JPH07165180A - Depth control system for submersible navigating body - Google Patents

Depth control system for submersible navigating body

Info

Publication number
JPH07165180A
JPH07165180A JP31687093A JP31687093A JPH07165180A JP H07165180 A JPH07165180 A JP H07165180A JP 31687093 A JP31687093 A JP 31687093A JP 31687093 A JP31687093 A JP 31687093A JP H07165180 A JPH07165180 A JP H07165180A
Authority
JP
Japan
Prior art keywords
depth
rudder
angle
attitude
inference
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31687093A
Other languages
Japanese (ja)
Other versions
JP2576778B2 (en
Inventor
Setsuo Matsumoto
せつお 松本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NEC Corp
Original Assignee
NEC Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NEC Corp filed Critical NEC Corp
Priority to JP31687093A priority Critical patent/JP2576778B2/en
Publication of JPH07165180A publication Critical patent/JPH07165180A/en
Application granted granted Critical
Publication of JP2576778B2 publication Critical patent/JP2576778B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Feedback Control In General (AREA)

Abstract

PURPOSE:To facilitate the change of the control algorithm, improve maintenance performance and enable the high speed depth conversion by obtaining th depth rudder fine adjustment rudder angle through the fuzzy estimation, and issuing the final depth steering angle instruction by adding the depth rudder fine adjustment rudder angle to the depth rudder main rudder angle. CONSTITUTION:An attitude rudder control part 9 is equipped with a differentiator 15 as main rudder angle determining means for determining the main rudder angle as a rough steering quantity, subtraction calculator 16, main rudder angle determining part 17, fine adjustment steering speed determining part 18 as fine adjustment rudder angle determining means for obtaining the rudder angle instruction through the addition to the main rudder angle, integrator 19 and an adder 20. The attitude rudder controller 9 receives the attitude angle theta obtained from an attitude angle sensor fdr a submersible traveling body, speed V obtained from the speed sensor. and a target attitude angle thetac and outputs the rudder angle instruction Bea which is given to a steering system for controlling the attitutde angle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は水中航走体の姿勢制御方
式に関し、特に注排水タンクを内蔵し、水中を航走する
水中航走体の深度制御方式に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an attitude control system for an underwater vehicle, and more particularly to a depth control system for an underwater vehicle which has a built-in pouring / drainage tank and travels underwater.

【0002】[0002]

【従来の技術】従来、潜水船などの、特に深度制御用の
舵と姿勢制御用の舵を有する水中航走体の深度制御方式
は、水中航走体の深度を検出する深度センサと姿勢角を
検出する姿勢角センサ及び速力を検出する速力センサか
らの情報と目標深度及び目標姿勢角の情報から、深度制
御用の舵と姿勢制御用の舵の操舵量をPID(比例+積
分+微分)制御則により決定しているものがほとんどで
あり、さらに進んだ制御法の例としては、目標姿勢角の
決定に深度偏差の情報を考慮した方式が特開昭62−0
17809号に示されている。
2. Description of the Related Art Conventionally, a depth control system for an underwater vehicle, such as a submersible, which has a rudder for depth control and a rudder for attitude control, has a depth sensor for detecting the depth of the underwater vehicle and an attitude angle. The steering amount of the rudder for depth control and the rudder for attitude control is PID (proportional + integral + derivative) from the information from the attitude angle sensor that detects the speed and the speed sensor that detects speed, and the information on the target depth and the target attitude angle. Most of them are determined by a control law, and as an example of a more advanced control method, a method in which information of depth deviation is taken into consideration when determining a target attitude angle is disclosed in Japanese Patent Laid-Open No. 62-0.
No. 17809.

【0003】[0003]

【発明が解決しようとする課題】前述した従来の水中航
走体の深度制御方式には次のような問題点がある。
The conventional depth control system for underwater vehicles described above has the following problems.

【0004】(1)目標姿勢角を設定する際に深度偏差
のみの値で決定しており、速力変化に伴う目標姿勢角の
調整ができない。例えば、同じ深度偏差でも速力が大き
ければ目標姿勢角を大きくとる必要はない(逆に大きく
するとオーバーシュートが大きくなる危険性がある。)
が、速力が小さいと目標姿勢角をある程度まで大きくし
ないと目標深度に到達する時間が長くなるという欠点が
ある。
(1) When the target posture angle is set, it is determined only by the value of the depth deviation, and the target posture angle cannot be adjusted due to the change in speed. For example, if the speed deviation is the same and the speed is high, it is not necessary to increase the target posture angle (on the contrary, there is a risk that the overshoot will increase).
However, if the speed is low, there is a drawback that the time to reach the target depth becomes long unless the target posture angle is increased to some extent.

【0005】(2)基本的な制御法則がPID制御則の
ため、水中航走体の動特性の非線形性(特に姿勢角に関
して)に十分に対応できず、定常状態における目標値と
の偏差を0にすることができないという問題がある。こ
れは従来の水中航走体の深度制御方式が基本的に水中に
おいて重量0及び前後トリムモーメントが0であるとい
う前提のもとに設計されていることに起因する。
(2) Since the basic control law is the PID control law, it is not possible to sufficiently deal with the nonlinearity of the dynamic characteristics of the underwater vehicle (particularly with regard to the attitude angle), and the deviation from the target value in the steady state is considered. There is a problem that it cannot be set to zero. This is because the conventional depth control method for an underwater vehicle is basically designed under the assumption that the weight is 0 and the front and rear trim moment is 0 in water.

【0006】(3)(2)で述べたように、深度変換時
に目標姿勢角に一致するように制御ができないため、姿
勢角値が問題とならない場合の深度変換時は良いが、深
度変換時に姿勢角値を目標値に完全に一致させる必要が
ある場合には適用できないという欠点がある。
As described in (3) and (2), since it is not possible to control to match the target posture angle during depth conversion, it is good during depth conversion when the posture angle value does not matter, but during depth conversion. There is a drawback that it cannot be applied when the attitude angle value needs to exactly match the target value.

