JPH07161851A - Semiconductor nonvolatile memory and its manufacture - Google Patents

Semiconductor nonvolatile memory and its manufacture

Info

Publication number
JPH07161851A
JPH07161851A JP31077393A JP31077393A JPH07161851A JP H07161851 A JPH07161851 A JP H07161851A JP 31077393 A JP31077393 A JP 31077393A JP 31077393 A JP31077393 A JP 31077393A JP H07161851 A JPH07161851 A JP H07161851A
Authority
JP
Japan
Prior art keywords
polysilicon layer
insulating film
nonvolatile memory
memory device
transistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31077393A
Other languages
Japanese (ja)
Inventor
Michitaka Kubota
通孝 窪田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP31077393A priority Critical patent/JPH07161851A/en
Publication of JPH07161851A publication Critical patent/JPH07161851A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a semiconductor nonvolatile memory, which can be manufactured in high integration in terms of the existing processing technology and at low cost, and its manufacturing method. CONSTITUTION:MONOS is used as a memory element. A first layer gate is thinned down by the resist ashing method. After an ONO film is formed, a transistor is made by a sidewall at a second layer which is a second polysilicon layer 4; then, the ONO film is formed to form a transistor between sidewalls in a third layer which is a third polysilicon layer 5. This enables the integration of a semiconductor nonvolatile memory to be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、電気的に書き換え可能
な不揮発性メモリ、たとえばフラッシュEEPROMな
どの半導体不揮発性記憶装置およびその製造方法に関す
るものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an electrically rewritable nonvolatile memory, for example, a semiconductor nonvolatile memory device such as a flash EEPROM and a method for manufacturing the same.

【0002】[0002]

【従来の技術】不揮発性メモリは電源を切っても情報が
保存されるため使いやすく、市場を拡大しつつある。こ
のような不揮発性メモリセルの配置には、大きく分けて
NOR型とNAND型がある。
2. Description of the Related Art Nonvolatile memories are easy to use because their information is saved even when the power is turned off, and the market is expanding. The layout of such nonvolatile memory cells is roughly classified into NOR type and NAND type.

【0003】図6は、NOR型不揮発性メモリセルの構
成例を示す図である。図6において、BL1 ,BL2
ビット線、WL1 ,WL2 はワード線、MT 11,M
12,MT21,MT22はメモリセルトランジスタをそれ
ぞれ示している。図6に示すように、隣合う2つのトラ
ンジスタMT11およびMT12、MT21およびMT22で、
ビットコンタクトCNTBLを1個共有する。すなわち、
1トランジスタ(1ビット)当りのビットコンタクトC
NTBLを0.5個必要とする。
FIG. 6 shows the structure of a NOR type non-volatile memory cell.
It is a figure which shows an example. In FIG. 6, BL1, BL2Is
Bit line, WL1, WL2Is the word line, MT 11, M
T12, MTtwenty one, MTtwenty twoIs it a memory cell transistor
Shows each. As shown in Figure 6, two adjacent tigers
Register MT11And MT12, MTtwenty oneAnd MTtwenty twoso,
Bit contact CNTBLShare one. That is,
Bit contact C per transistor (1 bit)
NTBL0.5 is required.

【0004】このような構成のNOR型不揮発性メモリ
は、他のトランジスタを介さずに直接アクセスできるこ
とから高速動作に適しているが、1ビット当りのコンタ
クトが0.5個必要なため集積度を上げるのが難しい。
The NOR type non-volatile memory having such a structure is suitable for high-speed operation because it can be directly accessed without passing through other transistors, but it requires 0.5 contacts per bit, which increases the degree of integration. Is difficult.

【0005】これに対して、NAND型不揮発性メモリ
は、図7に示すように、ビットコンタクトCNTBLと接
地との間に複数のメモリセルトランジスタMT1 〜MT
8 が直列に接続されている。実際は、メモリセルトラン
ジスタとビットコンタクトCNTBLおよびグランド間に
選択トランジスタが挿入されるが、ビットコンタクトC
NTBLは隣接する直列メモリセルトランジスタ群とも共
有する。したがって、8ビット直列セルの場合、計(8
+2)×2=20トランジスタに1個で済む。
On the other hand, in the NAND type nonvolatile memory, as shown in FIG. 7, a plurality of memory cell transistors MT 1 to MT are provided between the bit contact CNT BL and the ground.
8 are connected in series. In reality, the select transistor is inserted between the memory cell transistor and the bit contact CNT BL and the ground, but the bit contact C
NT BL is also shared with the adjacent series memory cell transistor group. Therefore, for an 8-bit serial cell, the total (8
+2) × 2 = 20 transistors is enough.

【0006】このような構成のNAND型不揮発性メモ
リは、直列に接続されたメモリセルに対し、コンタクト
は1個で済むので高集積化には適しているものの、アク
セスしたいトランジスタに直列に他のトランジスタが接
続されていることから、高速動作が必要な用途には使用
できない。
The NAND-type non-volatile memory having such a structure is suitable for high integration because it requires only one contact with respect to memory cells connected in series, but it is suitable for other transistors connected in series to the transistor to be accessed. Since the transistor is connected, it cannot be used for applications that require high-speed operation.

【0007】そこで、高速性はそれほど要求しないが大
容量が必要な場合、たとえばハードディスクの置き換え
や固定テープにはNAND型不揮発性メモリが有望とさ
れている。この種の用途に用いられる場合は、価格が低
いことが一般に広く用いられるために極めて重要であ
る。NAND型不揮発性メモリは、単価面積当りのビッ
ト数がNOR型不揮発性メモリより大きいので、コスト
的に有利であり、その意味でもこの種の用途に向いてい
る。
Therefore, when high speed is not required so much but a large capacity is required, for example, a NAND type non-volatile memory is promising for replacing a hard disk or for a fixed tape. When used for this type of application, low cost is extremely important as it is commonly used. Since the NAND type nonvolatile memory has a larger number of bits per unit area than the NOR type nonvolatile memory, it is advantageous in terms of cost, and in that sense, it is suitable for this type of application.

【0008】[0008]

【発明が解決しようとする課題】しかしながら、通常の
NAND構造のままでさらに集積度を向上させるには、
微細化を進める必要があるが、それは現行の加工技術を
用いるだけでは限度がある。また、そのための新しい微
細加工技術を開発するために、時間的・技術的・コスト
的に困難を伴う。
However, in order to further improve the degree of integration with the normal NAND structure,
It is necessary to advance miniaturization, but it is limited only by using the current processing technology. Further, it is difficult in terms of time, technology and cost to develop a new fine processing technology for that purpose.

【0009】本発明は、かかる事情に鑑みてなされたも
のであり、その目的は、現行の加工技術の範囲内で、高
集積化を図れ、ひいては低価格化を図れる半導体不揮発
性記憶装置およびその製造方法を提供することにある。
The present invention has been made in view of the above circumstances, and an object thereof is a semiconductor nonvolatile memory device capable of achieving high integration and cost reduction within the range of the current processing technology. It is to provide a manufacturing method.

