CN113277046A - Simulated bat ray underwater vehicle depth control method based on centroid and tail fin - Google Patents

Simulated bat ray underwater vehicle depth control method based on centroid and tail fin Download PDF

Info

Publication number
CN113277046A
CN113277046A CN202110635058.3A CN202110635058A CN113277046A CN 113277046 A CN113277046 A CN 113277046A CN 202110635058 A CN202110635058 A CN 202110635058A CN 113277046 A CN113277046 A CN 113277046A
Authority
CN
China
Prior art keywords
depth
coefficient
underwater vehicle
deviation
fuzzy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN202110635058.3A
Other languages
Chinese (zh)
Other versions
CN113277046B (en
Inventor
马淑敏
曹永辉
潘光
曹勇
谢钰
张代利
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Northwestern Polytechnical University
Original Assignee
Northwestern Polytechnical University
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Northwestern Polytechnical University filed Critical Northwestern Polytechnical University
Priority to CN202110635058.3A priority Critical patent/CN113277046B/en
Publication of CN113277046A publication Critical patent/CN113277046A/en
Application granted granted Critical
Publication of CN113277046B publication Critical patent/CN113277046B/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G8/00Underwater vessels, e.g. submarines; Equipment specially adapted therefor
    • B63G8/14Control of attitude or depth
    • GPHYSICS
    • G05CONTROLLING; REGULATING
    • G05DSYSTEMS FOR CONTROLLING OR REGULATING NON-ELECTRIC VARIABLES
    • G05D1/00Control of position, course, altitude or attitude of land, water, air or space vehicles, e.g. using automatic pilots
    • G05D1/04Control of altitude or depth
    • G05D1/06Rate of change of altitude or depth
    • G05D1/0692Rate of change of altitude or depth specially adapted for under-water vehicles

Landscapes

  • Engineering & Computer Science (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Radar, Positioning & Navigation (AREA)
  • Remote Sensing (AREA)
  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Automation & Control Theory (AREA)
  • Mechanical Engineering (AREA)
  • Feedback Control In General (AREA)
  • Control Of Position, Course, Altitude, Or Attitude Of Moving Bodies (AREA)

Abstract

The invention relates to a method for controlling the depth of an simulated manta ray underwater vehicle based on a mass center and a tail fin, which aims at a pectoral fin with strong model uncertainty to propel the simulated underwater vehicle, divides a depth fixing task into three stages by segmentation, and implements online correction on PID coefficients by combining a fuzzy controller to realize the adjustment of the mass center structure and the tail fin so as to complete the task of fixed-depth swimming. In the depth setting process, a pectoral fin mechanism of the underwater vehicle is driven by a steering engine and always keeps a flapping state, and the steering engine outputs a constant amplitude value and a constant phase difference to generate thrust along an X axis of a carrier coordinate system. The pitching moment is generated by changing the back and forth movement of the metamorphic heart block and the up and down deflection of the tail fin, so that the depth fixing effect is achieved.

