JPH07165074A - Control distance monitoring method for train detecting unit - Google Patents

Control distance monitoring method for train detecting unit

Info

Publication number
JPH07165074A
JPH07165074A JP31757393A JP31757393A JPH07165074A JP H07165074 A JPH07165074 A JP H07165074A JP 31757393 A JP31757393 A JP 31757393A JP 31757393 A JP31757393 A JP 31757393A JP H07165074 A JPH07165074 A JP H07165074A
Authority
JP
Japan
Prior art keywords
train
control distance
detector
relay
time
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31757393A
Other languages
Japanese (ja)
Other versions
JP3436960B2 (en
Inventor
Tadashi Matsuda
紀 松田
Fumio Shimizu
文雄 清水
Takashi Taguchi
尚 田口
Takaharu Ichikawa
隆治 市川
Nobuyuki Taguchi
信幸 田口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Central Japan Railway Co
Daido Signal Co Ltd
Original Assignee
Central Japan Railway Co
Daido Signal Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Central Japan Railway Co, Daido Signal Co Ltd filed Critical Central Japan Railway Co
Priority to JP31757393A priority Critical patent/JP3436960B2/en
Publication of JPH07165074A publication Critical patent/JPH07165074A/en
Application granted granted Critical
Publication of JP3436960B2 publication Critical patent/JP3436960B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Train Traffic Observation, Control, And Security (AREA)

Abstract

PURPOSE:To obtain the control distance of a train detecting unit in a short time with a little labor, and to monitor the control distance. CONSTITUTION:The reset time of a relay BDC of a train detecting unit 5 for starting point, which is reset when a train at a constant length approaches an alarm starting point 3 and which is operated when the train passes through it, and the operation time of a relay CDC of a train detecting unit 7 for finish point, which is operated when the train approaches an alarm finish point 6 and which is reset when the train passes through it, and the average speed of the train between the train detecting unit 5 for starting point and the train detecting unit 7 for finish point are automatically obtained by the computer processing in a maintenance block for years independently of weather, namely, fine weather and rainy weather, and fluctuation of change of power source voltage. Control distance of the train detecting units 5, 7 are statistically obtained on the basis of these obtained values with an aged distribution curve. Difference of the control distance from the control distance at the normal time due to the weather of the initial time of a measurement and due to a change of power source voltage is monitored.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、列車検知器の制御距
離監視方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a control distance monitoring method for train detectors.

【0002】[0002]

【従来の技術】従来、踏切警報機の制御は警報始動点に
始動点用列車検知器を設けて警報始動し、警報終止点に
終止点用列車検知器を設けて警報終止している。両列車
検知器の列車制御距離は天候などによる軌道の漏れコン
ダクタンスによって変動するが、機器の経年変化による
変動がある幅をこえたときは列車検知器の再調整をしな
ければならない。
2. Description of the Related Art Conventionally, in the control of a railroad crossing alarm, a train detector for a starting point is provided at an alarm starting point to start an alarm, and a train detector for an end point is provided at an alarm ending point to end the alarm. The train control distance of both train detectors fluctuates due to the leakage conductance of the track due to weather, etc. However, if the fluctuation exceeds the range due to the secular change of equipment, the train detectors must be readjusted.

【0003】[0003]

【発明が解決しようとする課題】ところで、従来の列車
検知器による列車制御距離の測定は、警報始動点、終止
点にある両列車検知器のレール接続点前方から後方に向
かってレール間を手動で短絡して、始動点では始動点用
列車検知器のリレーが復旧する区間(制御距離)、終止
点では終止点用列車検知器のリレーが動作する区間をそ
れぞれ測定していた。そのため、多大の労力と時間を費
やしている。
By the way, the measurement of the train control distance by the conventional train detector is performed manually between the rails from the front to the rear of the rail connection points of both train detectors at the alarm start point and the end point. At the starting point, the section where the relay of the starting point train detector is restored (control distance) is measured, and at the ending point, the section where the relay of the ending point train detector operates is measured. Therefore, a lot of labor and time are spent.