【0010】[0010]

【課題を解決するための手段】上記目的を達成するた
め、本発明のゲート絶縁膜に電荷を蓄積する半導体不揮
発性記憶装置は、所定間隔をおいて形成された少なくと
も2つの第1の記憶素子と、第1の記憶素子のゲート部
の少なくとも一側面側に層間膜を介して形成されたサイ
ドウォールをゲートとする第2の記憶素子と、所定間隔
をおいた2つの第2の記憶素子間に形成された第3の記
憶素子とを有する。
In order to achieve the above object, a semiconductor nonvolatile memory device for accumulating charges in a gate insulating film according to the present invention has at least two first memory elements formed at a predetermined interval. A second memory element having a gate formed of a sidewall formed on at least one side surface side of the gate portion of the first memory element via an interlayer film, and between two second memory elements spaced apart from each other by a predetermined distance. And a third memory element formed in.

【0011】また、本発明の半導体不揮発性記憶装置
は、上記ゲート絶縁膜および素子間を分離するための層
間膜のうち少なくとも一方が、少なくとも窒化絶縁膜を
含む絶縁膜から構成されている。
In the semiconductor nonvolatile memory device of the present invention, at least one of the gate insulating film and the interlayer film for separating the elements is composed of an insulating film containing at least a nitride insulating film.

【0012】また、本発明の半導体不揮発性記憶装置で
は、記憶素子がNAND型、あるいはコンタクトレス型
のNOR型に配列される。
Further, in the semiconductor nonvolatile memory device of the present invention, the memory elements are arranged in a NAND type or a contactless NOR type.

【0013】また、本発明のゲート絶縁膜に電荷を蓄積
する半導体不揮発性記憶装置の製造方法では、半導体基
板上に絶縁膜を形成した後、絶縁膜上に第1ポリシリコ
ンを堆積し、堆積させた第1ポリシリコン層をレジスト
アッシングにより加工して所定間隔をおいた少なくと2
つの第1の記憶素子を形成し、基板および第1の記憶素
子表面に絶縁膜を形成した後、第1の記憶素子の少なく
とも一側に第2ポリシリコン層を形成し、少なくとも第
2ポリシリコン層の表面に絶縁膜を形成した後、少なく
とも所定間隔をおいた2つの第2ポリシリコン層間に第
3ポリシリコン層を形成する。
Further, in the method of manufacturing a semiconductor nonvolatile memory device according to the present invention for accumulating charges in a gate insulating film, after forming an insulating film on a semiconductor substrate, a first polysilicon is deposited on the insulating film and then deposited. The formed first polysilicon layer is processed by resist ashing to form a predetermined space and at least 2
Forming a first memory element, forming an insulating film on the substrate and the surface of the first memory element, and then forming a second polysilicon layer on at least one side of the first memory element, and forming at least a second polysilicon layer. After forming an insulating film on the surface of the layer, a third polysilicon layer is formed between at least two second polysilicon layers with a predetermined spacing.

【0014】また、本発明の半導体不揮発性記憶装置の
製造方法では、第3ポリシリコン層を基板、並びに第1
および第2のポリシリコン層上に形成し、第3ポリシリ
コン層形成後にできた溝に、マスク材を自己整合的に埋
め込み、これをマスクとして第3ポリシリコン層を加工
する。
Further, in the method of manufacturing a semiconductor nonvolatile memory device of the present invention, the third polysilicon layer is formed on the substrate, and the first polysilicon layer is formed on the substrate.
Then, a mask material is embedded in a groove formed on the second polysilicon layer after the formation of the third polysilicon layer in a self-aligned manner, and the third polysilicon layer is processed using this as a mask.

【0015】[0015]

【作用】本発明の半導体不揮発性記憶装置によれば、現
行の加工技術の範囲内で、半導体不揮発性記憶装置の集
積度が4倍に向上する。
According to the semiconductor non-volatile memory device of the present invention, the degree of integration of the semiconductor non-volatile memory device is improved four times within the range of the current processing technology.

【0016】また、本発明の製造方法によれば、まず、
半導体基板上に絶縁膜が形成された後、絶縁膜上に第1
ポリシリコンが堆積される。堆積された第1ポリシリコ
ン層は、レジストアッシング法を用いてその幅が加工さ
れる。これにより、所定間隔をおいた少なくと2つの第
1の記憶素子が形成される。次に、基板および第1の記
憶素子表面に絶縁膜が形成された後、第1の記憶素子の
少なくとも一側に第2ポリシリコン層が形成され、第2
の記憶素子が構成される。次いで、少なくとも第2ポリ
シリコン層の表面に絶縁膜が形成された後、少なくとも
所定間隔をおいた2つの第2ポリシリコン層間に第3ポ
リシリコン層が形成され、第3の記憶素子が構成され
る。
According to the manufacturing method of the present invention, first,
After the insulating film is formed on the semiconductor substrate, the first insulating film is formed on the insulating film.
Polysilicon is deposited. The width of the deposited first polysilicon layer is processed by using a resist ashing method. As a result, at least two first memory elements are formed with a predetermined interval. Next, after an insulating film is formed on the surface of the substrate and the first memory element, a second polysilicon layer is formed on at least one side of the first memory element, and a second polysilicon layer is formed.
Storage element is configured. Next, after an insulating film is formed on at least the surface of the second polysilicon layer, a third polysilicon layer is formed between at least two second polysilicon layers that are spaced apart by a predetermined distance to form a third memory element. It

【0017】また、本発明によれば、第3ポリシリコン
層が基板、並びに第1および第2のポリシリコン層上に
形成される。このとき、第2ポリシリコン層間に形成さ
れる第3ポリシリコン層には溝ができる。この第3ポリ
シリコン層形成後にできた溝に、マスク材が自己整合的
に埋め込まれ、これをマスクとして第3ポリシリコン層
が2つの第2ポリシリコン層間に位置するように加工さ
れる。
Also in accordance with the present invention, a third polysilicon layer is formed on the substrate and the first and second polysilicon layers. At this time, a groove is formed in the third polysilicon layer formed between the second polysilicon layers. A mask material is embedded in the groove formed after the formation of the third polysilicon layer in a self-aligned manner, and is processed so that the third polysilicon layer is located between the two second polysilicon layers using the mask material as a mask.