Description

Simulated bat ray underwater vehicle depth control method based on centroid and tail fin
Technical Field
The invention belongs to the field of motion control of an underwater vehicle, and relates to a method for controlling the fixed depth of an manta ray-simulated underwater vehicle based on a mass center and a tail fin, in particular to a method for controlling the fixed depth of the manta ray-simulated underwater vehicle based on the cooperative control of the mass center and the tail fin.
Background
The simulated bat ray underwater vehicle is a novel bionic underwater vehicle, adopts a pectoral fin propulsion mode, has the remarkable advantages of high efficiency, high maneuverability, high stability, low disturbance and the like, can realize excellent in-situ observation and adaptation to complex sea areas, simultaneously has good biological affinity, can be used in the fields of coral starfish disaster monitoring, marine ranching fish condition monitoring and the like, and has wide application prospect and theoretical research value.
The model of the pectoral fin propulsion bionic underwater vehicle is very complex, so far, no more accurate model of pectoral fin swing type propulsion fish exists, and the application of the traditional control method on the bionic vehicle is limited. At present, common depth control methods for the type of aircraft comprise a fuzzy control algorithm, a PID control algorithm and the like, but simple information processing of the fuzzy control algorithm can cause system control accuracy reduction and dynamic performance deterioration; the parameters in the PID control algorithm are constant values, do not change along with the system, and have no self-tuning characteristic. In published documents, there are few specific methods for depth control of pectoral fin bionic underwater vehicles, such as the following patents: a fish-shaped bionic underwater robot and a control method [ P ] CN111284663B thereof and the patent: bionic bat ray robot [ P ]. CN 112093018A.
Disclosure of Invention
Technical problem to be solved
In order to avoid the defects of the prior art, the invention provides a fixed-depth control method of a simulated manta ray underwater vehicle based on a centroid and a tail fin, and the method is the fixed-depth control method of the simulated manta ray underwater vehicle based on the coordination control of a centroid mechanism and the tail fin.
Technical scheme
A method for controlling the depth of an artificial bat ray underwater vehicle based on a centroid and a tail fin is characterized by comprising the following steps:
step 1, calculating depth deviation and depth deviation change rate: acquiring the current depth of the underwater vehicle as y and the current depth is positive downwards through a depth sensor; the reference depth set by the task is ydThen the depth deviation Δ y is:
Δy=y-yd
and (3) deriving the depth deviation to obtain a depth deviation change rate v as:
Figure BDA0003105327080000021
wherein: t is the depth sensor information updating period of the underwater vehicle;
step 2, taking the depth deviation as an input to divide the depth fixing task into the following three working conditions:
(1) rapid submergence/floatation: when delta y is larger than or equal to a, namely the current depth is far away from the target depth, the underwater vehicle is in a rapid submerging/floating stage, and a large fuzzy PID proportion coefficient setting range formed by combining the table 1 and the table 3 is adopted;
(2) starting and depth setting: when a is larger than or equal to delta y and larger than or equal to b, the current depth is close to the target depth, the underwater vehicle is in a prepared depth fixing stage, and a fuzzy PID proportional coefficient range setting range formed by combining a table 2 and a table 3 is adopted;
(3) keeping the depth to be fixed: when delta y is less than or equal to c, the current depth is approximately equal to the target depth without adjustment;
wherein: a, b and c are respectively depth large error, depth small error and depth error allowable values, and are set according to task requirements;
the setting range in the step (1) and the step (2) depends on the PID controller parameter corrected based on the fuzzy controller, namely the fuzzy controller simultaneously takes the depth deviation and the change rate of the depth deviation as input and corrects the PID controller parameter by using the fuzzy controller;
the discrete domain of depth deviation and the change rate of the depth deviation is { -3, -2, -1, 0, 1,2, 3}, and the fuzzy language value is { NB, NM, NS, ZE, PS, PM, PB }, i.e., { large negative, medium negative, small negative, zero, small positive, medium positive, large positive };
the value of Δ y as the abscissa E,vPerforming table query as a value of the ordinate Ec, wherein the corrected PID parameters are:
Figure BDA0003105327080000031