【0004】[0004]

【発明が解決しようとする課題】そこで、この発明は前
記従来の問題点を解決し、現場に行って手動でレール間
を短絡して列車検知器の列車検知範囲を測定する必要が
なく、列車検知器による制御距離を少ない労力でかつ短
時間に求めて制御距離を監視することができる列車検知
器の制御距離監視方法を提供することを目的とする。
Therefore, the present invention solves the above-mentioned conventional problems, and it is not necessary to go to the site and manually short the rails to measure the train detection range of the train detector. An object of the present invention is to provide a control distance monitoring method for a train detector that can monitor the control distance by obtaining the control distance by the detector with a small amount of labor in a short time.

【0005】[0005]

【課題を解決するための手段】前記目的を達成するた
め、この発明は、列車長一定の列車が警報始動点に接近
したときに復旧し通過したときに動作する始動点用列車
検知器のリレーの復旧している時間、該列車が警報終止
点に接近したときに動作し通過したときに復旧する終止
点用列車検知器のリレーの動作している時間、及びこれ
ら始動点用列車検知器と終止点用列車検知器間の列車の
平均速度をそれぞれ晴天時及び雨天時或いは電源電圧変
化の変動にかかわらず経年にわたり保守区においてコン
ピュータ処理により自動的に求め、これら求めた値から
経年的な分布曲線を描いて統計的に列車検知器の制御距
離を求め、この制御距離が測定当初の晴天時及び雨天時
或いは電源電圧変化による正常時の制御距離とどの程度
相違しているかを監視することを特徴とする。
In order to achieve the above object, the present invention is a relay for a starting point train detector which operates when a train with a constant train length is restored when the train approaches an alarm starting point and passes by. The time when the train is recovering, the time when the train of the relay for the end point train detector that operates when the train approaches the alarm end point and recovers when the train passes, and the train detector for the starting point The average speed of the train between the end point train detectors is automatically calculated by computer processing in the maintenance area over a period of years regardless of the change in fine weather, rainy weather, or changes in the power supply voltage. Draw a curve to statistically calculate the control distance of the train detector, and monitor how much this control distance differs from the control distance when the measurement was initially started in fine weather and rain, or when the power supply voltage changed normally. Characterized in that it.

【0006】[0006]

【作用】前記のように経年的な分布曲線を描いて統計的
に列車検知器の制御距離を求めて、この制御距離が測定
当初の晴天時及び雨天時或いは電源電圧変化による正常
時の制御距離とどの程度相違しているかを監視するもの
であり、これにより列車検知器を再調整する時期を決め
ることが可能となる。
[Operation] As described above, the control distance of the train detector is statistically obtained by drawing the distribution curve over time, and this control distance is the control distance when the weather is initially measured, when it is fine and when it is raining, or when the power supply voltage is normal. The difference between the train detector and the train detector is to be monitored, and it is possible to decide when to re-adjust the train detector.

【0007】[0007]

【実施例】図1(A)は複線区間の片側における踏切警報
機制御用列車検知器の配置図を示したものである。1は
踏切道で、この踏切道1の周りに設置した踏切警報機
2,2aの警報始動点3付近には列車の車軸によりレー
ル4,4a間を短絡すると発振が停止して、内蔵のリレ
ーBDCが復旧する閉電路式始動点用列車検知器5が設
置され、また踏切道1の警報終止点6付近には列車の車
軸によりレール4,4a間を短絡すると発振を開始し
て、内蔵のリレーCDCが動作する開電路式終止点用列
車検知器7が設置されている。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 1A is a layout view of a train detector for controlling a level crossing alarm on one side of a double track section. Reference numeral 1 is a railroad crossing. Near the alarm start point 3 of the railroad crossing alarms 2 and 2a installed around the railroad crossing 1, oscillation will stop when the rails 4 and 4a are short-circuited by the train axle, and the built-in relay A train detector 5 for a closed circuit type starting point that restores BDC is installed, and near the alarm end point 6 of the railroad crossing 1, oscillation occurs when the rails 4 and 4a are short-circuited by the axle of the train and the built-in An open circuit type end point train detector 7 in which a relay CDC operates is installed.