【0007】(4)従来の水中航走体の深度及び姿勢制
御方式は、水中航走体が水中重量0かつ姿勢角がほぼ水
平である場合について、比例ゲイン、積分ゲイン及び微
分ゲインを決定しており、大きな姿勢角を制御する場合
には最適ゲインとはならず、最悪の場合は制御不能とな
るという欠点がある。
(4) The conventional depth and attitude control system for an underwater vehicle determines the proportional gain, integral gain and derivative gain when the underwater vehicle has zero underwater weight and the attitude angle is substantially horizontal. However, when controlling a large attitude angle, the optimum gain is not obtained, and in the worst case, control is impossible.

【0008】[0008]

【課題を解決するための手段】本発明の水中航走体の深
度制御方式は、下記の要素を備えている。
The depth control system for an underwater vehicle of the present invention comprises the following elements.

【0009】1.深度舵制御部 (1)水中航走体の深度変更に対応した深度舵舵角をフ
ァジィ推論する深度変更舵角推論部と、目標深度に到達
する以前にオーバーシュート抑止のための逆方向に舵を
切る深度舵当て舵推論部と、おおよその深度保持に必要
な深度舵舵角をファジィ推論する深度保持舵角推論部を
含み、これらの3種類の操舵量の推論結果を統合して1
つのメンバシップ関数の形式として出力し、非ファジィ
化を施して深度舵の大よその操舵量としてのメイン舵角
決定部と、(2)深度がほぼ目標値にあるときに目標値
からのずれを補正して所要の舵角命令とするための深度
舵微調整操舵速度を深度偏差と速力とを入力してファジ
ィ推論によって求め、それを時間tで積分し深度舵微調
整舵角とし、それを前記メイン舵角に加算して深度舵舵
角命令とする微調整舵角推論部から構成される。
1. Depth rudder control unit (1) Depth change rudder angle inference unit that fuzzy infers the depth rudder rudder angle corresponding to the depth change of the underwater vehicle, and rudder in the opposite direction to prevent overshoot before reaching the target depth Includes a depth rudder rudder inference unit that cuts off, and a depth hold rudder angle inference unit that fuzzy infers the depth rudder rudder angle required to roughly maintain the depth.
Output as one membership function form, and defuzzification is performed to determine the main rudder angle determination part as the steering amount of the depth rudder, and (2) deviation from the target value when the depth is almost at the target value. The depth rudder fine adjustment steering speed for correcting the above to obtain the required rudder angle command is obtained by fuzzy reasoning by inputting the depth deviation and speed, and integrated at time t to obtain the depth rudder fine adjustment rudder angle, Is added to the main rudder angle to give a depth rudder rudder angle command.

【0010】2.目標姿勢角推論部 深度偏差と速力とを入力し、ファジィ推論によって姿勢
角の目標値を決定し、後述の姿勢角制御部へ出力する。
2. Target posture angle inference unit Inputs the depth deviation and speed, determines the target value of the posture angle by fuzzy reasoning, and outputs it to the posture angle control unit described later.

【0011】3.姿勢舵制御部 前記、目標姿勢角推論部から出力される目標姿勢角と姿
勢角センサからの姿勢角値から算出される姿勢角偏差
と、姿勢角レートセンサ又は姿勢角データを微分処理し
て得られる姿勢角速度及び速力を入力とし姿勢舵命令を
出力する。
3. Posture rudder control unit The posture angle deviation calculated from the target posture angle output from the target posture angle inference unit and the posture angle value from the posture angle sensor, and the posture angle rate sensor or the posture angle data are obtained by differentiating processing. A posture rudder command is output by inputting the posture angular velocity and speed.

【0012】[0012]

【実施例】次に本発明について図面を参照して説明す
る。
The present invention will be described below with reference to the drawings.

【0013】図1は本発明の全体ブロック図である。ま
ず、大まかな動作を説明する。オペレータの設定した目
標深度Hc は、減算器4によって深度センサから得られ
た深度データを差し引いて深度偏差ΔHを出力する。深
度データを微分処理又は深度レートセンサから得られる
深度速度dH/dtは前記深度偏差ΔH及び速力センサ
から得られる速力データとともに深度舵制御部1に入力
される。深度舵制御部1は大まかな深度制御を行うため
の深度舵舵角βef(m) をファジィ推論するメイン舵角決
定部2と、目標深度付近での深度ずれを補正するための
舵角の増減量(微調整操舵速度dβef(s) /dt)をフ
ァジィ推論する微調整操舵速度推論部3と、dβef(s)
/dtを時間tで積分し、微調整舵角βef(s) とするた
めの積分器4と、メイン舵角βef(m) と微調整舵角β
ef(s) を加算して深度舵命令とするための加算器5から
構成され、深度舵操舵機構に深度舵命令を出力する。
FIG. 1 is an overall block diagram of the present invention. First, a rough operation will be described. The target depth H c set by the operator subtracts the depth data obtained from the depth sensor by the subtractor 4 and outputs the depth deviation ΔH. The depth speed dH / dt obtained by differentiating the depth data or from the depth rate sensor is input to the depth rudder control unit 1 together with the depth deviation ΔH and the speed data obtained from the speed sensor. The depth rudder control unit 1 uses a main rudder angle determination unit 2 that fuzzy infers the depth rudder angle β ef (m) for performing rough depth control, and a rudder angle for correcting the depth deviation near the target depth. A fine adjustment steering speed inference unit 3 which fuzzy infers an increase / decrease amount (fine adjustment steering speed dβ ef (s) / dt), and dβ ef (s)
/ Dt is integrated at time t to obtain a fine adjustment steering angle β ef (s) , a main steering angle β ef (m) and a fine adjustment steering angle β
It is composed of an adder 5 for adding ef (s) to obtain a depth rudder command, and outputs the depth rudder command to the depth rudder steering mechanism.

【0014】目標姿勢角推論部7は速力Vと深度偏差Δ
Hを入力としファジィ推論によって目標姿勢角θc を推
論する。目標姿勢角推論部7により決定された目標姿勢
角θc は減算器8により姿勢角センサから得た現在の姿
勢角θを差し引かれ、姿勢角偏差Δθとなる。
The target attitude angle reasoning unit 7 determines the speed V and the depth deviation Δ.
The target posture angle θ c is inferred by fuzzy inference using H as an input. The target posture angle θ c determined by the target posture angle inference unit 7 is subtracted from the current posture angle θ obtained from the posture angle sensor by the subtractor 8 to obtain a posture angle deviation Δθ.

【0015】姿勢角偏差Δθは速力V及び姿勢角センサ
を微分処理又は姿勢角レートセンサから得られる姿勢角
速度dθ/dtとともに姿勢舵制御部9へ入力される。
姿勢舵制御部3は前記入力データをもとに水中航走体の
姿勢角が目標姿勢角に一致するように姿勢舵舵角命令を
推論し、姿勢舵操舵機構に出力する。
The attitude angle deviation Δθ is input to the attitude rudder control unit 9 together with the speed V and the attitude angular velocity dθ / dt obtained by the differential processing of the attitude angle sensor or the attitude angle rate sensor.
The attitude rudder control unit 3 deduces an attitude rudder steering angle command so that the attitude angle of the underwater vehicle matches the target attitude angle based on the input data, and outputs it to the attitude rudder steering mechanism.

【0016】次に各機能ブロックについて個別に説明す
る。
Next, each functional block will be described individually.

【0017】1.メイン舵角推論部2 メイン舵角推論部2の機能ブロック図を図2に示す。メ
イン舵角推論部2は3種類の推論部を備えている。深度
変更舵角推論部10は深度偏差が中くらいから大きい場
合に速力に応じて深度舵の大まかな切り具合をファジィ
推論する。推論の概略ルール例を以下に示す。
1. Main rudder angle inference unit 2 A functional block diagram of the main rudder angle inference unit 2 is shown in FIG. The main rudder angle inference unit 2 includes three types of inference units. The depth change rudder angle inference unit 10 fuzzy infers the rough cutting condition of the depth rudder according to the speed when the depth deviation is medium to large. An example of general rules for inference is shown below.

【0018】ルール1:ΔHが正(負)に大きければ、
深度舵を下舵(上舵)一杯とせよ。
Rule 1: If ΔH is positively (negatively) large,
Fill the bottom rudder (upper rudder) with the depth rudder.

【0019】ルール2:ΔHが正(負)に中くらいかつ
Vが大きければ深度舵を小さく下舵(上舵)とせよ。
Rule 2: If ΔH is positive (negative) is medium and V is large, the depth rudder should be small and the rudder should be down (upward).

【0020】ルール3:ΔHが正(負)に中くらいかつ
Vが中くらいであれば、深度舵を中くらいで下舵(上
舵)とせよ。
Rule 3: If ΔH is positive (negative) is medium and V is medium, the depth rudder is medium and down rudder (upper rudder).

【0021】ルール4:ΔHが正(負)に中くらいかつ
Vが小さければ、深度舵を大きく下舵(上舵)とせよ。
Rule 4: If ΔH is positive (negative) is medium and V is small, the depth rudder should be largely down (up).

【0022】以下、簡単のため、ルール表現を次の様に
する。
Hereinafter, for simplicity, the rule expression will be as follows.

【0023】ルール1:IFΔH=PL(NL),TH
EN β1F1(m)=NL(PL) ルール2:IFΔH=PM(NM) and V=P
L,THEN β1F1(m)=NS(PS) ルール3:IFΔH=PM(NM) and V=P
M,THEN β1F1(m)=NM(PM) ルール4:IFΔH=PM(NM) and V=P
S,THEN β1H(m)=NL(PL) 当て舵舵角推論部11は、深度偏差が小〜中くらいの場
合に、深度速度の大小に応じてオーバーシュート抑止の
ための深度舵の大まかな切り具合を推論し、MFの形で
β1F2(m)を出力する。
Rule 1: IFΔH = PL (NL), TH
EN β 1F1 (m) = NL (PL) Rule 2: IFΔH = PM (NM) and V = P
L, THEN β 1F1 (m) = NS (PS) Rule 3: IFΔH = PM (NM) and V = P
M, THEN β 1F1 (m) = NM (PM) Rule 4: IFΔH = PM (NM) and V = P
S, THEN β 1H (m) = NL (PL) When the depth deviation is small to medium, the rudder rudder angle inference unit 11 roughly determines the depth rudder for overshoot suppression depending on the depth speed. It infers the degree of cutting and outputs β 1F2 (m) in the form of MF.

【0024】当て舵舵角推論ルール例を以下に示す。An example of the rudder rudder angle inference rule is shown below.

【0025】当て舵舵角推論ルール例 ルール1:IFΔH=PM(NM) and dH/d
t=PL(NL),THEN β1F2(m)=PS(NS) ルール2:IFΔH=PM(NM) and dH/d
t=PM(NM),THEN β1F2(m)=ZR ルール3:IFΔH=PS(NS) and dH/d
t=PM(NM),THEN β1F2(m)=PS(NS) ルール4:IFΔH=PS(NS) and dH/d
t=PS(NS),THEN β1F2(m)=ZR 深度保持舵角推論部12は深度偏差が小さいときに、深
度速度の大小に応じて、深度を保持するための深度舵の
大まかな切り具合を推論し、MFの形としてβ1F3(m)
出力する。深度保持舵角推論ルール例を以下に示す。
Example of Rule for Inferring Rudder Rudder Angle Rule 1: IFΔH = PM (NM) and dH / d
t = PL (NL), THEN β 1F2 (m) = PS (NS) Rule 2: IFΔH = PM (NM) and dH / d
t = PM (NM), THEN β 1F2 (m) = ZR Rule 3: IFΔH = PS (NS) and dH / d
t = PM (NM), THEN β 1F2 (m) = PS (NS) Rule 4: IFΔH = PS (NS) and dH / d
t = PS (NS), THEN β 1F2 (m) = ZR When the depth deviation is small, the depth holding rudder inference unit 12 roughly cuts the depth rudder to hold the depth according to the depth speed. The condition is inferred, and β 1F3 (m) is output as the MF form. An example of the rules for inferring the depth retention steering angle is shown below.

【0026】深度保持舵角推論ルール例 ルール1:IFΔH=PS(NS) and dH/d
t=ZR,THENβ1F3(m)=NS(PS) ルール2:IFΔH=ZR and dH/dt=Z
R,THEN β1F3(m)=ZR 結論統合化部13は3つの推論部10〜12の出力β
1F1(m),β1F2(m),β1F 3(m)を1つのMFの形β1F(m)
としてまとめる処理を行う。結論統合化部13の出力β
1F(m) はMFの形をしているため、そのまま制御に使用
できないので、非ファジィ化部14により重心計算処理
を行った後、深度舵の大まかな舵角(メイン舵角)β
ef(m) を出力する。
Depth-keeping steering angle inference rule example Rule 1: IFΔH = PS (NS) and dH / d
t = ZR, THENβ 1F3 (m) = NS (PS) Rule 2: IFΔH = ZR and dH / dt = Z
R, THEN β 1F3 (m) = ZR Conclusion The integration unit 13 outputs β of the three inference units 10 to 12.
1F1 (m) , β 1F2 (m) , β 1F 3 (m) into one MF form β 1F (m)
The processing is summarized as. Conclusion Output β of the integration unit 13
Since 1F (m) is in the form of MF and cannot be used for control as it is, after performing the center of gravity calculation processing by the defuzzification unit 14, the rough rudder angle (main rudder angle) β of the depth rudder β
Output ef (m) .

【0027】微調整操舵速度推論部3はメイン舵角では
制御しきれない、目標深度付近での定常深度偏差を0な
らしめるためにあるもので、深度偏差ΔH及び速力Vを
入力として、目標深度からのずれを補正するための深度
舵の舵角の増減量、すなわち操舵速度を推論する。推論
ルール例を以下に示す。
The fine adjustment steering speed inference unit 3 is provided for zeroing the steady depth deviation near the target depth, which cannot be controlled by the main steering angle. The depth deviation ΔH and the speed V are input to the target depth. The amount of increase or decrease of the rudder angle of the depth rudder for correcting the deviation from, that is, the steering speed is inferred. An example of inference rules is shown below.

【0028】微調整操舵速度推論ルール例 ルール1:IFΔH=PL(NL),THEN dβ
ef(s) /dt=ZR ルール2:IFΔH=PM(NM),THEN dβ
ef(s) /dt=ZR ルール3:IFΔH=PS(NS) and V=P
L,THEN dβef(s ) /dt=NS(PS) ルール4:IFΔH=PS(NS) and V=P
M,THEN dβef(s ) /dt=NM(PM) ルール5:IFΔH=PS(NS) and V=P
S,THEN dβef(s ) /dt=NL(PL) 微調整操舵速度推論部では、メイン舵角推論部と同様に
非ファジィ化処理を施した後、微調整操舵速度dβ
ef(s) /dtを出力する。このdβef(s) /dtは積分
器4で時間積分された後、微調整舵角βef(s) となり、
深度舵命令を得るために、加算器5によってメイン舵角
βef(m) に加算処理される。
Example of Rule for Fine Tuning Steering Speed Inference Rule 1: IFΔH = PL (NL), THEN dβ
ef (s) / dt = ZR Rule 2: IFΔH = PM (NM), THEN dβ
ef (s) / dt = ZR Rule 3: IFΔH = PS (NS) and V = P
L, THEN dβ ef (s ) / dt = NS (PS) Rule 4: IFΔH = PS (NS) and V = P
M, THEN dβ ef (s ) / dt = NM (PM) Rule 5: IFΔH = PS (NS) and V = P
S, THEN dβ ef (s ) / dt = NL (PL) In the fine adjustment steering speed inference unit, after the defuzzification processing is performed as in the main steering angle inference unit, the fine adjustment steering speed dβ
Output ef (s) / dt. This dβ ef (s) / dt becomes the fine adjustment steering angle β ef (s) after time integration by the integrator 4.
To obtain the depth rudder command, the adder 5 adds the main rudder angle β ef (m) .

【0029】目標姿勢角推論部7は、深度偏差ΔHと速
力Vを入力としてファジィ推論により、姿勢角の目標値
を決定する。目標姿勢角推論ルール例を以下に示す。
The target posture angle inference unit 7 determines the target value of the posture angle by fuzzy inference using the depth deviation ΔH and the speed V as inputs. An example of the target posture angle inference rule is shown below.

【0030】目標姿勢角推論ルール例 ルール1:IFΔH=PL(NL),THEN θc
NL(PL) ルール2:IFΔH=PM(NM) and V=P
L,THEN θc =NS(PS) ルール3:IFΔH=PM(NM) and V=P
M,THEN θc =NM(PM) ルール4:IFΔH=PM(NM) and V=P
S,THEN θc =NL(PL) ルール5:IFΔH=PS(NS),THEN θc
ZR ルール6:IFΔH=ZR,THEN θc =ZR 目標姿勢角推論部7で推論されたθc は姿勢舵制御部で
必要とするΔθを得るために減算器8に入力される。
Example of Target Posture Angle Inference Rule Rule 1: IFΔH = PL (NL), THEN θ c =
NL (PL) Rule 2: IFΔH = PM (NM) and V = P
L, THEN θ c = NS (PS) Rule 3: IFΔH = PM (NM) and V = P
M, THEN θ c = NM (PM) Rule 4: IFΔH = PM (NM) and V = P
S, THEN θ c = NL (PL) Rule 5: IFΔH = PS (NS), THEN θ c =
ZR Rule 6: IFΔH = ZR, θ c which is inferred THEN theta c = ZR target posture angle estimating unit 7 is input to the subtracter 8 to obtain a Δθ required in the attitude steering control unit.

【0031】次に図1の姿勢舵制御部9について説明す
る。
Next, the attitude rudder control section 9 of FIG. 1 will be described.

【0032】図3は、姿勢舵制御部9のブロック図であ
り、大よその操舵量としてのメイン舵角を決定するメイ
ン舵角決定手段としての微分器15、減算器16および
メイン舵角決定部17と、操舵量を微調整するための微
調整舵角を求めメイン舵角に加算して舵角命令を求める
微調整舵角決定手段としての微調整操舵速度決定部1
8、積分器19および加算器20とを備えて成る。
FIG. 3 is a block diagram of the attitude rudder control section 9, and generally, a differentiator 15, a subtractor 16 and a main rudder angle determination as main rudder angle determining means for determining the main rudder angle as the steering amount. And a fine adjustment steering speed determining unit 1 as a fine adjustment steering angle determining unit that obtains a fine adjustment steering angle for finely adjusting the steering amount and adds it to the main steering angle to obtain a steering angle command.
8, an integrator 19 and an adder 20.

【0033】水中航走体の姿勢角センサから取得する姿
勢角θと、速力センサから取得する速力Vと、目標姿勢
角θc とを入力とし、姿勢角を制御するため操舵系に与
える舵角命令βeaを出力する。
The steering angle given to the steering system for controlling the attitude angle is input with the attitude angle θ acquired from the attitude angle sensor of the underwater vehicle, the speed V acquired from the speed sensor, and the target attitude angle θ c as inputs. Outputs the command β ea .

【0034】姿勢角θは、姿勢角速度dθ/dtを得る
ために微分器15へ入力されるとともに、目標姿勢角θ
c と組み合わせて姿勢角偏差Δθ(=θc −θ)を計算
するのに用いられる。
The posture angle θ is input to the differentiator 15 to obtain the posture angular velocity dθ / dt, and the target posture angle θ
in combination with c used to calculate the attitude angle deviation Δθ (= θ c -θ).

【0035】微分器15により得られた姿勢角速度dθ
/dtは、姿勢角偏差Δθ及び速力Vとともに大よその
舵角としてのメイン舵角βea(m) を決定するためこのメ
イン舵角決定部17へ入力される。また、姿勢角偏差Δ
θと速力Vとは、目標姿勢角付近での微調整を行なうた
めの微調整角を得るに必要な微調整操舵速度dβea(s )
/dtを決定するために微調整操舵速度決定部18へ入
力される。
Posture angular velocity dθ obtained by the differentiator 15
/ Dt is input to the main steering angle determination unit 17 in order to determine the main steering angle β ea (m) as the steering angle together with the attitude angle deviation Δθ and the speed V. Also, the attitude angle deviation Δ
θ and the speed V are the fine adjustment steering speed dβ ea (s ) required to obtain the fine adjustment angle for performing the fine adjustment near the target posture angle.
It is input to the fine adjustment steering speed determination unit 18 to determine / dt.

【0036】微調整操舵速度決定部18の出力する微調
整操舵速度dβea(s) /dtは積分器19に入力され、
積分処理により微調整舵角βea(s) を出力する。
The fine adjustment steering speed dβ ea (s) / dt output from the fine adjustment steering speed determination unit 18 is input to the integrator 19,
The fine adjustment steering angle β ea (s) is output by the integration processing.

【0037】微調整舵角βea(s) はメイン舵角決定部1
7の出力するメイン舵角βea(m) と加算され、最終的な
舵角命令βea(=βea(m) +βea(s) )を得る。
The fine rudder angle β ea (s) is determined by the main rudder angle determination unit 1
7 is added to the main steering angle β ea (m) output to obtain the final steering angle command β ea (= β ea (m) + β ea (s) ).

【0038】次に、メイン舵角決定部17及び微調整操
舵速度決定部18の動作について説明する。メイン舵角
決定部17は、姿勢角の変更量が大きい場合に大まかに
目標姿勢角へ近づけるためのメイン舵角を決定する部分
であり、例えば人間が操舵を大まかに行う動作に対応す
る。メイン舵角決定部17は、姿勢角偏差Δθ、姿勢角
速度dθ/dt及び速力データVを入力値としてファジ
ィ推論によりメイン舵角βea(m) を決定する。
Next, the operations of the main rudder angle determination unit 17 and the fine adjustment steering speed determination unit 18 will be described. The main rudder angle determination unit 17 is a part that determines a main rudder angle for roughly approaching the target posture angle when the amount of change in the posture angle is large, and corresponds to, for example, an operation in which a person roughly performs steering. The main steering angle determination unit 17 determines the main steering angle β ea (m) by fuzzy inference using the attitude angle deviation Δθ, the attitude angular velocity dθ / dt and the speed data V as input values.

【0039】メイン舵角決定部17は、図4に示すよう
に、姿勢角変更の場合に対応した舵角をファジィ推論す
る姿勢角変更舵角推論部21と、目標姿勢角にある程度
近づいてきて目標姿勢角に対する行き過ぎ(オーバーシ
ュート)防ぐために逆方向に舵を切る当て舵をとる場面
に対応した舵角をファジィ推論する当て舵舵角推論部2
2及び目標姿勢角を保持する場面に対応した操舵量を推
論する姿勢角保持舵角推論部23の3種類の舵角推論部
から構成されていて、各場面に対応した操舵量の推論結
果をメンバシップ関数(以下MFと記す)の形で出力す
る。これらの出力された結論MFは、結論統合化部24
に出力され、1つの結論MFまとめられる。1つにまと
められた結論MFは、メイン舵角決定部17における最
終的な舵角推論結果を表すMFであり、このままでは制
御に使用できないため、非ファジィ化部25に入力され
て重心計算された後メイン舵角βea(m) に変換出力され
る。
As shown in FIG. 4, the main rudder angle determining unit 17 approaches the target attitude angle to some extent, and the attitude angle changing rudder angle inferring unit 21 which fuzzy infers the rudder angle corresponding to the attitude angle change. A steering rudder angle inference unit 2 for fuzzy inference of a steering angle corresponding to a situation where the steering is turned in the opposite direction to prevent overshooting against the target posture angle.
2 and three types of rudder angle inference units for inferring the steering amount corresponding to the scene in which the target attitude angle is held, and the inference result of the steering amount corresponding to each scene is obtained. It is output in the form of a membership function (hereinafter referred to as MF). These outputted conclusions MF are the conclusion integration unit 24.
Are output to one conclusion MF. The conclusion MF put together into one is the MF that represents the final steering angle inference result in the main steering angle determination unit 17, and cannot be used for control as it is. Therefore, it is input to the defuzzification unit 25 and the center of gravity is calculated. After that, it is converted to the main steering angle β ea (m) and output.

【0040】微調整操舵速度決定部18は、姿勢角がほ
ぼ目標値にある場合に目標値からのずれを補正するため
の微調整角度を得るための微調整操舵速度を決定するも
のであり、図5に示す如く、姿勢角偏差Δθと速力Vと
を入力とし、微調整操舵速度dβea(s) /dtをメイン
舵角決定部17と同様に、微調整操舵速度推論部26で
ファジィ推論し、結論統合化部27で結論統合されたあ
と、非ファジィ化部28で重心計算して求める。ただ
し、推論のためのルールは異なる。
The fine adjustment steering speed determining unit 18 determines the fine adjustment steering speed for obtaining the fine adjustment angle for correcting the deviation from the target value when the attitude angle is almost the target value. As shown in FIG. 5, using the attitude angle deviation Δθ and the speed V as input, the fine adjustment steering speed dβ ea (s) / dt is fuzzy inferred by the fine adjustment steering speed inference unit 26 as in the main steering angle determination unit 17. Then, after the conclusions are integrated by the conclusion integrating unit 27, the center of gravity is calculated by the defuzzifying unit 28 to obtain the result. However, the rules for reasoning are different.

【0041】次に、各推論部のルールについて説明す
る。メイン舵角決定部17のルール例を図6の(A)〜
(D)に示す。また、微調整操舵速度推論部18のルー
ル例を図7に示す。
Next, the rules of each inference unit will be described. An example of rules of the main rudder angle determination unit 17 is shown in FIG.
It shows in (D). Further, FIG. 7 shows a rule example of the fine adjustment steering speed inference unit 18.

【0042】図6の(A)は、姿勢角変更舵角推論ルー
ル例を示し、ルール数N1は11としている。また図6
の(B)は当て舵舵角推論ルール例を示し、ルール数N
2は4としている。さらに図6の(C)は姿勢角保持舵
角推論ルール例を示し、ルール数N3は5としている。
また、図6の(D)は、図6の(A)〜(C)に利用す
るラベルの意味を表記して示す。
FIG. 6A shows an example of a posture angle changing rudder angle inference rule, where the number of rules N1 is 11. See also FIG.
(B) shows an example of a rudder rudder angle inference rule, and the rule number N
2 is 4. Further, FIG. 6C shows an example of the attitude angle holding steering angle inference rule, and the rule number N3 is 5.
Further, (D) of FIG. 6 shows the meanings of the labels used in (A) to (C) of FIG.

【0043】いま、たとえば図6の(B)を例として推
論ルールを示すと、No.1〜No.4はそれぞれ次の
内容を示す。
Now, the inference rules will be described by taking, for example, FIG. 1-No. 4 indicates the following contents, respectively.

【0044】No.1:IFΔθ=PM and dθ
/dt=PL,THEN βea(m)=NS (姿勢角偏差が正に中くらいかつ姿勢角速度が正に大き
ければ、メイン舵角を小さく負とせよ。) or No.2:IFΔθ=NM and dθ/dt=N
L,THEN βea(m)=PS (姿勢角偏差が負に中くらいかつ姿勢角速度が負に大き
ければ、メイン舵角を小さく正とせよ。) or No.3:IFΔθ=PM and dθ/dt=P
M,THEN βea(m)=ZR (姿勢角偏差が正に中くらいかつ姿勢角速度が正に中く
らいなら、メイン舵角をほぼ0とせよ。) or No.4:IFΔθ=NM and dθ/dt=N
M,THEN βea(m)=ZR (姿勢角偏差が負に中くらいかつ姿勢角速度が負に中く
らいなら、メイン舵角をほぼ0とせよ。) 図7を含む他の推論部のルールについても同様であるの
で、個々の詳細な説明は省略する。
No. 1: IFΔθ = PM and dθ
/ Dt = PL, THEN β ea (m) = NS (If the attitude angle deviation is positively medium and the attitude angular velocity is positively large, make the main steering angle small and negative.) Or No. 2: IFΔθ = NM and dθ / dt = N
L, THEN β ea (m) = PS (If the attitude angle deviation is negative and medium and the attitude angular velocity is negative, set the main steering angle small and positive.) Or No. 3: IFΔθ = PM and dθ / dt = P
M, THEN β ea (m) = ZR (If the attitude angle deviation is positive and medium and the attitude angular velocity is positive and medium, set the main steering angle to almost 0.) or No. 4: IFΔθ = NM and dθ / dt = N
M, THEN β ea (m) = ZR (If the attitude angle deviation is negative and medium and the attitude angular velocity is negative and medium, set the main steering angle to almost 0.) Regarding the rules of other inference units including FIG. Since it is the same, detailed description thereof will be omitted.

【0045】尚、姿勢舵制御部については、特願平4−
234436号により出願されている。
Regarding the attitude rudder control unit, Japanese Patent Application No. 4-
Filed under No. 234436.

【0046】[0046]

【発明の効果】以上説明したように本発明は次の様な効
果がある。(1)制御アルゴリズムにファジィ推論を用
いているため、制御アルゴリズムの変更が容易で保守性
が高くなる。(2)深度変換の際に姿勢角を指定して行
えるので、高速な深度変換が可能となる。(3)従来で
はできなかった大姿勢角時の定常偏差を0として深度変
換が行える。(4)深度偏差と速力に応じた目標姿勢角
をオペレータの経験とノウハウを盛り込んだ形で設定す
ることが可能となる。
As described above, the present invention has the following effects. (1) Since fuzzy inference is used for the control algorithm, it is easy to change the control algorithm and maintainability is improved. (2) Since the posture angle can be specified during depth conversion, high-speed depth conversion is possible. (3) Depth conversion can be performed by setting the steady-state deviation at a large attitude angle to 0, which was not possible in the past. (4) It is possible to set the target posture angle according to the depth deviation and the speed in a form that incorporates the experience and know-how of the operator.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例の全体ブロック図。FIG. 1 is an overall block diagram of an embodiment of the present invention.

【図2】実施例の中のメイン舵角推論部のブロック図。FIG. 2 is a block diagram of a main steering angle inference unit in the embodiment.

【図3】実施例の中の姿勢舵制御部のブロック図。FIG. 3 is a block diagram of a posture rudder control unit in the embodiment.

【図4】図3のメイン舵角決定部のブロック図。FIG. 4 is a block diagram of a main steering angle determination unit in FIG.

【図5】図3の微調整操舵速度決定部のブロック図。5 is a block diagram of a fine adjustment steering speed determination unit in FIG.

【図6】図4の姿勢角変更舵角推論部、当て舵舵角推論
部及び姿勢角保持舵角推論部の推論ルール例を示す図。
FIG. 6 is a diagram showing an inference rule example of an attitude angle change rudder angle inference unit, a contact rudder rudder angle inference unit and an attitude angle holding rudder angle inference unit in FIG. 4;

【図7】図5の微調整操舵速度決定部の推論ルール例を
示す図。
7 is a diagram showing an inference rule example of a fine adjustment steering speed determination unit in FIG.

【符号の説明】[Explanation of symbols]

1…深度舵制御部、2…メイン舵角推論部、3…微調整
操舵速度推論部、4…積分器、5…加算器、6…減算
器、7…目標姿勢角推論部、8…減算器、9…姿勢舵制
御部、10…深度変更舵角推論部、11…当て舵舵角推
論部、12…深度保持舵角推論部、13…結論統合化
部、14…非ファジィ化部、15…微分器、16…減算
器、17…メイン舵角決定部、18…微調整操舵速度決
定部、19…積分器、20…加算器、21…姿勢角変更
舵角推論部、22…当て舵舵角推論部、23…姿勢角保
持舵角推論部、24…結論統合化部、25…非ファジィ
化部、26…微調整操舵速度推論部、27…結論統合化
部、28…非ファジィ化部。
1 ... Depth rudder control unit, 2 ... Main rudder angle inference unit, 3 ... Fine adjustment steering speed inference unit, 4 ... Integrator, 5 ... Adder, 6 ... Subtractor, 7 ... Target attitude angle inference unit, 8 ... Subtractor Container, 9 ... Posture rudder control unit, 10 ... Depth change rudder angle inference unit, 11 ... Depth rudder rudder angle inference unit, 12 ... Depth retention rudder angle inference unit, 13 ... Conclusion integration unit, 14 ... Defuzzying unit, 15 ... Differentiator, 16 ... Subtractor, 17 ... Main rudder angle determination unit, 18 ... Fine adjustment steering speed determination unit, 19 ... Integrator, 20 ... Adder, 21 ... Attitude angle change rudder angle inference unit, 22 ... Rudder rudder angle inference unit, 23 ... Posture angle holding rudder angle inference unit, 24 ... Conclusion integration unit, 25 ... Non-fuzzy unit, 26 ... Fine adjustment steering speed inference unit, 27 ... Conclusion integration unit, 28 ... Non-fuzzy Akabe.

Claims (5)

【特許請求の範囲】[Claims] 【請求項1】 水中航走体の深度変更に対応した舵角を
ファジィ推論する深度変更舵角推論と、目標深度に到達
する以前にオーバーシュート抑止のための逆方向に舵を
切る深度舵当て舵をファジィ推論する深度舵当て舵舵角
推論と、おおよその深度保持を行うための深度舵舵角を
ファジィ推論する深度保持舵角推論の3種類の操舵量の
推論結果をそれぞれメンバシップ関数の形式で出力し、
これらの推論結果を統合して1つのメンバシップ関数と
してまとめた後、非ファジィ化を施して深度制御用の舵
の大よその操舵量としてのメイン舵角を決定する深度舵
メイン舵角決定手段と、 深度がほぼ目標値にあるときに目標値からのずれを補正
して所要の舵角命令とするための深度舵微調整舵角を深
度偏差と速力とを入力とし、ファジィ推論によって求め
前記深度舵メイン舵角に加算して最終的な深度舵舵角命
令とするための微調整舵角決定手段とを備えることを特
徴とする深度舵制御手段を含むことを特徴とする水中航
走体の深度制御方式。
1. A depth change rudder angle inference for fuzzy inference of a rudder angle corresponding to a depth change of an underwater vehicle, and a depth rudder for turning in the opposite direction to prevent overshoot before reaching a target depth. The three types of steering amount inference results, depth rudder rudder angle inference for fuzzy inference of rudder and depth hold rudder angle inference for fuzzy inference of depth rudder angle to perform approximate depth hold Output in the format
Depth rudder main rudder angle determining means for integrating these inference results into one membership function and then defuzzifying to determine the main rudder angle as a steering amount of the rudder for depth control When the depth is almost at the target value, the depth rudder fine adjustment rudder angle for correcting the deviation from the target value to obtain the required rudder angle command is obtained by the fuzzy inference using the depth deviation and the speed as input. Depth rudder control means including fine adjustment rudder angle determination means for adding to the depth rudder main rudder angle to obtain a final depth rudder rudder angle command. Depth control method.
【請求項2】 前記深度変更舵角推論は水中航走体の目
標とする目標深度と深度センサで取得した深度との差分
の深度偏差と、速力センサで取得した速力とを入力とし
て推論し、前記深度舵当て舵舵角推論と前記深度保持舵
角推論とは、水中航走体の前記深度偏差と前記深度セン
サからのデータを微分処理として得るまたは深度方向の
速度を出力する深度レートセンサから得た深度速度を入
力としてファジィ推論するものであることを特徴とする
請求項1記載の水中航走体の深度制御方式。
2. The depth change rudder angle inference is inferred by inputting a depth deviation of a difference between a target depth as a target of an underwater vehicle and a depth acquired by a depth sensor, and a speed acquired by a speed sensor, The depth rudder rudder angle inference and the depth hold rudder angle inference are obtained from the depth deviation of the underwater vehicle and the data from the depth sensor as a differential process, or from a depth rate sensor that outputs a velocity in the depth direction. The depth control system for an underwater vehicle according to claim 1, wherein fuzzy inference is performed using the obtained depth velocity as an input.
【請求項3】 深度偏差及び速力を入力とし、ファジィ
推論により姿勢角目標値を決定し、後述の姿勢角制御手
段へ出力するための目標姿勢角決定手段を含むことを特
徴とする請求項2の水中航走体の深度制御方式。
3. A target posture angle determining means for determining a posture angle target value by fuzzy inference using the depth deviation and the speed as inputs and outputting it to a posture angle control means described later. Depth control method for underwater vehicles.
【請求項4】 姿勢角目標値と姿勢角センサから取得し
た姿勢角との差分である姿勢角偏差及び前記姿勢角セン
サからのデータを微分処理をして得るまたは、姿勢角の
時間的変化率を検出する姿勢角レートセンサから得た姿
勢角速度及び速力センサから取得した速力を入力として
姿勢制御舵への舵角命令をファジィ推論する姿勢舵制御
手段を含むことを特徴とする請求項3の水中航走体の深
度制御方式。
4. The attitude angle deviation, which is the difference between the attitude angle target value and the attitude angle obtained from the attitude angle sensor, and data obtained from the attitude angle sensor are obtained by differentiating, or the rate of change of the attitude angle with time. The attitude rudder control means for fuzzy inferring a rudder angle command to the attitude control rudder by inputting the attitude angular velocity obtained from the attitude angle rate sensor for detecting the speed and the speed acquired from the speed sensor. Depth control method for mid-water vehicles.
【請求項5】 深度舵制御手段により深度舵を制御し、
目標姿勢角決定手段の出力する目標値の姿勢角を制御す
る姿勢角制御手段により、深度変更時の最適な姿勢角を
制御することを特徴とする請求項4記載の水中航走体の
深度制御方式。
5. The depth rudder control means controls the depth rudder,
The depth control of the underwater vehicle according to claim 4, wherein the posture angle control means for controlling the posture angle of the target value output by the target posture angle determination means controls the optimum posture angle when the depth is changed. method.
JP31687093A 1993-12-16 1993-12-16 Depth control method for underwater vehicles Expired - Lifetime JP2576778B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31687093A JP2576778B2 (en) 1993-12-16 1993-12-16 Depth control method for underwater vehicles

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31687093A JP2576778B2 (en) 1993-12-16 1993-12-16 Depth control method for underwater vehicles

Publications (2)

Publication Number Publication Date
JPH07165180A true JPH07165180A (en) 1995-06-27
JP2576778B2 JP2576778B2 (en) 1997-01-29

Family

ID=18081835

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31687093A Expired - Lifetime JP2576778B2 (en) 1993-12-16 1993-12-16 Depth control method for underwater vehicles

Country Status (1)

Country Link
JP (1) JP2576778B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016826A (en) * 2013-07-12 2015-01-29 三菱重工業株式会社 Underwater sailing body, underwater sailing body controller, and underwater sailing body control method
CN111208840A (en) * 2020-01-17 2020-05-29 哈尔滨工程大学 Hovering control method for deep sea underwater robot
CN113277046A (en) * 2021-06-08 2021-08-20 西北工业大学 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin
CN113342012A (en) * 2021-06-08 2021-09-03 西北工业大学 Course control method of sliding and flapping integrated aircraft

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110963011B (en) * 2019-12-19 2021-01-26 中国人民解放军海军工程大学 Deep-falling recovery method for X-rudder submarine

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2015016826A (en) * 2013-07-12 2015-01-29 三菱重工業株式会社 Underwater sailing body, underwater sailing body controller, and underwater sailing body control method
CN111208840A (en) * 2020-01-17 2020-05-29 哈尔滨工程大学 Hovering control method for deep sea underwater robot
CN111208840B (en) * 2020-01-17 2023-05-02 哈尔滨工程大学 Hovering control method of deep-sea underwater robot
CN113277046A (en) * 2021-06-08 2021-08-20 西北工业大学 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin
CN113342012A (en) * 2021-06-08 2021-09-03 西北工业大学 Course control method of sliding and flapping integrated aircraft
CN113342012B (en) * 2021-06-08 2022-07-26 西北工业大学 Course control method of sliding and flapping integrated aircraft
CN113277046B (en) * 2021-06-08 2022-08-05 西北工业大学 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin

Also Published As

Publication number Publication date
JP2576778B2 (en) 1997-01-29

Similar Documents

Publication Publication Date Title
CN111267834B (en) Vehicle yaw stability prediction control method and system
US6804594B1 (en) Active steering for handling/stability enhancement
JP2002019634A (en) Control device for lane follow up driving
JP2004532153A (en) Steering control during split μABS braking
JP2004532153A5 (en)
JP2004175353A (en) Method and device for vehicle stability improvement system
CN112519882A (en) Vehicle reference track tracking method and system
Shimakage et al. Design of lane-keeping control with steering torque input
JP2008197848A (en) Fuzzy controller, lane travel support device and steering auxiliary device
JP2576778B2 (en) Depth control method for underwater vehicles
JP4251095B2 (en) Vehicle control device
JP3033571B1 (en) Submersible depth control system
JP4863880B2 (en) Method and system for controlling steering angle of steerable rear wheel and corresponding vehicle
JP2800582B2 (en) Attitude control method for underwater vehicles
CN115923773A (en) Method for controlling stability of wire-controlled four-wheel steering vehicle
CN114194202A (en) Vehicle stable state judgment method based on phase plane, chassis coordination control method and system
JPH11334639A (en) Controlling device for controlling vehicle movements of four-wheeled vehicle
JP3182972B2 (en) Rear wheel steering control device for vehicle
JP3377532B2 (en) Automatic flight control system
JP3669174B2 (en) Vehicle motion control device
JPH10300481A (en) Vehicle running state control device and method using map data
JP2653196B2 (en) Rolling control device for vehicle
JP2009520634A (en) Rolling prevention device for vehicle
JP2861570B2 (en) Vehicle steering angle control device
JP2861571B2 (en) Vehicle steering angle control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 19960917