wherein: k is a radical ofpIs the original scale factor, kiFor the original integral coefficient, kdIs the original differential coefficient; Δ kpThe proportional coefficient setting adjustment, Δ k, is obtained by looking up a table for the fuzzy controlleriIntegral coefficient setting adjustment, Δ k, obtained for fuzzy controller look-up tabledObtaining a differential coefficient setting adjustment quantity for a fuzzy controller by looking up a table; k is a radical ofpFFor the adjustment quantity delta k of the proportional coefficient setting obtained by the look-up table of the fuzzy controllerpCoefficient of proportionality to original kpSummed scaling factor, kiFSetting adjustment quantity delta k of integral coefficient obtained by looking up table through fuzzy controlleriIntegral coefficient, k, added to the original integral coefficientdFSetting adjustment quantity delta k of differential coefficient obtained by looking up table of fuzzy controllerdCoefficient of differentiation from the original delta kdThe added differential coefficients;
depth control quantity delta y calculated by PID controller for setting PID parameter by using fuzzy controllercComprises the following steps:
Figure BDA0003105327080000032
wherein k ispFFor adjusted proportionality coefficient, kiFFor adjusted integral coefficient, kdFFor the adjusted differential coefficient, Δ y is a deviation value from the current depth to the target depth, t is integration time, and dt is differentiation time;
the tables 1,2 and 3 are:
table 1: k is a radical ofpLarge range correction table for fuzzy control coefficient
Figure BDA0003105327080000033
Table 2: k is a radical ofpFuzzy control coefficient small range correction table
Figure BDA0003105327080000041
Table 3: k is a radical ofi/kdFuzzy control coefficient correction table
Figure BDA0003105327080000042
And step 3: for depth control quantity delta ycThe control quantity after discretization can be obtained by discretization treatment and is made as follows:
Figure BDA0003105327080000043
wherein: Δ ynThe depth deviation from the current depth to the target depth in the nth control period is shown, and T is a discretized time interval;
and 4, calculating an actuating mechanism value according to the control quantity:
calculating the position of the centroid block movement of the centroid mechanism:
Mc=KM*Δyc*(Mmax-Mmin)
wherein: kMFor conversion of control quantities into execution values, MmaxIs the upper limit of the movement of the mass center mechanism, MminIs the lower limit of the movement of the mass center mechanism, Δ ycFor discrete controlled variables, McThe target position of the mass center mechanism needing to be moved;
calculating the amplitude of the tail fin action:
Qc=R*(Qmax-Qmin)*sin(P*Δyc)
wherein: p is the control quantity conversion coefficient, R is the output gain coefficient, QmaxUpper limit of motion of the tail fin, QminLower limit of motion of the tail fin, Δ ycFor discrete controlled quantities, QcIs the target position of the tail fin action;
and 5: target position M of mass center mechanism needing to be movedcControlling the quality of an underwater vehicleTarget position Q of motion of heart mechanism and tail fincThe tail fin of the underwater vehicle is controlled, and the pitching attitude angle of the pectoral fin of the vehicle in a flapping state is changed, so that pitching moments with different sizes are generated, the depth deviation of the underwater vehicle reaches an error allowable range, and a depth fixing task is completed in the flapping process.
Advantageous effects
The simulated bat ray underwater vehicle depth control method based on the centroid and the tail fin provided by the invention is used for propelling the simulated underwater vehicle by aiming at the pectoral fin with strong model uncertainty, a depth setting task is divided into three stages by segmentation, and a fuzzy controller is combined to carry out online correction on PID coefficients, so that the adjustment of the centroid structure and the tail fin is realized, and the task of fixed-depth swimming is further completed. In the depth setting process, a pectoral fin mechanism of the underwater vehicle is driven by a steering engine and always keeps a flapping state, and the steering engine outputs a constant amplitude value and a constant phase difference to generate thrust along an X axis of a carrier coordinate system. The pitching moment is generated by changing the back and forth movement of the metamorphic heart block and the up and down deflection of the tail fin, so that the depth fixing effect is achieved.
The invention has the following beneficial effects:
1. the traditional PID control algorithm has certain limitation, and parameters in the control algorithm are constant values, do not change along with the system, and do not have self-tuning characteristics. The method divides the depth control of the aircraft into three working conditions according to the depth deviation, designs different fuzzy control rules to correct the PID parameters according to different working conditions, has parameter self-tuning, can be generally applicable to robot control without an accurate dynamic model, and has strong applicability and portability.