【0008】そして警報制御に際し、列車が踏切道1に
接近して警報始動点3にくると、レール4,4a間を列
車の車軸で短絡することにより、列車検知器5のリレー
BDCが復旧して動作接点が開放し、これにより同図
(B)に示すように図示しない器具箱に収容した始動点検
知リレーBPRが復旧する。リレーBPRが復旧すると
制御リレーSRが復旧してその動作接点の開放により復
旧状態を保持し、リレーSRが復旧すると図示しない警
報制御回路により踏切警報機が警報する。一方、列車が
警報終止点6にくると、レール4,4a間を列車の車軸
で短絡することにより、列車検知器7のリレーCDCが
動作し、制御リレーSRが動作してその動作接点により
動作状態を保持し、列車が警報終止点6を通過すると、
前記警報制御回路により踏切警報機が警報を停止する。
In the alarm control, when the train approaches the railroad crossing 1 and reaches the alarm starting point 3, the rails 4 and 4a are short-circuited by the train axle, and the relay BDC of the train detector 5 is restored. The operating contact opens, which allows
As shown in (B), the starting point detection relay BPR housed in a device box (not shown) is restored. When the relay BPR is restored, the control relay SR is restored and the restored state is maintained by opening the operating contact, and when the relay SR is restored, the railroad crossing alarm is issued by an alarm control circuit (not shown). On the other hand, when the train reaches the alarm end point 6, the relay CDC of the train detector 7 operates by short-circuiting the rails 4 and 4a with the axle of the train, and the control relay SR operates and operates by the operating contact. Retaining the condition, when the train passes the warning end point 6,
The level control device stops the alarm by the alarm control circuit.

【0009】図2は踏切現場に設置され両列車検知器
5,7の制御距離を計測する計測装置8及びこれと伝送
端末9,10を介して保守区に設置された監視装置11のブ
ロック図を示したものである。計測装置8において13は
後記の各種電圧〜が入力するマルチプレクサ(MP
X)、14はA/Dコンバータ、15はCPUである。また
監視装置11において17は列車識別器、18はCPU、19は
表示器である。
FIG. 2 is a block diagram of a measuring device 8 installed at a railroad crossing site for measuring the control distance of both train detectors 5 and 7, and a monitoring device 11 installed in a maintenance area via this and transmission terminals 9 and 10. Is shown. In the measuring device 8, 13 is a multiplexer (MP
X), 14 are A / D converters, and 15 is a CPU. In the monitoring device 11, 17 is a train discriminator, 18 is a CPU, and 19 is a display.

【0010】この実施例の作用を次に説明する。まず保
守区の監視装置11に設けた列車識別器17で列車長一定で
ほぼ同一速度で走行する例えば快速列車などを列車ダイ
ヤ上から識別する。この列車が踏切道1に接近すること
がわかったら、列車識別器17から伝送端末10,9を介し
て計測装置8のCPU15に計測指令を出す。列車が始動
点3に接近すると、列車検知器5の内蔵リレーBDCが
復旧し、列車が始動点3を通過すると、リレーBDCは
動作する。列車検知器5のリレーBDCが復旧している
間、リレーBPRは復旧し、常時(動作時)に入力して
いた電圧がマルチプレクサ13に入力しなくなるので、
その間の時分T2をCPU15内の図示しないカウンタが
計測する(図1CD参照)。
The operation of this embodiment will be described below. First, a train discriminator 17 provided in the monitoring device 11 in the maintenance area discriminates, for example, a high-speed train running on a substantially constant speed with a constant train length from the train schedule. When it is found that this train approaches the level crossing 1, the train discriminator 17 issues a measurement command to the CPU 15 of the measuring device 8 via the transmission terminals 10 and 9. When the train approaches the starting point 3, the built-in relay BDC of the train detector 5 is restored, and when the train passes the starting point 3, the relay BDC operates. While the relay BDC of the train detector 5 is restored, the relay BPR is restored, and the voltage that was always input (at the time of operation) is not input to the multiplexer 13,
A counter (not shown) in the CPU 15 measures the time T2 during that period (see CD in FIG. 1).