【0018】[0018]

【実施例】図1は、本発明に係るNAND型半導体不揮
発性記憶装置の一実施例を示す断面図である。図1にお
いて、Tr1は第1のトランジスタ、Tr2は第2のトラン
ジスタ、Tr3は第3のトランジスタ、1は半導体基板、
2はゲート絶縁膜、3は第1ポリシリコン層、4は第2
ポリシリコン層、5は第3ポリシリコン層、6,7は層
間絶縁膜をそれぞれ示している。
1 is a sectional view showing an embodiment of a NAND type semiconductor nonvolatile memory device according to the present invention. In FIG. 1, Tr1 is a first transistor, Tr2 is a second transistor, Tr3 is a third transistor, 1 is a semiconductor substrate,
2 is a gate insulating film, 3 is a first polysilicon layer, 4 is a second
A polysilicon layer, 5 is a third polysilicon layer, and 6 and 7 are interlayer insulating films.

【0019】第1のトランジスタTr1は、ゲートが第1
ポリシリコン層3により構成された、いわゆるMONO
S型トランジスタである。すなわち、MOSトランジス
タのゲート絶縁膜が、図2に示すように、SiO2 /S
iN/SiO2 の3層からなるONO絶縁膜により構成
されたメモリトランジスタである。
The first transistor Tr1 has a first gate
A so-called MONO composed of the polysilicon layer 3
It is an S-type transistor. That is, as shown in FIG. 2, the gate insulating film of the MOS transistor is SiO 2 / S
The memory transistor is composed of an ONO insulating film composed of three layers of iN / SiO 2 .

【0020】第2のトランジスタTr2は、ゲートが第2
ポリシリコン層4により構成されたMONOS型トラン
ジスタである。ゲートを構成する第2ポリシリコン層4
は、第1ポリシリコン層3の両側に層間絶縁膜6を介
し、いわゆるサイドウォールとして形成されている。
The second transistor Tr2 has a second gate
It is a MONOS type transistor composed of the polysilicon layer 4. Second polysilicon layer 4 forming the gate
Are formed as so-called sidewalls on both sides of the first polysilicon layer 3 with the interlayer insulating film 6 interposed therebetween.

【0021】第2のトランジスタTr3は、ゲートが第3
ポリシリコン層5により構成されたMONOS型トラン
ジスタである。第3ポリシリコン層5は、隣接する第2
のトランジスタTr2間のゲート絶縁膜2上、並びに第1
ポリシリコン層3および第2ポリシリコン4上に形成さ
れた層間絶縁膜7上に形成されている。
The second transistor Tr3 has a third gate
It is a MONOS type transistor composed of the polysilicon layer 5. The third polysilicon layer 5 has an adjacent second
On the gate insulating film 2 between the transistors Tr2 of the
It is formed on the interlayer insulating film 7 formed on the polysilicon layer 3 and the second polysilicon 4.

【0022】このように、本実施例においては、図2に
示すような構造を有するONO膜が、第1〜第3のトラ
ンジスタTr1,Tr2,Tr3のゲート絶縁膜として用いら
れ、メモリ機能を保持するのに利用されると共に、各ト
ランジスタ間の層間絶縁膜としての機能も持つ。この場
合、ONOの最下層の酸化膜(Bottom Oxとも
呼ぶ)はポリシリコンを酸化することにより得られる
が、ポリシリコン上の酸化膜は単結晶シリコンからなる
基板1上より厚くなる性質があるので、層間絶縁の目的
に好適である。
As described above, in the present embodiment, the ONO film having the structure shown in FIG. 2 is used as the gate insulating film of the first to third transistors Tr1, Tr2, Tr3 to maintain the memory function. In addition to being used to do so, it also functions as an interlayer insulating film between each transistor. In this case, the lowermost oxide film of ONO (also referred to as Bottom Ox) is obtained by oxidizing polysilicon, but the oxide film on polysilicon has a property of becoming thicker than that on the substrate 1 made of single crystal silicon. Suitable for the purpose of interlayer insulation.

【0023】次に、図3を参照しながら、図1の半導体
不揮発性記憶装置の製造方法について説明する。なお、
形状に直接関係のないイオン注入等の工程の説明は省略
している。
Next, a method of manufacturing the semiconductor nonvolatile memory device of FIG. 1 will be described with reference to FIG. In addition,
Descriptions of steps such as ion implantation that are not directly related to the shape are omitted.

【0024】まず、図3(a)に示すように、基板1上
にゲート絶縁膜2となるONO膜を形成した後、CVD
法によりポリシリコンPolyを250nm程度の膜厚
で堆積した後、燐をドーピングする。なお、ゲート絶縁
膜2の膜厚は、たとえば、ONO膜の最下層のSiO2
の膜厚は2nm、中間のSiNの膜厚は4nm、最上層
のSiO2 の膜厚は3nmに設定する。
First, as shown in FIG. 3A, after forming an ONO film to be the gate insulating film 2 on the substrate 1, CVD is performed.
Polysilicon Poly is deposited by the method to a film thickness of about 250 nm, and then phosphorus is doped. The thickness of the gate insulating film 2 is, for example, SiO 2 of the lowermost layer of the ONO film.
2 nm, the intermediate SiN film thickness is 4 nm, and the uppermost SiO 2 film thickness is 3 nm.

【0025】次に、図3(b)に示すように、リソグラ
フィーの手法により最小のデザインルールのライン/ス
ペース(L/S)をレジストPRでパターニングする。
パターン間隔は、たとえば0.4μm程度に設定する。
Next, as shown in FIG. 3B, a line / space (L / S) having a minimum design rule is patterned by a resist PR by a lithography method.
The pattern interval is set to about 0.4 μm, for example.

【0026】次に、図3(c)に示すように、レジスト
アッシング法を用い、酸素プラズマ中でレジストPRを
等方的にエッチングし、レジスト線幅を0.2μm程度
に細らせる。この際、細らせる量は第1〜第3のトラン
ジスタTr1,Tr2,Tr3のゲート長が最終的に同じにな
るように考慮して決定する。これにより、隣接するレジ
ストパターン間の距離は、0.6μm程度となる。レジ
ストアッシング法の具体的な条件としては、パワー10
0W、圧力200mTorr、酸素ガス20SCCMに
設定する。
Next, as shown in FIG. 3C, the resist PR is isotropically etched in oxygen plasma by using a resist ashing method to reduce the resist line width to about 0.2 μm. At this time, the amount of thinning is determined by considering that the gate lengths of the first to third transistors Tr1, Tr2, Tr3 are finally the same. As a result, the distance between the adjacent resist patterns becomes about 0.6 μm. A specific condition of the resist ashing method is power 10
The setting is 0 W, the pressure is 200 mTorr, and the oxygen gas is 20 SCCM.

【0027】次いで、図3(d)に示すように、RIE
によりポリシリコンおよびONO膜を除去した後、レジ
ストを剥離する。次に、図3(e)に示すように、基板
1およびパターン上にONO膜を形成する。このとき、
基板1上のONO膜は第1のトランジスタTr1のONO
膜と同じ膜厚になるように形成するが、前述したよう
に、第1のトランジスタTr1の側面と上面のONO膜は
基板1上より厚くなる。これは、上述したように、ボト
ム(Bottom)Oxがポリシリコン上で厚くなるた
めである。
Then, as shown in FIG. 3D, RIE is performed.
After removing the polysilicon and the ONO film by, the resist is peeled off. Next, as shown in FIG. 3E, an ONO film is formed on the substrate 1 and the pattern. At this time,
The ONO film on the substrate 1 is the ONO film of the first transistor Tr1.
Although it is formed so as to have the same film thickness as the film, as described above, the ONO film on the side surface and the upper surface of the first transistor Tr1 is thicker than that on the substrate 1. This is because the bottom (Bottom) Ox becomes thicker on the polysilicon as described above.

【0028】次に、図4(f)に示すように、CVD法
により第2ポリシリコン層4を形成し、燐をドーピング
した後、RIEでエッチバックし第2ポリシリコン層4
のサイドウォールを形成する。この場合、第1ポリシリ
コン層3および第2ポリシリコン層4が形成されていな
い領域で、後で第3のトランジスタTr3が形成される基
板1上の領域のONO膜を除去する。そのため、第1の
トランジスタTr1の上面のONO膜もほとんど除去され
る。
Next, as shown in FIG. 4F, a second polysilicon layer 4 is formed by the CVD method, doped with phosphorus, and then etched back by RIE to form the second polysilicon layer 4.
To form the side wall. In this case, the ONO film in the region on the substrate 1 where the third transistor Tr3 will be formed later is removed in the region where the first polysilicon layer 3 and the second polysilicon layer 4 are not formed. Therefore, the ONO film on the upper surface of the first transistor Tr1 is almost removed.

【0029】次に、図4(g)に示すように、基板1、
第1ポリシリコン層3および第2ポリシリコン層4上に
ONO膜を形成する。このとき、基板1上のONO膜
は、第1のトランジスタTr1および第2のトランジスタ
Tr2のONO膜と同じ膜厚となるように形成するが、上
述したように、第1のトランジスタTr1の上面と第2の
トランジスタTr2の上面のONO膜は、基板1上より厚
くなる。
Next, as shown in FIG. 4 (g), the substrate 1,
An ONO film is formed on the first polysilicon layer 3 and the second polysilicon layer 4. At this time, the ONO film on the substrate 1 is formed so as to have the same film thickness as the ONO films of the first transistor Tr1 and the second transistor Tr2, but as described above, it is formed on the upper surface of the first transistor Tr1. The ONO film on the upper surface of the second transistor Tr2 becomes thicker than that on the substrate 1.

【0030】次に、図4(h)に示すように、全体のO
NO膜上にCVD法により第3ポリシリコン層3Pol
y(5)を形成した後、燐をドーピングする。次に、図
4(i)に示すように、リソグラフィーによりパターニ
ングする。このときのスペースはデザインルールの最小
間隔で良く、合わせずれマージンを取らなくてよい。合
わせずれマージンはサイドウォールで代用できるからで
ある。そして、図4(j)に示すように、RIEで第1
のトランジスタTr1および第1のトランジスタTr1近傍
領域に位置する第2にトランジスタTr2上のポリシリコ
ン層を除去し、レジスト膜を剥離する。以下、層間絶縁
膜の形成等の工程に進む。
Next, as shown in FIG.
The third polysilicon layer 3Pol is formed on the NO film by the CVD method.
After forming y (5), phosphorus is doped. Next, as shown in FIG. 4I, patterning is performed by lithography. At this time, the space may be the minimum distance according to the design rule, and it is not necessary to take a misalignment margin. This is because the misalignment margin can be substituted by the sidewall. Then, as shown in FIG.
Of the transistor Tr1 and the second transistor Tr2 located in the region near the first transistor Tr1 are removed, and the resist film is peeled off. Hereinafter, the process proceeds to the step of forming an interlayer insulating film.

【0031】また、上述した図4(i)および(j)の
工程の代わりに、たとえば図4(h)で第3ポリシリコ
ン層5を形成したときにできた溝に、マスク材、たとえ
ばSiO2 、SOGあるいはレジストを自己整合的に埋
め込み、それをマスクとして第3ポリシリコン層5を加
工するようにしてもよい。
Instead of the steps of FIGS. 4 (i) and 4 (j) described above, for example, a mask material such as SiO 2 is formed in the groove formed when the third polysilicon layer 5 is formed in FIG. 4 (h). 2 , SOG or resist may be embedded in a self-aligned manner, and the third polysilicon layer 5 may be processed by using it as a mask.

【0032】次に、図5を用いて結果的に1単位のライ
ン/スペースの中に幾つのメモリトランジスタを形成可
能であるかを考察する。なお、図4において、Lは最小
デザインルールを示しており、簡単のためライン/スペ
ースを4L/4Lの長さとしている。また、ONOの膜
厚は無視している。
Next, with reference to FIG. 5, it is considered how many memory transistors can be formed in one unit line / space. In FIG. 4, L represents the minimum design rule, and the line / space has a length of 4L / 4L for simplification. The ONO film thickness is ignored.

【0033】図5(a)に示すように、通常の第1ポリ
シリコンの場合は、ライン/スペース1単位でメモリト
ランジスタは1個だけである。これに対して、本実施例
では、図5(b)に示すように、4L+4L=8Lの中
に、ゲート長2Lのトランジスタが4つ形成される。具
体的には、第1のトランジスタTr1が1個、第2トラン
ジスタTr2ガ2個、第3のトランジスタTr3が1個の計
4個となる。その結果、本実施例によれば、集積度を通
常の4倍にすることができる。
As shown in FIG. 5A, in the case of the normal first polysilicon, there is only one memory transistor per line / space unit. On the other hand, in this embodiment, as shown in FIG. 5B, four transistors having a gate length of 2L are formed in 4L + 4L = 8L. Specifically, the first transistor Tr1 is one, the second transistor Tr2 is two, and the third transistor Tr3 is one, for a total of four. As a result, according to the present embodiment, the integration degree can be increased to four times the normal level.

【0034】以上説明したように、本実施例によれば、
素子としてはMONOSを使用し、1層目のゲートをレ
ジストアッシング法で細らせ、ONO膜を形成した後、
2層目の第2ポリシリコン4でサイドウォールによるト
ランジスタを作製し、さらにONO膜を形成し、3層目
の第3ポリシリコン層5でサイドウォール間にトランジ
スタを形成したので、現行の加工技術の範囲内で、不揮
発性メモリの集積度を向上することができる。その結
果、ビット当りのコストを低減することができることか
ら、製品の価格を下げられる等の利点がある。また、サ
イドウォールにより合わせずれマージンを吸収し、最小
加工寸法を用いてメモリセルを形成することができる。
As described above, according to this embodiment,
MONOS is used as the element, the gate of the first layer is thinned by the resist ashing method, and the ONO film is formed.
A transistor is formed by a sidewall with the second polysilicon layer 2 of the second layer, an ONO film is further formed, and a transistor is formed between the sidewalls with the third polysilicon layer 5 of the third layer. Within the range, the degree of integration of the nonvolatile memory can be improved. As a result, the cost per bit can be reduced, which has the advantage of reducing the price of the product. Moreover, the misalignment margin can be absorbed by the sidewall, and the memory cell can be formed using the minimum processing dimension.

【0035】なお、本実施例では、NAND型半導体不
揮発性記憶装置を例に説明したが、これに限定されるも
のではなく、たとえばコンタクトレス型のNOR半導体
不揮発性記憶装置にも本発明が適用できることはいうま
でもない。
Although the NAND type semiconductor nonvolatile memory device has been described as an example in the present embodiment, the present invention is not limited to this, and the present invention is also applied to, for example, a contactless NOR semiconductor nonvolatile memory device. It goes without saying that you can do it.

【0036】[0036]

【発明の効果】以上説明したように、本発明によれば、
現行の加工技術の範囲内で、不揮発性メモリの集積度を
向上することができる。その結果、ビット当りのコスト
を低減することができることから、製品の価格を下げら
れる等の利点がある。
As described above, according to the present invention,
The degree of integration of the nonvolatile memory can be improved within the range of the current processing technology. As a result, the cost per bit can be reduced, which has the advantage of reducing the price of the product.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明に係るNAND型半導体不揮発性記憶装
置の一実施例を示す断面図である。
FIG. 1 is a cross-sectional view showing an embodiment of a NAND-type semiconductor nonvolatile memory device according to the present invention.

【図2】ONO構造の説明図である。FIG. 2 is an explanatory diagram of an ONO structure.

【図3】図1の半導体不揮発性記憶装置の製造方法を説
明するための図である。
FIG. 3 is a diagram for explaining the manufacturing method of the semiconductor nonvolatile memory device in FIG.

【図4】図1の半導体不揮発性記憶装置の製造方法を説
明するための図である。
FIG. 4 is a diagram illustrating the method for manufacturing the semiconductor nonvolatile memory device in FIG. 1.

【図5】本発明品と従来品との集積度を比較、説明する
ための図である。
FIG. 5 is a diagram for comparing and explaining the degree of integration of the product of the present invention and the conventional product.

【図6】NOR型メモリセルを説明するための図であ
る。
FIG. 6 is a diagram for explaining a NOR type memory cell.

【図7】NAND型メモリセルを説明するための図であ
る。
FIG. 7 is a diagram illustrating a NAND memory cell.

【符号の説明】[Explanation of symbols]

Tr1…第1のトランジスタ Tr2…第2のトランジスタ Tr3…第3のトランジスタ 1…半導体基板 2…ゲート絶縁膜 3…第1ポリシリコン層 4…第2ポリシリコン層 5…第3ポリシリコン層 6,7…層間絶縁膜 Tr1 ... 1st transistor Tr2 ... 2nd transistor Tr3 ... 3rd transistor 1 ... Semiconductor substrate 2 ... Gate insulating film 3 ... 1st polysilicon layer 4 ... 2nd polysilicon layer 5 ... 3rd polysilicon layer 6, 7 ... Interlayer insulating film

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 ゲート絶縁膜に電荷を蓄積する半導体不
揮発性記憶装置であって、 所定間隔をおいて形成された少なくとも2つの第1の記
憶素子と、 第1の記憶素子のゲート部の少なくとも一側面側に層間
膜を介して形成されたサイドウォールをゲートとする第
2の記憶素子と、 所定間隔をおいた2つの第2の記憶素子間に形成された
第3の記憶素子とを有する半導体不揮発性記憶装置。
1. A semiconductor nonvolatile memory device for accumulating charges in a gate insulating film, comprising at least two first memory elements formed at predetermined intervals, and at least a gate portion of the first memory element. A second memory element having a sidewall as a gate, which is formed on one side surface side with an interlayer film interposed therebetween, and a third memory element formed between two second memory elements spaced apart by a predetermined distance. Semiconductor non-volatile memory device.
【請求項2】 上記ゲート絶縁膜および素子間を分離す
るための層間膜のうち少なくとも一方が、少なくとも窒
化絶縁膜を含む絶縁膜から構成されている請求項1記載
の半導体不揮発性記憶装置。
2. The semiconductor nonvolatile memory device according to claim 1, wherein at least one of the gate insulating film and the interlayer film for separating the elements is formed of an insulating film including at least a nitride insulating film.
【請求項3】 記憶素子がNAND型に配列されている
請求項1または請求項2記載の半導体不揮発性記憶装
置。
3. The semiconductor nonvolatile memory device according to claim 1, wherein the memory elements are arranged in a NAND type.
【請求項4】 記憶素子がコンタクトレス型のNOR型
に配列されている請求項1または請求項2記載の半導体
不揮発性記憶装置。
4. The semiconductor nonvolatile memory device according to claim 1, wherein the memory elements are arranged in a contactless NOR type.
【請求項5】 ゲート絶縁膜に電荷を蓄積する半導体不
揮発性記憶装置の製造方法であって、 半導体基板上に絶縁膜を形成した後、 絶縁膜上に第1ポリシリコンを堆積し、 堆積させた第1ポリシリコン層をレジストアッシングに
より加工して所定間隔をおいた少なくと2つの第1の記
憶素子を形成し、 基板および第1の記憶素子表面に絶縁膜を形成した後、 第1の記憶素子の少なくとも一側に第2ポリシリコン層
を形成し、 少なくとも第2ポリシリコン層の表面に絶縁膜を形成し
た後、 少なくとも所定間隔をおいた2つの第2ポリシリコン層
間に第3ポリシリコン層を形成することを特徴とする半
導体不揮発性記憶装置の製造方法。
5. A method of manufacturing a semiconductor non-volatile memory device for accumulating charges in a gate insulating film, comprising: forming an insulating film on a semiconductor substrate; then depositing first polysilicon on the insulating film; The first polysilicon layer is processed by resist ashing to form at least two first memory elements with a predetermined spacing, and an insulating film is formed on the substrate and the surface of the first memory element. A second polysilicon layer is formed on at least one side of the memory element, an insulating film is formed on at least the surface of the second polysilicon layer, and then a third polysilicon layer is formed between at least two second polysilicon layers with a predetermined spacing. A method for manufacturing a semiconductor nonvolatile memory device, which comprises forming a layer.
【請求項6】 第3ポリシリコン層を基板、並びに第1
および第2のポリシリコン層上に形成し、第3ポリシリ
コン層形成後にできた溝に、マスク材を自己整合的に埋
め込み、これをマスクとして第3ポリシリコン層を加工
する請求項5記載の半導体不揮発性記憶装置の製造方
法。
6. A third polysilicon layer as a substrate, and a first polysilicon layer.
6. The third polysilicon layer is processed by forming a mask material in a self-aligned manner in a groove formed on the second polysilicon layer and after forming the third polysilicon layer, and using the mask material as a mask. Manufacturing method of semiconductor nonvolatile memory device.
JP31077393A 1993-12-10 1993-12-10 Semiconductor nonvolatile memory and its manufacture Pending JPH07161851A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31077393A JPH07161851A (en) 1993-12-10 1993-12-10 Semiconductor nonvolatile memory and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31077393A JPH07161851A (en) 1993-12-10 1993-12-10 Semiconductor nonvolatile memory and its manufacture

Publications (1)

Publication Number Publication Date
JPH07161851A true JPH07161851A (en) 1995-06-23

Family

ID=18009302

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31077393A Pending JPH07161851A (en) 1993-12-10 1993-12-10 Semiconductor nonvolatile memory and its manufacture

Country Status (1)

Country Link
JP (1) JPH07161851A (en)

Cited By (66)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6587380B2 (en) 2001-05-11 2003-07-01 Seiko Epson Corporation Programming method for non-volatile semiconductor memory device
US6587381B2 (en) 2001-05-08 2003-07-01 Halo Lsi Design & Device Technology, Inc. Programming method for non-volatile semiconductor memory device
US6627491B2 (en) 2001-09-14 2003-09-30 Seiko Epson Corporation Method of manufacturing non volatile memory device having two charge storage regions
US6646916B2 (en) 2001-04-13 2003-11-11 Seiko Epson Corporation Non-volatile semiconductor memory device
US6650591B2 (en) 2001-05-31 2003-11-18 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6654282B2 (en) 2001-07-23 2003-11-25 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6656794B2 (en) 2002-01-24 2003-12-02 Seiko Epson Corporation Method of manufacturing semiconductor device including a memory area and a logic circuit area
US6664155B2 (en) 2002-02-20 2003-12-16 Seiko Epson Corporation Method of manufacturing semiconductor device with memory area and logic circuit area
US6697280B2 (en) 2001-07-23 2004-02-24 Seiko Epson Corporation Semiconductor capacitance device, booster circuit and nonvolatile semiconductor storage device
US6704224B2 (en) 2001-09-19 2004-03-09 Seiko Epson Corporation Non-volatile semiconductor memory apparatus
US6707716B2 (en) 2002-01-10 2004-03-16 Seiko Epson Corporation Non-volatile semiconductor memory device
US6707695B2 (en) 2001-05-31 2004-03-16 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6707720B2 (en) 2001-06-04 2004-03-16 Seiko Epson Corporation Nonvolatile semiconductor storage device
US6707742B2 (en) 2002-03-18 2004-03-16 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6706579B2 (en) 2002-02-20 2004-03-16 Seiko Epson Corporation Method of manufacturing semiconductor device
US6709922B2 (en) 2001-01-30 2004-03-23 Seiko Epson Corporation Method of manufacturing semiconductor integrated circuit device including nonvolatile semiconductor memory devices
US6710399B2 (en) 2001-07-23 2004-03-23 Seiko Epson Corporation Nonvolatile semiconductor storage device
US6717854B2 (en) 2001-09-19 2004-04-06 Seiko Epson Corporation Non-volatile semiconductor memory apparatus
US6737322B2 (en) 2002-03-06 2004-05-18 Seiko Epson Corporation Method for manufacturing semiconductor device
US6738291B2 (en) 2002-02-13 2004-05-18 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6744106B2 (en) 2001-07-23 2004-06-01 Seiko Epson Corporation Non-volatile semiconductor memory device
US6757197B2 (en) 2002-03-20 2004-06-29 Seiko Epson Corporation File storage type non-volatile semiconductor memory device
US6760253B2 (en) 2001-08-30 2004-07-06 Seiko Epson Corporation Non-volatile semiconductor memory device and method of driving the same
US6762960B2 (en) 2002-01-24 2004-07-13 Seiko Epson Corporation Booster circuit for non-volatile semiconductor memory device
US6778446B2 (en) 2001-09-19 2004-08-17 Seiko Epson Corporation Non-volatile semiconductor memory apparatus
US6781187B2 (en) 2001-05-31 2004-08-24 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6785182B2 (en) 2002-02-13 2004-08-31 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6787417B2 (en) 2002-07-12 2004-09-07 Seiko Epson Corporation Method of fabricating semiconductor device
US6798015B2 (en) 2002-10-30 2004-09-28 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US6809374B2 (en) 2002-03-22 2004-10-26 Seiko Epson Corporation Nonvolatile memory device
US6809385B2 (en) 2001-01-30 2004-10-26 Seiko Epson Corporation Semiconductor integrated circuit device including nonvolatile semiconductor memory devices having control gates connected to common contact section
US6809963B2 (en) 2002-06-06 2004-10-26 Seiko Epson Corporation Non-volatile semiconductor memory device and method of actuating the same
US6812520B2 (en) 2001-09-25 2004-11-02 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US6815291B2 (en) 2002-02-20 2004-11-09 Seiko Epson Corporation Method of manufacturing semiconductor device
US6818507B2 (en) 2002-01-23 2004-11-16 Seiko Epson Corporation Method of manufacturing semiconductor device including memory region and logic circuit region
US6822926B2 (en) 2001-07-23 2004-11-23 Seiko Epson Corporation Non-volatile semiconductor memory device
US6822900B2 (en) 2001-04-13 2004-11-23 Seiko Epson Corporation Non-volatile semiconductor memory device
US6829165B2 (en) 2002-06-06 2004-12-07 Seiko Epson Corporation Non-volatile semiconductor memory device and method of actuating the same
US6849553B2 (en) 2002-01-24 2005-02-01 Seiko Epson Corporation Method of manufacturing semiconductor device
US6849500B2 (en) 2002-03-01 2005-02-01 Seiko Epson Corporation Method for manufacturing a nonvolatile memory device including an opening formed into an inverse-tapered shape
US6865128B2 (en) 2002-12-16 2005-03-08 Seiko Epson Corporation Non-volatile memory device
US6868008B2 (en) 2002-03-18 2005-03-15 Seiko Epson Corporation Non-volatile semiconductor memory device
US6868012B2 (en) 2001-09-19 2005-03-15 Seiko Epson Corporation System and methods for manufacturing non-volatile semiconductor memory apparatus
US6891271B2 (en) 2001-09-25 2005-05-10 Seiko Epson Corporation Non-volatile memory device
US6894361B2 (en) 2001-07-31 2005-05-17 Seiko Epson Corporation Semiconductor device
US6898120B2 (en) 2002-12-10 2005-05-24 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6901009B2 (en) 2002-01-23 2005-05-31 Seiko Epson Corporation Booster circuit for non-volatile semiconductor memory device
US6900514B2 (en) 2001-07-31 2005-05-31 Seiko Epson Corporation Semiconductor device having a capacitance device
US6914815B2 (en) 2001-06-04 2005-07-05 Seiko Epson Corporation Nonvolatile semiconductor storage device
US6922357B2 (en) 2002-03-15 2005-07-26 Seiko Epson Corporation Non-volatile semiconductor memory device
US6930003B2 (en) 2002-09-18 2005-08-16 Seiko Epson Corporation Method of manufacturing semiconductor device
US6930000B2 (en) 2002-02-20 2005-08-16 Seiko Epson Corporation Method of manufacturing semiconductor device
US6934191B2 (en) 2003-02-28 2005-08-23 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6943082B2 (en) 2002-03-05 2005-09-13 Seiko Epson Corporation Method for manufacturing a nonvolatile memory device
US6953967B2 (en) 2002-10-30 2005-10-11 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US6972456B2 (en) 2002-09-02 2005-12-06 Seiko Epson Corporation Semiconductor device and method of fabricating the same
US6989305B2 (en) 2002-09-11 2006-01-24 Seiko Epson Corporation Method of manufacturing semiconductor device
US6995420B2 (en) 2001-09-25 2006-02-07 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US7015542B2 (en) 2002-10-29 2006-03-21 Seiko Epson Corporation MONOS memory device
US7031194B2 (en) 2003-08-29 2006-04-18 Seiko Epson Corporation Nonvolatile semiconductor memory and method for controlling the same
US7050332B2 (en) 2002-03-14 2006-05-23 Seiko Epson Corporation Nonvolatile register and semiconductor device
US7053442B2 (en) 2003-02-28 2006-05-30 Seiko Epson Corporation Nonvolatile semiconductor memory device
US7061043B2 (en) 2003-02-28 2006-06-13 Seiko Epson Corporation Non-volatile semiconductor memory device and method of manufacturing the same
US7087487B2 (en) 2002-03-05 2006-08-08 Seiko Epson Corporation Method for fabricating nonvolatile memory device and method for fabricating semiconductor device
US7139193B2 (en) 2003-02-21 2006-11-21 Seiko Epson Corporation Non-volatile memory with two adjacent memory cells sharing same word line
US7142458B2 (en) 2003-09-09 2006-11-28 Seiko Epson Corporation Nonvolatile semiconductor memory device and control method thereof

Cited By (71)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6809385B2 (en) 2001-01-30 2004-10-26 Seiko Epson Corporation Semiconductor integrated circuit device including nonvolatile semiconductor memory devices having control gates connected to common contact section
US6709922B2 (en) 2001-01-30 2004-03-23 Seiko Epson Corporation Method of manufacturing semiconductor integrated circuit device including nonvolatile semiconductor memory devices
CN100334737C (en) * 2001-01-30 2007-08-29 精工爱普生株式会社 Semiconductor integrated circuit device contg. nonvolatile semiconductor storage
US6822900B2 (en) 2001-04-13 2004-11-23 Seiko Epson Corporation Non-volatile semiconductor memory device
US6646916B2 (en) 2001-04-13 2003-11-11 Seiko Epson Corporation Non-volatile semiconductor memory device
US6587381B2 (en) 2001-05-08 2003-07-01 Halo Lsi Design & Device Technology, Inc. Programming method for non-volatile semiconductor memory device
US6587380B2 (en) 2001-05-11 2003-07-01 Seiko Epson Corporation Programming method for non-volatile semiconductor memory device
US6650591B2 (en) 2001-05-31 2003-11-18 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6781187B2 (en) 2001-05-31 2004-08-24 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6707695B2 (en) 2001-05-31 2004-03-16 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6707720B2 (en) 2001-06-04 2004-03-16 Seiko Epson Corporation Nonvolatile semiconductor storage device
US6914815B2 (en) 2001-06-04 2005-07-05 Seiko Epson Corporation Nonvolatile semiconductor storage device
US6822926B2 (en) 2001-07-23 2004-11-23 Seiko Epson Corporation Non-volatile semiconductor memory device
US6697280B2 (en) 2001-07-23 2004-02-24 Seiko Epson Corporation Semiconductor capacitance device, booster circuit and nonvolatile semiconductor storage device
US6744106B2 (en) 2001-07-23 2004-06-01 Seiko Epson Corporation Non-volatile semiconductor memory device
US6654282B2 (en) 2001-07-23 2003-11-25 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6710399B2 (en) 2001-07-23 2004-03-23 Seiko Epson Corporation Nonvolatile semiconductor storage device
US6894361B2 (en) 2001-07-31 2005-05-17 Seiko Epson Corporation Semiconductor device
US6900514B2 (en) 2001-07-31 2005-05-31 Seiko Epson Corporation Semiconductor device having a capacitance device
US7126203B2 (en) 2001-07-31 2006-10-24 Seiko Epson Corporation Semiconductor device having a capacitance device
US6760253B2 (en) 2001-08-30 2004-07-06 Seiko Epson Corporation Non-volatile semiconductor memory device and method of driving the same
US6627491B2 (en) 2001-09-14 2003-09-30 Seiko Epson Corporation Method of manufacturing non volatile memory device having two charge storage regions
US6868012B2 (en) 2001-09-19 2005-03-15 Seiko Epson Corporation System and methods for manufacturing non-volatile semiconductor memory apparatus
US6717854B2 (en) 2001-09-19 2004-04-06 Seiko Epson Corporation Non-volatile semiconductor memory apparatus
US6778446B2 (en) 2001-09-19 2004-08-17 Seiko Epson Corporation Non-volatile semiconductor memory apparatus
US6704224B2 (en) 2001-09-19 2004-03-09 Seiko Epson Corporation Non-volatile semiconductor memory apparatus
US6812520B2 (en) 2001-09-25 2004-11-02 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US7005328B2 (en) 2001-09-25 2006-02-28 Seiko Epson Corporation Non-volatile memory device
US6891271B2 (en) 2001-09-25 2005-05-10 Seiko Epson Corporation Non-volatile memory device
US6995420B2 (en) 2001-09-25 2006-02-07 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US6707716B2 (en) 2002-01-10 2004-03-16 Seiko Epson Corporation Non-volatile semiconductor memory device
US6818507B2 (en) 2002-01-23 2004-11-16 Seiko Epson Corporation Method of manufacturing semiconductor device including memory region and logic circuit region
US6901009B2 (en) 2002-01-23 2005-05-31 Seiko Epson Corporation Booster circuit for non-volatile semiconductor memory device
US6762960B2 (en) 2002-01-24 2004-07-13 Seiko Epson Corporation Booster circuit for non-volatile semiconductor memory device
US6656794B2 (en) 2002-01-24 2003-12-02 Seiko Epson Corporation Method of manufacturing semiconductor device including a memory area and a logic circuit area
US6849553B2 (en) 2002-01-24 2005-02-01 Seiko Epson Corporation Method of manufacturing semiconductor device
US6738291B2 (en) 2002-02-13 2004-05-18 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6785182B2 (en) 2002-02-13 2004-08-31 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6815291B2 (en) 2002-02-20 2004-11-09 Seiko Epson Corporation Method of manufacturing semiconductor device
US6706579B2 (en) 2002-02-20 2004-03-16 Seiko Epson Corporation Method of manufacturing semiconductor device
US6930000B2 (en) 2002-02-20 2005-08-16 Seiko Epson Corporation Method of manufacturing semiconductor device
US6664155B2 (en) 2002-02-20 2003-12-16 Seiko Epson Corporation Method of manufacturing semiconductor device with memory area and logic circuit area
US6849500B2 (en) 2002-03-01 2005-02-01 Seiko Epson Corporation Method for manufacturing a nonvolatile memory device including an opening formed into an inverse-tapered shape
US6943082B2 (en) 2002-03-05 2005-09-13 Seiko Epson Corporation Method for manufacturing a nonvolatile memory device
US7087487B2 (en) 2002-03-05 2006-08-08 Seiko Epson Corporation Method for fabricating nonvolatile memory device and method for fabricating semiconductor device
US6737322B2 (en) 2002-03-06 2004-05-18 Seiko Epson Corporation Method for manufacturing semiconductor device
US7050332B2 (en) 2002-03-14 2006-05-23 Seiko Epson Corporation Nonvolatile register and semiconductor device
US6922357B2 (en) 2002-03-15 2005-07-26 Seiko Epson Corporation Non-volatile semiconductor memory device
US6707742B2 (en) 2002-03-18 2004-03-16 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6868008B2 (en) 2002-03-18 2005-03-15 Seiko Epson Corporation Non-volatile semiconductor memory device
US6757197B2 (en) 2002-03-20 2004-06-29 Seiko Epson Corporation File storage type non-volatile semiconductor memory device
US6809374B2 (en) 2002-03-22 2004-10-26 Seiko Epson Corporation Nonvolatile memory device
US6809963B2 (en) 2002-06-06 2004-10-26 Seiko Epson Corporation Non-volatile semiconductor memory device and method of actuating the same
US6829165B2 (en) 2002-06-06 2004-12-07 Seiko Epson Corporation Non-volatile semiconductor memory device and method of actuating the same
US7031198B2 (en) 2002-06-06 2006-04-18 Seiko Epson Corporation Non-volatile semiconductor memory device and method of actuating the same
US6787417B2 (en) 2002-07-12 2004-09-07 Seiko Epson Corporation Method of fabricating semiconductor device
US6972456B2 (en) 2002-09-02 2005-12-06 Seiko Epson Corporation Semiconductor device and method of fabricating the same
US6989305B2 (en) 2002-09-11 2006-01-24 Seiko Epson Corporation Method of manufacturing semiconductor device
US6930003B2 (en) 2002-09-18 2005-08-16 Seiko Epson Corporation Method of manufacturing semiconductor device
US7015542B2 (en) 2002-10-29 2006-03-21 Seiko Epson Corporation MONOS memory device
US6953967B2 (en) 2002-10-30 2005-10-11 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US6798015B2 (en) 2002-10-30 2004-09-28 Seiko Epson Corporation Semiconductor device and method of manufacturing the same
US6898120B2 (en) 2002-12-10 2005-05-24 Seiko Epson Corporation Nonvolatile semiconductor memory device
US6865128B2 (en) 2002-12-16 2005-03-08 Seiko Epson Corporation Non-volatile memory device
US7139193B2 (en) 2003-02-21 2006-11-21 Seiko Epson Corporation Non-volatile memory with two adjacent memory cells sharing same word line
US6934191B2 (en) 2003-02-28 2005-08-23 Seiko Epson Corporation Nonvolatile semiconductor memory device
US7053442B2 (en) 2003-02-28 2006-05-30 Seiko Epson Corporation Nonvolatile semiconductor memory device
US7053441B2 (en) 2003-02-28 2006-05-30 Seiko Epson Corporation Nonvolatile semiconductor memory device
US7061043B2 (en) 2003-02-28 2006-06-13 Seiko Epson Corporation Non-volatile semiconductor memory device and method of manufacturing the same
US7031194B2 (en) 2003-08-29 2006-04-18 Seiko Epson Corporation Nonvolatile semiconductor memory and method for controlling the same
US7142458B2 (en) 2003-09-09 2006-11-28 Seiko Epson Corporation Nonvolatile semiconductor memory device and control method thereof

Similar Documents

Publication Publication Date Title
JPH07161851A (en) Semiconductor nonvolatile memory and its manufacture
KR100391985B1 (en) Method of making a scalable two transistor memory device
US6951782B2 (en) Nonvolatile memory cell with multiple floating gates formed after the select gate and having upward protrusions
KR100417451B1 (en) Method of producing a read-only storage cell arrangement
US6570215B2 (en) Nonvolatile memories with floating gate spacers, and methods of fabrication
US20060234456A1 (en) Four-bit finfet nvram memory device
US6808989B2 (en) Self-aligned floating gate flash cell system and method
US8729708B2 (en) Semiconductor device structures and memory devices including a uniform pattern of conductive material
JP2001168306A (en) Non-volatile semiconductor memory device and its manufacturing method
JPH0855908A (en) Semiconductor device
US7052947B2 (en) Fabrication of gate dielectric in nonvolatile memories in which a memory cell has multiple floating gates
JP3362970B2 (en) Nonvolatile semiconductor memory device and method of manufacturing the same
JPWO2006070474A1 (en) Manufacturing method of semiconductor device
US7335940B2 (en) Flash memory and manufacturing method thereof
US6737700B1 (en) Non-volatile memory cell structure and method for manufacturing thereof
JP2006502565A (en) Bit line structure and manufacturing method thereof
US6589844B2 (en) Process for manufacturing semiconductor memory device having floating and control gates in which multiple insulating films are formed over floating gates
US6787843B2 (en) Nonvolatile semiconductor memory cell and associated semiconductor circuit configuration and method for the fabrication of the circuit configuration
JP3479010B2 (en) Manufacturing method of nonvolatile semiconductor memory device
JP2003282745A (en) Semiconductor memory device
JP2001284555A (en) Non-volatile semiconductor memory device, read and write method and producing method therefor
US7084453B2 (en) Method of forming different oxide thickness for high voltage transistor and memory cell tunnel dielectric
JP2002261174A (en) Manufacturing method of nonvolatile semiconductor memory
US20070138538A1 (en) Method of forming self-aligned floating gate array and flash memory device including self-aligned floating gate array
KR19990018367A (en) Nonvolatile Memory Device and Manufacturing Method Thereof