2. The obtained control quantity is subjected to linear calculation aiming at the mass center mechanism and nonlinear calculation aiming at the tail fin and then is used as the actuating mechanism, so that the combined action of the mass center mechanism and the tail fin can reach the maximum value of the mechanism under the condition of large depth deviation, the maximum output value reached by the vertical speed of the aircraft is obtained, the response is quicker, the speed of depth error convergence is greatly accelerated, and the like; and only tail fin adjustment is used under the condition that the depth deviation is between large depth deviation and small depth deviation, so that the power consumption is reduced, the aircraft has longer cruising ability, and the control precision can be improved and the overshoot can be reduced by virtue of the nonlinear calculation of the tail fin output.
Drawings
FIG. 1 is a schematic diagram of a depth control method of an underwater vehicle driven by pectoral fins according to the present invention;
FIG. 2 is a flowchart of the depth determination procedure of the present invention.
Fig. 3 is a simplified diagram of an simulated manta ray underwater vehicle, wherein flapping wing structures on two sides are symmetrical about a vehicle main body, and the numbering meanings in the diagram are as follows:
1,2 and 3 are fin ray units of an flapping wing framework of the aircraft;
4 is the aircraft head;
5 is an aircraft main body, and a center of mass block, an electronic cabin and the like are coated in the aircraft main body;
6 is the flapping wing on the right side of the aircraft;
and 7 is the tail fin part of the aircraft.
Detailed Description
The invention will now be further described with reference to the following examples and drawings:
the invention adopts the technical scheme that current depth information is obtained through a depth sensor, different control strategies are adopted in three stages of quick submerging/floating, starting depth fixing and keeping depth fixing by using fuzzy PID control based on segmentation, the mass center structure and the tail fin are adjusted according to different working conditions, and finally the depth fixing control of an underwater vehicle in a flapping state is realized, and the specific steps are as follows:
step 1: and calculating the depth deviation and the depth deviation change rate.
The current depth of the underwater vehicle is obtained through the depth sensor and is y (positive downwards), and the reference depth set by the task is ydThe depth deviation Deltay is
Δy=y-yd (1)
The depth deviation is derived to obtain the change rate of the depth deviationvIs composed of
Figure BDA0003105327080000071
Where t is the depth sensor information update period for the underwater vehicle.
Step 2: a segmentation strategy is executed.
Based on the characteristics of complexity and parameter uncertainty of the pectoral fin propulsion bionic underwater vehicle model, an expert segmentation controller is designed. And after the real-time information of the depth deviation of the control system is obtained, executing an expert segmentation strategy.
The segment controller takes the depth deviation as input to divide the depth fixing task into the following three working conditions:
(1) rapid submergence/floatation: when the delta y is larger than or equal to a, namely the current depth is far away from the target depth, the underwater vehicle is in a rapid submerging/floating stage, and the fuzzy control tables are selected as a table 4 and a table 6. Under the working condition, the mass center mechanism and the tail fin act together according to the control quantity by the actuating mechanism. At the moment, the mass center mechanism and the tail fin generate larger pitching moment under the combined action of the control quantity, so that the fast submerging and floating are realized.
(2) Starting and depth setting: when a is larger than or equal to delta y and larger than or equal to b, the current depth is close to the target depth, the underwater vehicle is in a prepared depth fixing stage, and the fuzzy control tables are selected as a table 5 and a table 6. Under the working condition, only the tail fin part is adjusted according to the control quantity. At the moment, only the mass center system returns to the middle position, and only the tail fin is adjusted according to the control quantity, so that a smaller pitching moment is generated, and overshoot is reduced.
(3) Keeping the depth to be fixed: when Δ y ≦ c, the current depth is approximately equal to the target depth, no adjustment is required.
Wherein a, b and c are respectively set depth large error, depth small error and depth error allowable value.
And step 3: the PID controller parameters are modified based on the fuzzy controller.
The fuzzy controller takes the depth deviation and the change rate of the depth deviation as input at the same time, and corrects the PID controller parameters by utilizing the fuzzy controller, and a schematic diagram of the fuzzy controller is shown in FIG. 1.
The basic domain of depth deviation is Δ y ∈ [ - | ymax|,|ymax|]Wherein y ismaxIs the maximum value of the depth deviation; the domain of discourse of the depth deviation change rate is v ∈ [ - | v [ ]max|,|vmax|]Wherein v ismaxIs the maximum value of the depth deviation ratio. The discrete domain of depth deviation and the rate of change of depth deviation is { -3, -2, -1, 0, 1,2, 3}, and the fuzzy language value is { NB, NM, NS, ZE, PS, PM, PB }, which is { large negative, medium negative, small negative, zero, small positive, medium positive, large positive }.
The original PID parameters are self-tuned by the table look-up operation of the fuzzy controller according to different working conditions, and the value of the abscissa E is taken as the value of Delta y,vPerforming table query as a value of the ordinate Ec, wherein the corrected PID parameters are:
Figure BDA0003105327080000081
in the formula (3), kpIs the original scale factor, kiFor the original integral coefficient, kdIs the original differential coefficient; Δ kpThe proportional coefficient setting adjustment, Δ k, is obtained by looking up a table for the fuzzy controlleriIntegral coefficient setting adjustment, Δ k, obtained for fuzzy controller look-up tabledObtaining a differential coefficient setting adjustment quantity for a fuzzy controller by looking up a table; k is a radical ofpFFor the adjustment quantity delta k of the proportional coefficient setting obtained by the look-up table of the fuzzy controllerpCoefficient of proportionality to original kpSummed scaling factor, kiFSetting adjustment quantity delta k of integral coefficient obtained by looking up table through fuzzy controlleriIntegral coefficient, k, added to the original integral coefficientdFSetting adjustment quantity delta k of differential coefficient obtained by looking up table of fuzzy controllerdCoefficient of differentiation from the original delta kdThe added differential coefficients;
the fuzzy control tables of the embodiment are shown in attached tables 4, 5 and 6.
Depth control quantity delta y calculated by PID controller for setting PID parameter by using fuzzy controllercComprises the following steps:
Figure BDA0003105327080000082
in the formula (4),kpFFor adjusted proportionality coefficient, kiFFor adjusted integral coefficient, kdFFor the adjusted differential coefficient, Δ y is a deviation value from the current depth to the target depth, t is integration time, and dt is differentiation time;
discretization of the above formula can obtain a discretized control quantity system as follows:
Figure BDA0003105327080000091
Δ y in the formula (5)nAnd T is the discretization time interval for the depth deviation from the current depth to the target depth of the nth control period.
And 4, step 4: an actuator value is calculated based on the control amount.
The moving position of the mass center block of the mass center mechanism can be calculated according to the discretized control quantity, and the concrete formula is as follows:
Mc=KM*Δyc*(Mmax-Mmin) (6)
k in formula (6)MFor conversion of control quantities into execution values, MmaxIs the upper limit of the movement of the mass center mechanism, MminIs the lower limit of the movement of the mass center mechanism, Δ ycFor discrete controlled variables, McThe target position that needs to be moved for the centroid mechanism.
The amplitude of the tail fin action can be calculated according to the discretized control quantity, and the specific formula is as follows:
Qc=R*(Qmax-Qmin)*sin(P*Δyc) (7)
in the formula (7), P is a control quantity conversion coefficient, R is an output gain coefficient, and QmaxUpper limit of motion of the tail fin, QminLower limit of motion of the tail fin, Δ ycFor discrete controlled quantities, QcIs the target position of the tail fin action.
Such as MmaxIs 20, MminIs-20, McIs 0, QmaxIs 30, QminIs 30, QcAnd 5, representing an execution value of 0 for the centroid mechanism,the centroid mass should remain at zero and not move; the tail fin execution value is 5, and the tail fin should be driven to the position of 5 degrees, and the starting fixed depth stage is carried out.
According to the reference mass center position and the reference tail fin deflection angle of the underwater vehicle which are adjusted and calculated according to the control quantity, the mass center mechanism and the tail fin are adjusted to enable the mass center and the tail fin of the underwater vehicle to reach the reference position, the size of a pitching attitude angle of the pectoral fin of the vehicle in a flapping state is changed, the underwater vehicle generates a pitching moment to adjust the depth, the depth deviation reaches an error allowable range, namely, the depth fixing process of the underwater vehicle in the pectoral fin flapping state is realized, the program flow chart is shown in fig. 2, and the sketch of the simulated bat underwater vehicle is shown in fig. 3.
Attached table 4:
specific example kpLarge range correction table for fuzzy control coefficient
Figure BDA0003105327080000101
Attached table 5:
specific example kpFuzzy control coefficient small range correction table
Figure BDA0003105327080000102
Attached table 6:
specific example ki/kdFuzzy control coefficient correction table
Figure BDA0003105327080000111