【0011】またリレーBPRが復旧すると、リレーS
Rも復旧し、常時(動作時)に入力していた電圧がマ
ルチプレクサ13に入力しなくなるので、その間の時分T
1を前記と同様にCPU15内のカウンタが計測を始め、
列車が終止点6に到達すると、列車検知器7のリレーC
DCが動作してその動作接点によりリレーSRが動作
し、電圧が再び入力するので、CPU15内のカウンタ
はT1の計測を終止する(図1CD参照)。すなわち、
列車が始動点3から終止点6まで走行する時分T1がこ
れにより計測される。
When the relay BPR is restored, the relay S
Since R also recovers and the voltage that was always input (at the time of operation) does not enter the multiplexer 13, the time T
1 is the same as the above, the counter in the CPU 15 starts measuring,
When the train reaches the end point 6, the relay C of the train detector 7
Since the DC operates and the relay SR operates by the operating contact and the voltage is input again, the counter in the CPU 15 terminates the measurement of T1 (see FIG. 1CD). That is,
The time T1 at which the train runs from the starting point 3 to the ending point 6 is measured by this.

【0012】T1が計測されると、CPU15内で始動点
3から終止点6までの距離L1がT1で除算され、その
間の平均列車速度Vが求められる。そして列車が終止点
6に到達すると、列車検知器7のリレーCDCが動作す
るので、マルチプレクサ13に入力していた電圧はなく
なり、T3を計測し始め、列車が終止点6を通過する
と、リレーCDCは復旧するので、電圧は再入力し、
T3の計測を終止する(図1CD参照)。これにより列
車検知器7のリレーCDCが動作していた時分T3が計
測される。
When T1 is measured, the distance L1 from the starting point 3 to the ending point 6 is divided by T1 in the CPU 15, and the average train speed V during that period is obtained. When the train reaches the end point 6, the relay CDC of the train detector 7 operates, so that the voltage input to the multiplexer 13 disappears, T3 starts to be measured, and when the train passes the end point 6, the relay CDC Is restored, so re-enter the voltage,
The measurement of T3 is terminated (see FIG. 1CD). As a result, the time T3 during which the relay CDC of the train detector 7 is operating is measured.

【0013】前記により列車の平均速度Vが計測された
ので、始動点3も終止点6も同じ速度Vで走行したとし
て、T2×V(始動点用列車検知器5のリレーBDCが
復旧していた長さ)−列車長=始動点用列車検知器器5
の制御距離、T3×V(終止点用列車検知器7のリレー
CDCが動作していた長さ)−列車長=終止点用列車検
知器器7の制御距離として求めることができる。計測装
置8のCPU15はこれら計測した制御距離のデータを伝
送端末9,10を介して保守区の監視装置11にあるCPU
18に伝送し、表示器19に表示する。
Since the average speed V of the train is measured as described above, T2 × V (the relay BDC of the starting point train detector 5 has been restored, assuming that the starting point 3 and the ending point 6 have traveled at the same speed V). Length) -train length = starting point train detector 5
Control distance of T3 × V (the length of the relay CDC of the stop point train detector 7 operating) -train length = control distance of the stop point train detector 7. The CPU 15 of the measuring device 8 transmits the data of the measured control distances to the monitoring device 11 in the maintenance area via the transmission terminals 9 and 10.
It is transmitted to 18 and displayed on the display 19.

【0014】列車速度は必ずしも常に一定ではなく、ま
た始動点用、終止点用列車検知器5,7の制御距離も変
動するので、制御距離の変動を統計的にとると、正規分
布をなす。したがって、前記した制御距離の計測を例え
ば半年あるいは1年と継続して行っていくと、この統計
値がずれてくる。CPU15で計測した制御距離のデータ
を保守区の監視装置11に伝送し、CPU18で統計処理し
たうえ表示器19に表示したものが図3(A)に示したもの
である。また晴天、雨天時による制御距離、電源電圧
の変化による制御距離も測定当初(ここでは例えば1ケ
月などのある期間を指称する)にCPU15で計測して監
視装置11に伝送し、晴天、雨天時の制御距離と電源電圧
変化による制御距離をCPU18で統計処理したうえ表示
器19に表示したものが図3(B),(C)に示したものであ
る。すなわち、図3(A)には機器の経年変化が入ってい
るが、図3(B),(C)の場合は機器の経年変化にかかわ
らず変わるため経年変化は入っていない。図3(A)にお
いて測定当初の値に比べて分布曲線が長い方(図3Aで
右側)又は短い方(図3Aで左側)にずれ、それが測定
当初の晴天、雨天時による制御距離(図3B)及び電源
電圧変化による制御距離(図3C)の正常時のずれを越
えてある範囲以上ずれたときは、列車検知器5,7の経
年変化であるとして、ずれた値が元の測定当初の正常時
の値となるように該列車検知器の再調整を行う。
The train speed is not always constant, and the control distances of the start point and end point train detectors 5 and 7 also fluctuate. Therefore, when the control distance fluctuations are statistically calculated, a normal distribution is formed. Therefore, if the control distance is continuously measured for, for example, half a year or one year, the statistical value will deviate. The data of the control distance measured by the CPU 15 is transmitted to the monitoring device 11 in the maintenance area, statistically processed by the CPU 18, and displayed on the display 19 as shown in FIG. 3 (A). In addition, the control distance due to fine weather and rain, and the control distance due to changes in the power supply voltage are measured by the CPU 15 at the beginning of measurement (herein, refer to a certain period such as one month) and transmitted to the monitoring device 11. The control distance and the control distance due to the change in the power supply voltage are statistically processed by the CPU 18 and displayed on the display 19 as shown in FIGS. 3 (B) and 3 (C). That is, although the secular change of the device is included in FIG. 3A, the secular change is not included in the cases of FIGS. 3B and 3C because it changes regardless of the secular change of the device. In FIG. 3 (A), the distribution curve deviates toward the longer side (right side in FIG. 3A) or the shorter side (left side in FIG. 3A) compared to the value at the beginning of measurement, which is the control distance due to fine weather and rain at the beginning of measurement (Fig. 3B) and the control distance (Fig. 3C) due to a change in the power supply voltage exceeds a normal range and deviates by more than a certain range, it is considered that the train detectors 5 and 7 have changed over time, and the deviated value is the original measurement value. The train detector is readjusted so that it becomes the value at the normal time.

【0015】また簡易な方法として、同一箇所であれば
列車の走行速度はほとんど同一であるとして、一両編成
の列車の場合は始動点用列車検知器5のリレーBDCの
動作接点が復旧している時間及び終止点用列車検知器7
のリレーCDCの動作接点が動作している時間は最短で
ある。この時間は列車検知器の復旧又は動作している制
御距離プラス列車長を走行速度で割った時間であるの
で、間接的に制御距離の変動を計測することができる。
したがって、ダイヤから列車を捜さなくても最短時間の
列車の復旧、動作時間を統計的に計測し分布曲線を求
め、経年的に変動を求めると図3の横軸を制御距離の代
わりに制御時間とした分布曲線が求めることも可能であ
る。尚、この場合、電源電圧も一定としてその変動は考
慮しないこととする。
As a simple method, the traveling speeds of the trains are almost the same at the same location, and in the case of a train of one-car train, the operating contact point of the relay BDC of the starting point train detector 5 is restored. Train detector for time and end point 7
The operating time of the operating contact of the relay CDC is the shortest. Since this time is the time when the train detector is restored or the operating control distance plus the train length is divided by the traveling speed, fluctuations in the control distance can be indirectly measured.
Therefore, even if the train is not searched from the timetable, the train recovery and operation time in the shortest time are statistically measured, the distribution curve is calculated, and the variation over time is calculated. It is also possible to obtain the distribution curve. In this case, the power supply voltage is also constant and its fluctuation is not considered.

【0016】[0016]

【発明の効果】この発明は前記のように列車長一定の列
車が警報始動点に接近したときに復旧し通過したときに
動作する始動点用列車検知器のリレーの復旧している時
間、該列車が警報終止点に接近したときに動作し通過し
たときに復旧する終止点用列車検知器のリレーの動作し
ている時間、及びこれら始動点用列車検知器と終止点用
列車検知器間の列車の平均速度をそれぞれ晴天時及び雨
天時或いは電源電圧変化の変動にかかわらず経年にわた
り保守区においてコンピュータ処理により自動的に求
め、これら求めた値から経年的な分布曲線を描いて統計
的に列車検知器の制御距離を求め、この制御距離が測定
当初の晴天時及び雨天時或いは電源電圧変化による正常
時の制御距離とどの程度相違しているかを監視するの
で、従来踏切の現場に行ってレール間を手動で短絡して
求めていた列車検知器の制御距離を保守区において自動
的に経年変化を統計処理して求めることができ、制御距
離に変動があったときには列車検知器の再調整に迅速に
対応することができ、保守の合理化ができるという優れ
た効果がある。
As described above, the present invention recovers when a train with a fixed train length approaches the alarm starting point and operates when the train passes for the starting point when the relay of the starting point train detector is restored, The operating time of the relay of the train detector for the end point, which operates when the train approaches the alarm end point and is restored when the train passes, and between the train detector for the start point and the train detector for the end point The average speed of the train is automatically calculated by computer processing in the maintenance area over the years regardless of fluctuations in power supply voltage during fine weather and rain, and a statistical distribution curve is drawn by drawing a secular distribution curve from these calculated values. The control distance of the detector is calculated, and it is monitored how much this control distance differs from the control distance when the weather was initially measured, whether it was fine weather or rain, or when the power supply voltage changed normally. Therefore, the control distance of the train detector, which was obtained by manually shorting the rails, can be automatically calculated in the maintenance area by statistically processing the secular change, and when there is a change in the control distance, the train detector There is an excellent effect that the readjustment can be dealt with promptly and the maintenance can be rationalized.

【図面の簡単な説明】[Brief description of drawings]

【図1】図1(A)は複線区間の片側における踏切警報機
制御用列車検知器の配置図、(B)は図示しない器具箱に
収容したリレー回路図、(C)は各種の電圧を示す回路
図、(D)は電圧のタイムチャートである。
FIG. 1 (A) is a layout view of a railroad crossing alarm control train detector on one side of a double track section, (B) is a relay circuit diagram housed in an equipment box (not shown), and (C) shows various voltages. Circuit diagram, (D) is a voltage time chart.

【図2】踏切現場に設置され列車検知器の制御距離を計
測する装置及びこれと伝送端末を介して保守区に設置さ
れた監視装置を示すブロック図である。
FIG. 2 is a block diagram showing a device installed at a railroad crossing site for measuring a control distance of a train detector and a monitoring device installed in a maintenance area via the device and a transmission terminal.

【図3】(A),(B),(C)は制御距離等のデータを経年
的に統計処理して表したグラフである。
3 (A), (B), and (C) are graphs showing statistically processed data of control distance and the like over time.

【符号の説明】 1 踏切道 2,2a 踏切警報機 3 警報始動点 4,4a レール 5 始動点用列車検知器 6 警報終止点 7 終止点用列車検知器 8 計測装置 9,10 伝送端末 11 監視装置[Explanation of Codes] 1 Railroad crossing 2, 2a Railroad crossing alarm 3 Alarm start point 4, 4a Rail 5 Train detector for start point 6 Alarm end point 7 Train detector for end point 8 Measuring device 9, 10 Transmission terminal 11 Monitoring apparatus

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田口 尚 愛知県名古屋市中村区名駅1丁目1番4号 東海旅客鉄道株式会社内 (72)発明者 市川 隆治 東京都大田区仲池上2丁目20番2号 大同 信号株式会社内 (72)発明者 田口 信幸 東京都大田区仲池上2丁目20番2号 大同 信号株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Nao Taguchi 1-4-1, Mei Station, Nakamura-ku, Nagoya, Aichi Prefecture Tokai Passenger Railway Co., Ltd. (72) Ryuji Ichikawa 2-chome, Nakaike, Ota-ku, Tokyo 20 No. 2 Daido Signal Co., Ltd. (72) Inventor Nobuyuki Taguchi 2-20-2 Nakaikeue, Ota-ku, Tokyo Daido Signal Co., Ltd.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 列車長一定の列車が警報始動点に接近し
たときに復旧し通過したときに動作する始動点用列車検
知器のリレーの復旧している時間、該列車が警報終止点
に接近したときに動作し通過したときに復旧する終止点
用列車検知器のリレーの動作している時間、及びこれら
始動点用列車検知器と終止点用列車検知器間の列車の平
均速度をそれぞれ晴天時及び雨天時或いは電源電圧変化
の変動にかかわらず経年にわたり保守区においてコンピ
ュータ処理により自動的に求め、これら求めた値から経
年的な分布曲線を描いて統計的に列車検知器の制御距離
を求め、この制御距離が測定当初の晴天時及び雨天時或
いは電源電圧変化による正常時の制御距離とどの程度相
違しているかを監視することを特徴とする列車検知装置
の制御距離監視方法。
1. A train approaching an alarm end point during a time when a relay of a train detector for a start point which operates when a train with a fixed train length approaches an alarm start point is restored. The train operating time for the relay of the train detector for the end point, which operates when the train passes and the train for the end point, and the average speed of the train between the train detector for the start point and the train detector for the end point are respectively fine weather conditions. The control distance of the train detector is calculated statistically by drawing a secular distribution curve from these calculated values automatically by computer processing in the maintenance area over the years regardless of time and rain or fluctuations in power supply voltage. A control distance monitoring method for a train detection device, characterized in that the control distance is monitored to a degree different from a control distance in a fine weather and a rainy weather at the beginning of measurement or in a normal time due to a change in power supply voltage. .
JP31757393A 1993-12-17 1993-12-17 Monitoring method of train detector control distance Expired - Fee Related JP3436960B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31757393A JP3436960B2 (en) 1993-12-17 1993-12-17 Monitoring method of train detector control distance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31757393A JP3436960B2 (en) 1993-12-17 1993-12-17 Monitoring method of train detector control distance

Publications (2)

Publication Number Publication Date
JPH07165074A true JPH07165074A (en) 1995-06-27
JP3436960B2 JP3436960B2 (en) 2003-08-18

Family

ID=18089756

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31757393A Expired - Fee Related JP3436960B2 (en) 1993-12-17 1993-12-17 Monitoring method of train detector control distance

Country Status (1)

Country Link
JP (1) JP3436960B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006286A (en) * 2017-06-27 2019-01-17 東日本旅客鉄道株式会社 Relay output measurement device of electronic train detector and electronic train detector control length measurement device

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019006286A (en) * 2017-06-27 2019-01-17 東日本旅客鉄道株式会社 Relay output measurement device of electronic train detector and electronic train detector control length measurement device

Also Published As

Publication number Publication date
JP3436960B2 (en) 2003-08-18

Similar Documents

Publication Publication Date Title
US4306694A (en) Dual signal frequency motion monitor and broken rail detector
KR950002939B1 (en) Method and apparatus for verifications of rail braking distances
US9676402B2 (en) System for monitoring the operating conditions of a train
WO2019107688A1 (en) Distributed acoustic fiber optic sensor-based railway operating state monitoring system, and method therefor
KR102242459B1 (en) Failure prediction system for trolley line and pantograph
US3944173A (en) Railroad crossing motion sensing system
JPH07165074A (en) Control distance monitoring method for train detecting unit
KR20040032516A (en) Portable Automatic Vehicle Data Collection System and Technique
KR101983550B1 (en) Track circuit safety monitoring device
Iliopoulos et al. Track segment automated characterisation via railway–vehicle–based random vibration signals and statistical time series methods
KR102499319B1 (en) Tunnel alarm system
JP6842929B2 (en) Railway control system using optical cable
JP7311854B2 (en) Control section length measuring device and control section length measuring system for railroad crossing controller
JP2936023B2 (en) Monitoring system for train track detection in track circuits
KR100532920B1 (en) Apparatus for measuring current of track circuit
JPH05105082A (en) Train line pole position detecting method
JP2003182580A (en) Vehicle travelling condition monitoring method and its device
JPS62173369A (en) Railroad crossing controller
JP2781606B2 (en) Railroad crossing fixed time control device
JPH1044997A (en) Overhead wire condition monitoring device
JP3992783B2 (en) Railroad crossing control device
KR0183319B1 (en) Detection equipment and method for non-response of a.t.s on earth
KR20000028003A (en) Apparatus for measuring environmental noise of subway
KR200299905Y1 (en) Portable Automatic Vehicle Data Collection System
JP2868250B2 (en) Level crossing alarm control device

Legal Events

Date Code Title Description
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20030520

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080606

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090606

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100606

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110606

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees