etc., but these factors are affected by bauxite ore. That is, in the monohydrate boehmite type, the Na 2 O concentration of the extract is about 80 to 200 g / l, the extraction temperature is about 160 to 240 ° C., and in the trihydrate gibbsite type, the Na 2 O concentration of the extract is Is about 80 to 160 g / l and the extraction temperature is about 110 to 160 ° C. The extraction time is not unique depending on the shape of the reactor used (autoclave or tubular reactor, etc.), Na 2 O concentration in the extract, extraction temperature, etc., but it is necessary to extract as much alumina as possible in bauxite. Therefore, it is usually about 10 minutes or more in a tubular reactor and 30 minutes to 1 in an autoclave.
Extract for 0 hours. In the present invention, the extraction of the alumina component as much as soluble in bauxite means 96% by weight or more, preferably 98% by weight or more, and more preferably 99% by weight or more of the alumina component contained in bauxite. Means extraction.
【0021】本発明の目的の一つは、ボーキサイト溶解
残渣を製鉄用原料として有効利用するに於いて、該溶解
残渣中のアルミナ含有量を低減させるにあり、バイヤー
法の抽出工程でのアルミナ含有鉱石からの可溶性アルミ
ナ分を可能な限り抽出することにある。従って、ベーマ
イトを5重量%以上含有するギブサイト−ベーマイト混
合ボーキサイトでは、上述したベーマイトを主体として
含有するボーキサイトの処理条件を採用することが必要
である。One of the objects of the present invention is to reduce the alumina content in the dissolution residue in the effective use of the bauxite dissolution residue as a raw material for iron making. It is to extract the soluble alumina component from the ore as much as possible. Therefore, in the gibbsite-boehmite mixed bauxite containing 5% by weight or more of boehmite, it is necessary to adopt the above-mentioned treatment conditions for bauxite containing mainly boehmite.
【0022】ボーキサイト中より、可溶性アルミナ及び
可溶性シリカの溶解を終えたスラリー溶液はそのまま保
持し、或いはソーダーライト組成物微粒子又は粉砕した
脱珪生成物を種子として添加保持しスラリー溶液中に抽
出されたシリカ成分を析出させる。この場合、シリカ成
分SiO2 は溶液中のAl2 O3 及びNa2 Oと反応し
脱珪生成物(ソーダライト組成物)として晶析される。
脱硅処理は溶液中の可溶性シリカが水酸化アルミニウム
の析出時に共沈しなければ良く、特にその条件は制限さ
れないが、通常、溶液温度80℃〜150℃で30分〜
5時間程度保持すればよい。From the bauxite, the slurry solution in which the soluble alumina and the soluble silica have been dissolved is retained as it is, or fine particles of the sodalite composition or crushed desiliconized product are added and retained as seeds and extracted into the slurry solution. Precipitate the silica component. In this case, the silica component SiO 2 reacts with Al 2 O 3 and Na 2 O in the solution and is crystallized as a desiliconization product (sodalite composition).
It is sufficient that the silica removal treatment does not cause the soluble silica in the solution to co-precipitate during the precipitation of aluminum hydroxide, and the conditions are not particularly limited, but usually, the solution temperature is 80 ° C. to 150 ° C. for 30 minutes to
It may be held for about 5 hours.
【0023】脱硅処理後のスラリー溶液は次いで、通常
のバイヤー工程と同様の方法で溶解残渣とアルミン酸ナ
トリウム溶液に固液分離し、溶解残渣は水洗洗浄する。The slurry solution after the silica removal treatment is then subjected to solid-liquid separation into a dissolution residue and a sodium aluminate solution in the same manner as in the usual Bayer process, and the dissolution residue is washed with water.
【0024】また、本発明方法に於いては、ボーキサイ
トより可能な限りの可溶性アルミナを抽出した溶液は、
上記の如く溶解残渣とのスラリー状態で脱硅処理しても
よいが、脱硅生成物を別途回収することを目的として、
可溶性アルミナ抽出後、直ちに固液分離し、分離後の溶
液を脱硅処理し、脱硅生成物を回収除去した後、水酸化
アルミニウムの析出工程へ導入する方法を採用してもよ
い。この場合固液分離されたボーキサイト溶解残渣中に
はアルミナの抽出過程で既に脱硅生成物が析出し混在し
ているので、該溶解残渣は上記方法と同様に酸処理工程
に導入される。Further, in the method of the present invention, a solution obtained by extracting soluble alumina as much as possible from bauxite is
As mentioned above, the silica removal may be carried out in a slurry state with the dissolution residue, but for the purpose of separately collecting the silica removal product,
A method may be adopted in which solid-liquid separation is performed immediately after extraction of soluble alumina, the solution after separation is subjected to a silica removal treatment, and the product removed from the silica is recovered and removed, and then introduced into the aluminum hydroxide precipitation step. In this case, since the desulfurized product is already precipitated and mixed in the solid-liquid separated bauxite dissolution residue during the alumina extraction process, the dissolution residue is introduced into the acid treatment step as in the above method.
【0025】本発明に於いて溶解残渣は次いで酸で処理
する。該酸処理は脱硅生成物と反応し分解せしめる作用
を有し、Al2 O3 分を塩化アルミニウムや硫酸アルミ
ニウム、硝酸アルミニウム、燐酸アルミニウム等のアル
ミニウム塩或いはこれらの塩基性アルミニウム塩として
液中に溶出し、Na2 Oは塩化ナトリウムや硫酸ナトリ
ウムとして中和され固体残渣中より除去することを目的
とするもので、適用する酸としては塩酸、硫酸、硝酸、
燐酸等が上げられる。これら酸での処理条件は酸の種
類、酸の濃度、接触温度等により一義的ではないが、い
ずれの酸の場合も0.5mol/l〜5mol/l、温
度は室温〜約80℃の範囲で任意適用される。酸処理は
酸と溶解残渣をタンク等の容器中で攪拌下に接触させて
もよいし、両者を混合しスラリー状態で管状反応器中を
通過させることにより接触するいずれの方法でもよい。
これらの接触時間は使用する酸の種類、濃度、温度、適
用する反応器の形状により一義的ではないが約5分〜約
10時間であればよい。但し何れの場合でも脱硅生成物
から溶出したシリカ分がコロイド状物質として沈殿する
までに実施することが好ましい。In the present invention, the dissolution residue is then treated with acid. The acid treatment has a function of reacting with the desiliconized product and decomposing it, and Al 2 O 3 is added to the liquid as an aluminum salt such as aluminum chloride, aluminum sulfate, aluminum nitrate, aluminum phosphate or a basic aluminum salt thereof. Na 2 O is eluted and neutralized as sodium chloride or sodium sulfate to remove it from the solid residue, and applicable acids include hydrochloric acid, sulfuric acid, nitric acid,
Phosphoric acid etc. can be raised. The treatment conditions with these acids are not unique depending on the type of acid, the concentration of acid, the contact temperature, etc., but in the case of any acid, the temperature is in the range of 0.5 mol / l to 5 mol / l and the temperature is from room temperature to about 80 ° C. It is applied arbitrarily. The acid treatment may be carried out by bringing the acid and the dissolution residue into contact with each other in a container such as a tank with stirring, or by mixing both and passing them through a tubular reactor in a slurry state to bring them into contact with each other.
The contact time is not unique depending on the type of the acid used, the concentration, the temperature, and the shape of the applied reactor, but may be about 5 minutes to about 10 hours. However, in any case, it is preferable to carry out before the silica content eluted from the silica removal product is precipitated as a colloidal substance.
【0026】酸処理後の溶解残渣は、濾過、遠心分離、
フイルタープレス等の公知の方法により固液分離、水洗
洗浄した後、製鉄用原料組成物として、また固液分離後
の酸溶液、例えば塩酸処理の場合の溶液は、シリカゲル
やアルミナゲル等とし、更には水ガラス、PAC、ゼオ
ライトの原料等として別途有効利用が可能である。The dissolved residue after the acid treatment is filtered, centrifuged,
After solid-liquid separation and washing with water by a known method such as a filter press, as a raw material composition for iron making, or an acid solution after solid-liquid separation, for example, a solution in the case of hydrochloric acid treatment is silica gel or alumina gel, Can be effectively used separately as a raw material for water glass, PAC, zeolite, etc.
【0027】上記の方法により分離されたボーキサイト
溶解残渣は、固液分離方法にもよるが溶解残渣が非常に
微粒であることより脱水率が悪く、固液分離後も100
〜800g/l、通常300〜600g/l程度のスラ
リー状であるので、天日乾燥或いはロータリーキルンや
ドライヤーにより製鉄用原料組成物として要求される含
水率まで乾燥させればよい。しかしながら、天日乾燥は
広い乾燥面積や搬送費用を必要とするし、勿論ロータリ
ーキルンやドライヤーによる強制乾燥の場合には多大の
設備費とエネルギーを要し、経済性において問題が生じ
る場合がある。The bauxite dissolution residue separated by the above method has a poor dehydration rate because the dissolution residue is very fine particles, although it depends on the solid-liquid separation method.
~ 800 g / l, usually about 300-600 g / l in the form of a slurry, so it may be dried in the sun or by a rotary kiln or a dryer to a water content required for a raw material composition for iron making. However, sun drying requires a large drying area and transportation cost, and of course, in the case of forced drying with a rotary kiln or a dryer, a large amount of equipment cost and energy are required, which may cause a problem in economic efficiency.
【0028】本発明者は製鉄用原料の使用形態について
検討したところ、製鉄用の主原料、副原料が製鉄に用い
られる場合、通常各種の粉状鉱はブレンドされ塊状化さ
れた後、炉内に投入使用されており、塊状化の方法とし
ては、1)焼結法、2)ペレタイジング法、3)団鉱法
等が知られている。The inventor of the present invention has investigated the use form of the raw material for iron making. When the main raw material and the auxiliary raw material for iron making are used for iron making, various kinds of powdery ores are usually blended and agglomerated, and then, in the furnace. It is known that 1) a sintering method, 2) a pelletizing method, 3) a briquette method, etc. are known as a method of agglomeration.
【0029】焼結法としては設備的にも大量生産に適し
た連続式のドワイトロイド式の設備が開発され、主流と
なっている。焼結鉱を製造するドワイトロイド式焼結設
備に於いては、各原料槽から−5mm程度の主原料の鉄
鉱石、各種副原料及び焼結の為のコークス等とバインダ
ーとしての水約5〜10重量%をミルまたはミキサー内
に添加し、混合、造粒し、得られた混合物をサージホッ
パーを経てパレット上に敷き詰め、焼成炉中を通過させ
る間に混合物中のコークスに点火し、自焼させて焼結体
とする。この焼結体を破砕し篩別して、+5mmを高炉
用の原料とする。As for the sintering method, a continuous type Dwightroid type facility suitable for mass production has been developed and has become the mainstream. In the Dwightroid-type sintering equipment for producing sinter, in each raw material tank, iron ore as a main raw material of about -5 mm, various auxiliary raw materials, coke for sintering and water as a binder of about 5 to 5 mm are used. Add 10% by weight into a mill or mixer, mix and granulate, spread the resulting mixture on a pallet through a surge hopper, ignite coke in the mixture while passing through a firing furnace, and self-cake Let it be a sintered body. This sintered body is crushed and sieved, and +5 mm is used as a raw material for the blast furnace.
【0030】一方、ペレタイジング法では、主として前
述の微粉の鉄鉱石及び副原料である各種鉱石に生ペレッ
トの落下抵抗と乾燥時のバースティングを抑制するため
のベントナイトを添加混合し、原料に対しバインダーと
して水を約5〜10重量%添加して、ディスク型又はド
ラム型造粒機によって造粒し、生ペレットを製造する。
この生ペレットはトラベリン・グレート炉、グレートキ
ルン、シャフト炉及びロータリーキルン等によって焼成
し、高炉用原料に供される。On the other hand, in the pelletizing method, bentonite for suppressing drop resistance of raw pellets and bursting during drying is mainly added to and mixed with the above-mentioned finely divided iron ore and various ores as auxiliary raw materials, and the binder is added to the raw materials. As a raw material, about 5 to 10% by weight of water is added and granulated by a disk or drum granulator to produce raw pellets.
The raw pellets are fired in a Travelin Great furnace, a Great kiln, a shaft furnace, a rotary kiln, etc., and used as a raw material for a blast furnace.
【0031】ここで注目すべきことは、焼成法、ペレタ
イジング法のいずれにおいても、粉鉱を塊鉱にする為、
ある程度の水分を加えて成形し、その後焼成して高炉用
塊状原料を得ている点である。What should be noted here is that, in both the firing method and the pelletizing method, the powder ore is converted into a lump ore,
The point is that a certain amount of water is added to the mixture, the mixture is molded, and then fired to obtain a lump-shaped raw material for a blast furnace.
【0032】従って本発明者は、本発明で得られた組成
のボーキサイト溶解残渣を乾燥をせず、水分を含んだま
ま、該ボーキサイト溶解残渣の有する水を焼成法、ペレ
タイジング法の工程で添加使用する水の代わりとして利
用し得ること、即ち、他の製鉄用原料と混合、成形して
使用する場合には、バイヤー工程より洗浄、濾過されて
排出される上記したボーキサイト溶解残渣を予め乾燥す
ることなく使用し得ることを見い出した。Therefore, the present inventor did not dry the bauxite dissolution residue having the composition obtained in the present invention, and added and used the water contained in the bauxite dissolution residue in the steps of the calcination method and the pelletizing method while containing water. Can be used as a substitute for water, i.e., in the case of mixing with other iron-making raw materials and molding and using, the above-mentioned bauxite dissolution residue that is washed and filtered from the buyer process and discharged is previously dried. Found that it can be used without.
【0033】前記したドワイトロイド式焼結機の場合に
は、ミル又はミキサ等での原料の混練時、バインダーと
して添加する水等の代わりに未乾燥のボーキサイト溶解
残渣を用いればよい。勿論、ボーキサイト溶解残渣が含
有する酸化鉄等の成分は鉄鋼用原料組成物として換算使
用すればよい。またペレタイジング法に於いてもドワイ
トロイド式焼結機の場合と略同様に原料の混練時、バイ
ンダーとして水等の代わりに未乾燥のボーキサイト溶解
残渣を用いればよい。即ち、未乾燥のボーキサイト溶解
残渣を他の製鉄用原料と混合、成形して製鉄用原料成形
体として適用するのである。In the case of the above-mentioned Dwightroid type sintering machine, an undried bauxite dissolution residue may be used in place of water or the like added as a binder when the raw materials are kneaded in a mill or a mixer. Of course, the components such as iron oxide contained in the bauxite dissolution residue may be converted and used as the raw material composition for steel. Also in the pelletizing method, the undried bauxite dissolution residue may be used as a binder instead of water or the like when kneading the raw materials, as in the case of the Dwightroid type sintering machine. That is, the undried bauxite dissolution residue is mixed with another raw material for iron making and shaped to be applied as a raw material compact for iron making.
【0034】尚、本発明の実施に際し、ボーキサイトか
らのアルミナの溶解(抽出)工程前に、予め該ボーキサ
イトより可溶性シリカを除去処理し、かかる処理後のボ
ーキサイトを用いて上述した本発明方法を実施すること
も、勿論可能である。この場合にはアルミナ溶解工程で
の可溶性シリカの溶出がないか、或いは僅かとなる為、
溶液中に溶出したシリカ成分が脱硅生成物を形成するこ
とにより消費されるアルミナと苛性ソーダが減少すると
のメリットを有する。In carrying out the present invention, before the step of dissolving (extracting) alumina from bauxite, soluble silica is removed from the bauxite in advance, and the above-described method of the present invention is carried out using the bauxite after the treatment. Of course, it is also possible to do so. In this case, there is no or little elution of soluble silica in the alumina dissolution step,
The silica component eluted in the solution has a merit that the consumed alumina and caustic soda are reduced by forming a silica removal product.
【0035】[0035]
【発明の効果】以上詳述した本発明によれば、従来経済
的使途の見出せていなかったボーキサイト溶解残渣を製
鉄用原料として使用可能としたものであり、また、脱硅
生成物も酸に溶解し、これを回収することにより有価成
分として利用し得るとの利点を有し、加えて、これを製
鉄用原料組成物の成形時に混合使用する場合には、特別
な乾燥処理を施すことなく製鉄用原料として適用可能な
らしめるもので、極めて経済的であり、その工業的価値
は頗る大である。EFFECTS OF THE INVENTION According to the present invention described in detail above, the bauxite dissolution residue, which has not been found to be economically useful, can be used as a raw material for iron making, and the desiliconized product is also dissolved in an acid. However, it has the advantage that it can be used as a valuable component by recovering it. In addition, when it is mixed and used at the time of molding of the raw material composition for iron making, it does not require special drying treatment. It can be applied as a raw material, is extremely economical, and its industrial value is enormous.
【0036】[0036]
【実施例】以下に本発明を実施例により説明するが、本
発明はこれにより限定されるものではない。尚、成分の
分析は蛍光X線分析により、またボーキサイトの鉱物組
成は組成計算法によった。またボ−キサイト溶解残渣の
鉱物の定性分析はX線回折により同定した。EXAMPLES The present invention will be described below with reference to examples, but the present invention is not limited thereto. The components were analyzed by fluorescent X-ray analysis, and the mineral composition of bauxite was calculated by the composition calculation method. The qualitative analysis of the mineral of the bauxite dissolution residue was identified by X-ray diffraction.
【0037】実施例1 表1に示す組成を持つオーストラリア産ボーキサイト
(ゴーブ鉱)180gをオートクレーブ中、220℃、
Na2 O換算150g/lの苛性ソーダ溶液500cc
で2時間処理し、液中で脱珪反応を終了させた後、遠心
分離器で固液分離を行い溶解残渣を分別し、十分洗浄を
行った後、脱水、乾燥し、この溶解残渣の分析を行っ
た。その結果を表2に示す。また、この溶解残渣の乾体
10gを1.4mol/lの塩酸500ccに混合し、
室温で約1時間シェイカーで震盪した。これを遠心分離
器で固液分離し、十分に水で洗浄して脱水、乾燥し、こ
の残渣の分析を行った。その結果を表3に示す。Example 1 180 g of Australian bauxite (gove ore) having the composition shown in Table 1 was heated in an autoclave at 220 ° C.
500 cc of 150 g / l caustic soda solution calculated as Na 2 O
After 2 hours of treatment to complete the desiliconization reaction in the liquid, solid-liquid separation is performed with a centrifuge to separate the dissolved residue, and after thorough washing, dehydration and drying, analysis of the dissolved residue I went. The results are shown in Table 2. Further, 10 g of the dried product of the dissolution residue was mixed with 500 cc of 1.4 mol / l hydrochloric acid,
Shake on shaker for about 1 hour at room temperature. This was subjected to solid-liquid separation with a centrifuge, thoroughly washed with water, dehydrated and dried, and the residue was analyzed. The results are shown in Table 3.
【0038】[0038]
【表1】 [Table 1]
【0039】[0039]
【表2】 [Table 2]
【0040】[0040]
【表3】 [Table 3]
【0041】比較例1 実施例1で用いたと同じボーキサイトを用い、オートク
レーブ中での溶解(抽出)温度を150℃とした以外は
実施例1と同様に抽出処理を行った。処理後の溶解残渣
の分析結果を表4に示す。また、この溶解残渣の乾体1
0gを1.4mol/lの塩酸500ccに混合し、約
1時間シェイカーで震盪した。これを遠心分離器で固液
分離し、十分に水で洗浄して脱水、乾燥し、この残渣の
分析を行った。その結果を表5に示す。Comparative Example 1 The same bauxite as that used in Example 1 was used, and the extraction treatment was carried out in the same manner as in Example 1 except that the dissolution (extraction) temperature in the autoclave was 150 ° C. Table 4 shows the analysis results of the dissolved residue after the treatment. In addition, dry body 1 of this dissolution residue
0 g was mixed with 500 cc of 1.4 mol / l hydrochloric acid, and shaken with a shaker for about 1 hour. This was subjected to solid-liquid separation with a centrifuge, thoroughly washed with water, dehydrated and dried, and the residue was analyzed. The results are shown in Table 5.
【0042】[0042]
【表4】 [Table 4]
【0043】[0043]
【表5】 [Table 5]
【0044】実施例2 表6に示す組成を持つインドネシア産ボーキサイト(ビ
ンタン鉱)をオートクレーブ中、150℃、Na2 Oと
して150g/lの苛性ソーダ溶液で2時間処理した以
外は実施例1と同様に行った。その結果を表7に示す。
また、この溶解残渣の乾体10gを1.4mol/lの
塩酸500ccに混合し、約1時間シェイカーで震盪し
た。これを遠心分離器で固液分離し、十分に水で洗浄し
て脱水、乾燥し、この残渣の分析を行った。その結果を
表8に示す。Example 2 In the same manner as in Example 1 except that Indonesian bauxite (bintan ore) having the composition shown in Table 6 was treated in an autoclave at 150 ° C. for 2 hours with 150 g / l caustic soda solution as Na 2 O. went. The results are shown in Table 7.
Further, 10 g of the dried product of the dissolution residue was mixed with 500 cc of 1.4 mol / l hydrochloric acid, and shaken with a shaker for about 1 hour. This was subjected to solid-liquid separation with a centrifuge, thoroughly washed with water, dehydrated and dried, and the residue was analyzed. The results are shown in Table 8.
【0045】[0045]
【表6】 [Table 6]
【0046】[0046]
【表7】 [Table 7]
【0047】[0047]
【表8】 [Table 8]
Claims (2)
出装置内に仕込み、ボーキサイトから可溶性のアルミナ
分を抽出しアルミナ濃度の高いアルミン酸ナトリウム溶
液となし、次いで該溶液中より溶解残渣を除去した後、
該溶液に種子としての水酸化アルミニウムを添加して水
酸化アルミニウムを析出せしめる、所謂バイヤー法に於
いて、抽出装置内に仕込んだボーキサイトから可溶性の
アルミナ分を可能な限り抽出した後、該溶液中より溶解
残渣を分離除去し、分離された溶解残渣を酸処理するこ
とを特徴とする、溶解残渣中のNa2 O含量が3重量%
以下、Al2 O3 含量が10重量%以下のボーキサイト
溶解残渣よりなる製鉄用原料組成物の製造方法。1. A bauxite and a sodium-containing solution are charged into an extraction apparatus, soluble alumina is extracted from the bauxite to form a sodium aluminate solution having a high alumina concentration, and then the dissolved residue is removed from the solution.
In the so-called Bayer method, in which aluminum hydroxide is precipitated by adding aluminum hydroxide as seeds to the solution, the soluble alumina component is extracted as much as possible from the bauxite charged in the extraction device, and then in the solution. The dissolution residue is separated and removed, and the separated dissolution residue is treated with an acid. The content of Na 2 O in the dissolution residue is 3% by weight.
Hereinafter, a method for producing a raw material composition for ironmaking comprising a bauxite dissolution residue having an Al 2 O 3 content of 10% by weight or less.
し、抽出装置内に仕込んだボーキサイトから可溶性のア
ルミナ分を可能な限り抽出した後、アルカリ溶液中に溶
出した反応性シリカを脱硅反応により脱硅生成物として
析出せしめることを特徴とする請求項1記載のボーキサ
イト溶解残渣よりなる製鉄用原料組成物の製造方法。2. When separating and removing the dissolution residue from the solution, the soluble alumina component is extracted as much as possible from the bauxite charged in the extraction device, and then the reactive silica eluted in the alkaline solution is removed by a silica removal reaction. The method for producing a raw material composition for iron making comprising a bauxite dissolution residue according to claim 1, wherein the raw material composition is precipitated as a desulfurized product.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5313389A JPH07166252A (en) | 1993-12-14 | 1993-12-14 | Production of raw material composition for iron making consisting of dissolution residue of bauxite |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP5313389A JPH07166252A (en) | 1993-12-14 | 1993-12-14 | Production of raw material composition for iron making consisting of dissolution residue of bauxite |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH07166252A true JPH07166252A (en) | 1995-06-27 |
Family
ID=18040686
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP5313389A Pending JPH07166252A (en) | 1993-12-14 | 1993-12-14 | Production of raw material composition for iron making consisting of dissolution residue of bauxite |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH07166252A (en) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528028B2 (en) | 1999-12-28 | 2003-03-04 | Showa Denko K.K. | Process for treating bauxite in which a desilication product and an insoluble residure are separately precipitated |
EP3453678A1 (en) * | 2017-09-11 | 2019-03-13 | Canbekte, Hüsnü Sinan | Treatment and disposal of bauxite residue |
KR101996946B1 (en) * | 2019-01-30 | 2019-07-05 | 조은산업 주식회사 | Method for collection of valid metal in slag |
-
1993
- 1993-12-14 JP JP5313389A patent/JPH07166252A/en active Pending
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6528028B2 (en) | 1999-12-28 | 2003-03-04 | Showa Denko K.K. | Process for treating bauxite in which a desilication product and an insoluble residure are separately precipitated |
EP3453678A1 (en) * | 2017-09-11 | 2019-03-13 | Canbekte, Hüsnü Sinan | Treatment and disposal of bauxite residue |
KR101996946B1 (en) * | 2019-01-30 | 2019-07-05 | 조은산업 주식회사 | Method for collection of valid metal in slag |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
Matjie et al. | Extraction of alumina from coal fly ash generated from a selected low rank bituminous South African coal | |
US3989513A (en) | Method for the treatment of red mud | |
NZ200320A (en) | Reducing iron content of aluminous material by leaching with hydrochloric acid | |
CA2295298C (en) | Treatment of aluminum dross | |
US4265864A (en) | Process for treating bauxite or similar raw material | |
US20150344363A1 (en) | Titanium-Containing Aggregate, Method for its Manufacture, and Use Thereof | |
KR102630333B1 (en) | Method for manufacturing high-purity magnesium oxide from waste refractory material through eco-friendly hydrometallurgical application process and magnesium oxide manufactured thereby | |
US4033778A (en) | Process for making magnesia | |
US4512809A (en) | Process for producing, from aluminous siliceous materials, clinker containing alkali metal aluminate and dicalcium silicate, and use thereof | |
US2417101A (en) | Titaniferous magnetite treatment | |
Fursman | Utilization of red mud residues from alumina production | |
JPH07166252A (en) | Production of raw material composition for iron making consisting of dissolution residue of bauxite | |
CA3123326A1 (en) | Process for manufacturing a slag conditioning agent for steel desulfurization | |
RU2184158C1 (en) | Method for cleaning of iron ore concentrate from phosphor contaminants | |
US2604379A (en) | Alumina extraction | |
US3471259A (en) | Method of manufacturing a magnesia clinker | |
US3770469A (en) | Process for preparing self-disintegrating products containing dicalcium silicate | |
US2250186A (en) | Manufacture of cement, alkali metal aluminate, and sulphur dioxide | |
RU2459879C2 (en) | Method of making pellets for reduction casting | |
US3827896A (en) | Method of producing clinker of alumina cement | |
KR101153887B1 (en) | Preparation method for alkaline calciumferrite flux for steelmaking | |
RU2613983C1 (en) | Method of producing alumina from chromiferous bauxites | |
US3302997A (en) | Preparation of magnesium oxide from magnesite | |
KR100536261B1 (en) | Recovery method of alumina by using sulphuric acid leaching method from molten incinerator slag of sewage sludge | |
JP4480317B2 (en) | Aluminosilicate soda treatment method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
LAPS | Cancellation because of no payment of annual fees |