Claims (1)

1. A method for controlling the depth of an artificial bat ray underwater vehicle based on a centroid and a tail fin is characterized by comprising the following steps:
step 1, calculating depth deviation and depth deviation change rate: acquiring the current depth of the underwater vehicle as y and the current depth is positive downwards through a depth sensor; parameterisation of task settingsDepth of investigation of ydThen the depth deviation Δ y is:
Δy=y-yd
and (3) deriving the depth deviation to obtain a depth deviation change rate v as:
Figure FDA0003105327070000011
wherein: t is the depth sensor information updating period of the underwater vehicle;
step 2, taking the depth deviation as an input to divide the depth fixing task into the following three working conditions:
(1) rapid submergence/floatation: when delta y is larger than or equal to a, namely the current depth is far away from the target depth, the underwater vehicle is in a rapid submerging/floating stage, and a large fuzzy PID proportion coefficient setting range formed by combining the table 1 and the table 3 is adopted;
(2) starting and depth setting: when a is larger than or equal to delta y and larger than or equal to b, the current depth is close to the target depth, the underwater vehicle is in a prepared depth fixing stage, and a fuzzy PID proportional coefficient range setting range formed by combining a table 2 and a table 3 is adopted;
(3) keeping the depth to be fixed: when delta y is less than or equal to c, the current depth is approximately equal to the target depth without adjustment;
wherein: a, b and c are respectively depth large error, depth small error and depth error allowable values, and are set according to task requirements;
the setting range in the step (1) and the step (2) depends on the PID controller parameter corrected based on the fuzzy controller, namely the fuzzy controller simultaneously takes the depth deviation and the change rate of the depth deviation as input and corrects the PID controller parameter by using the fuzzy controller;
the discrete domain of depth deviation and the change rate of the depth deviation is { -3, -2, -1, 0, 1,2, 3}, and the fuzzy language value is { NB, NM, NS, ZE, PS, PM, PB }, i.e., { large negative, medium negative, small negative, zero, small positive, medium positive, large positive };
the value of Δ y as the abscissa E,vPerforming table query as a value of the ordinate Ec, wherein the corrected PID parameters are:
Figure FDA0003105327070000021
wherein: k is a radical ofpIs the original scale factor, kiFor the original integral coefficient, kdIs the original differential coefficient; Δ kpThe proportional coefficient setting adjustment, Δ k, is obtained by looking up a table for the fuzzy controlleriIntegral coefficient setting adjustment, Δ k, obtained for fuzzy controller look-up tabledObtaining a differential coefficient setting adjustment quantity for a fuzzy controller by looking up a table; k is a radical ofpFFor the adjustment quantity delta k of the proportional coefficient setting obtained by the look-up table of the fuzzy controllerpCoefficient of proportionality to original kpSummed scaling factor, kiFSetting adjustment quantity delta k of integral coefficient obtained by looking up table through fuzzy controlleriIntegral coefficient, k, added to the original integral coefficientdFSetting adjustment quantity delta k of differential coefficient obtained by looking up table of fuzzy controllerdCoefficient of differentiation from the original delta kdThe added differential coefficients;
depth control quantity delta y calculated by PID controller for setting PID parameter by using fuzzy controllercComprises the following steps:
Figure FDA0003105327070000022
wherein k ispFFor adjusted proportionality coefficient, kiFFor adjusted integral coefficient, kdFFor the adjusted differential coefficient, Δ y is a deviation value from the current depth to the target depth, t is integration time, and dt is differentiation time;
the tables 1,2 and 3 are:
table 1: k is a radical ofpLarge range correction table for fuzzy control coefficient
Figure FDA0003105327070000023
Table 2: k is a radical ofpSmall fuzzy control coefficientRange correction table
Figure FDA0003105327070000031
Table 3: k is a radical ofi/kdFuzzy control coefficient correction table
Figure FDA0003105327070000032
And step 3: for depth control quantity delta ycThe control quantity after discretization can be obtained by discretization treatment and is made as follows:
Figure FDA0003105327070000033
wherein: Δ ynThe depth deviation from the current depth to the target depth in the nth control period is shown, and T is a discretized time interval;
and 4, calculating an actuating mechanism value according to the control quantity:
calculating the position of the centroid block movement of the centroid mechanism:
Mc=KM*Δyc*(Mmax-Mmin)
wherein: kMFor conversion of control quantities into execution values, MmaxIs the upper limit of the movement of the mass center mechanism, MminIs the lower limit of the movement of the mass center mechanism, Δ ycFor discrete controlled variables, McThe target position of the mass center mechanism needing to be moved;
calculating the amplitude of the tail fin action:
Qc=R*(Qmax-Qmin)*sin(P*Δyc)
wherein: p is the control quantity conversion coefficient, R is the output gain coefficient, QmaxUpper limit of motion of the tail fin, QminLower limit of motion of the tail fin, Δ ycFor discrete controlled quantities, QcIs the target of tail fin actionA location;
and 5: target position M of mass center mechanism needing to be movedcControl of the centroid mechanism of an underwater vehicle, target position Q of the skeg motioncThe tail fin of the underwater vehicle is controlled, and the pitching attitude angle of the pectoral fin of the vehicle in a flapping state is changed, so that pitching moments with different sizes are generated, the depth deviation of the underwater vehicle reaches an error allowable range, and a depth fixing task is completed in the flapping process.
CN202110635058.3A 2021-06-08 2021-06-08 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin Active CN113277046B (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN202110635058.3A CN113277046B (en) 2021-06-08 2021-06-08 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
CN202110635058.3A CN113277046B (en) 2021-06-08 2021-06-08 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin

Publications (2)

Publication Number Publication Date
CN113277046A true CN113277046A (en) 2021-08-20
CN113277046B CN113277046B (en) 2022-08-05

Family

ID=77283699

Family Applications (1)

Application Number Title Priority Date Filing Date
CN202110635058.3A Active CN113277046B (en) 2021-06-08 2021-06-08 Simulated bat ray underwater vehicle depth control method based on centroid and tail fin

Country Status (1)

Country Link
CN (1) CN113277046B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050582A1 (en) * 2021-09-28 2023-04-06 深圳先进技术研究院 Angle of attack-based bionic robotic fish fixed-depth control method and apparatus

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165180A (en) * 1993-12-16 1995-06-27 Nec Corp Depth control system for submersible navigating body
CN102923286A (en) * 2012-10-30 2013-02-13 北京航空航天大学 Intelligent material IMPC-based manta ray-simulated underwater vehicle
CN105383654A (en) * 2015-10-30 2016-03-09 哈尔滨工程大学 Depth control device of autonomous underwater vehicle
JP2017206154A (en) * 2016-05-19 2017-11-24 三菱重工業株式会社 Underwater sailing body control device, underwater sailing system, underwater sailing body control method and program
JP2017208012A (en) * 2016-05-20 2017-11-24 三菱重工業株式会社 Control device, underwater vehicle, control method, and program
CN107571983A (en) * 2017-07-12 2018-01-12 河海大学 A kind of depth control method of three joint bionic machine fish
CN110758698A (en) * 2019-11-28 2020-02-07 中国科学院自动化研究所 Method, system and device for controlling gliding depth of bionic gliding dolphin
CN111930132A (en) * 2020-07-22 2020-11-13 西北工业大学 Track control method for underwater autonomous vehicle
US10935986B1 (en) * 2019-11-28 2021-03-02 Institute Of Automation, Chinese Academy Of Sciences Gliding depth control method, system and device for biomimetic gliding robotic dolphin

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07165180A (en) * 1993-12-16 1995-06-27 Nec Corp Depth control system for submersible navigating body
CN102923286A (en) * 2012-10-30 2013-02-13 北京航空航天大学 Intelligent material IMPC-based manta ray-simulated underwater vehicle
CN105383654A (en) * 2015-10-30 2016-03-09 哈尔滨工程大学 Depth control device of autonomous underwater vehicle
JP2017206154A (en) * 2016-05-19 2017-11-24 三菱重工業株式会社 Underwater sailing body control device, underwater sailing system, underwater sailing body control method and program
JP2017208012A (en) * 2016-05-20 2017-11-24 三菱重工業株式会社 Control device, underwater vehicle, control method, and program
CN107571983A (en) * 2017-07-12 2018-01-12 河海大学 A kind of depth control method of three joint bionic machine fish
CN110758698A (en) * 2019-11-28 2020-02-07 中国科学院自动化研究所 Method, system and device for controlling gliding depth of bionic gliding dolphin
US10935986B1 (en) * 2019-11-28 2021-03-02 Institute Of Automation, Chinese Academy Of Sciences Gliding depth control method, system and device for biomimetic gliding robotic dolphin
CN111930132A (en) * 2020-07-22 2020-11-13 西北工业大学 Track control method for underwater autonomous vehicle

Non-Patent Citations (5)

* Cited by examiner, † Cited by third party
Title
CHUNLIN ZHOU等: "Design and Locomotion Control of a Biomimetic Underwater Vehicle With Fin Propulsion", 《IEE/ASME TRANSACTIONS ON MECHATRONICS》 *
TAKUYA IMAHAMA等: "A Method for Calculating the Amount of Movements to Estimate the self-position of Manta Robots", 《JOURNAL OF PHYSICS: CONFERENCE SERIES》 *
TIANDONG ZHANG等: "Design and Locomotion Control of a Dactylopteridae-Inspired Biomimetic Underwater Vehicle With Hybrid Propulsion", 《IEE TRANSACTIONS ON AUTOMATION SCIENCE AND ENGINEERING》 *
李宗刚等: "仿生机器鱼胸/尾鳍协同推进闭环深度控制", 《机器人》 *
綦声波等: "基于模糊PID的小型ROV定深运动控制仿真", 《现代电子技术》 *

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2023050582A1 (en) * 2021-09-28 2023-04-06 深圳先进技术研究院 Angle of attack-based bionic robotic fish fixed-depth control method and apparatus

Also Published As

Publication number Publication date
CN113277046B (en) 2022-08-05

Similar Documents

Publication Publication Date Title
CN109283842B (en) Unmanned ship track tracking intelligent learning control method
CN109725644A (en) A kind of hypersonic aircraft linear optimization control method
CN112147899B (en) Underwater robot autonomous obstacle avoidance control method based on fuzzy sliding mode algorithm
CN108490944B (en) Ship vector control system and method based on water jet propeller
CN113341974B (en) Gliding course control method of simulated manta ray underwater vehicle based on flapping wing bias
CN113341693A (en) Course control method based on asymmetric phase difference and amplitude of flapping wings
CN110609556A (en) Multi-unmanned-boat cooperative control method based on LOS navigation method
CN113277046B (en) Simulated bat ray underwater vehicle depth control method based on centroid and tail fin
CN113341953B (en) Pod type unmanned ship course control method
CN113734393B (en) Bionic robot fish depth control method and device based on attack angle method
CN113325857B (en) Simulated bat ray underwater vehicle depth control method based on centroid and buoyancy system
CN113342012B (en) Course control method of sliding and flapping integrated aircraft
CN113625544A (en) Inner and outer ring PID path tracking control method of wave glider
CN114089749A (en) Unmanned ship motion control anti-interference controller and method
CN110262513B (en) Design method of marine robot trajectory tracking control structure
CN109856965B (en) Course tracking control method for wave glider
CN114637312A (en) Unmanned aerial vehicle energy-saving flight control method and system based on intelligent deformation decision
CN109116727B (en) PID type first-order full-format model-free self-adaptive cruise control algorithm based on low-pass filter
CN111830832B (en) Bionic gliding machine dolphin plane path tracking method and system
CN113342013B (en) Course control method combining roll mechanism and flapping wing asymmetric phase difference
CN114740845A (en) Vehicle tracking control method based on immersion and invariant manifold
Liu et al. Research on key methods of autonomous sailboat’s position keeping control
CN115755938B (en) Method for controlling depth of simulated ray aircraft based on asymmetric fuzzy S-plane
CN113467253B (en) Unmanned ship track tracking control method based on sliding mode control and control distribution
CN113805598B (en) Navigation control method for under-actuated AUV (autonomous underwater vehicle)

Legal Events

Date Code Title Description
PB01 Publication
PB01 Publication
SE01 Entry into force of request for substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant