JPH07161672A - Substrate surface cleaning method and surface cleaning agent - Google Patents

Substrate surface cleaning method and surface cleaning agent

Info

Publication number
JPH07161672A
JPH07161672A JP31091093A JP31091093A JPH07161672A JP H07161672 A JPH07161672 A JP H07161672A JP 31091093 A JP31091093 A JP 31091093A JP 31091093 A JP31091093 A JP 31091093A JP H07161672 A JPH07161672 A JP H07161672A
Authority
JP
Japan
Prior art keywords
substrate
surface cleaning
cleaning agent
water
substrate according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP31091093A
Other languages
Japanese (ja)
Other versions
JP3751324B2 (en
Inventor
Tadahiro Omi
忠弘 大見
Hitoshi Morinaga
均 森永
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP31091093A priority Critical patent/JP3751324B2/en
Priority to PCT/JP1994/002073 priority patent/WO1995016277A1/en
Publication of JPH07161672A publication Critical patent/JPH07161672A/en
Application granted granted Critical
Publication of JP3751324B2 publication Critical patent/JP3751324B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/02Manufacture or treatment of semiconductor devices or of parts thereof
    • H01L21/02041Cleaning
    • H01L21/02043Cleaning before device manufacture, i.e. Begin-Of-Line process
    • H01L21/02052Wet cleaning only

Landscapes

  • Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Manufacturing & Machinery (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Cleaning Or Drying Semiconductors (AREA)
  • Weting (AREA)

Abstract

PURPOSE:To provide a substrate surface cleaning method and an agent, wherein a substrate can be protected against contamination caused by metal impurities from cleaning agent, and the surface of the substrate can be cleaned very well. CONSTITUTION:This substrate surface cleaning method is characterized in that water solution whose oxidation-reduction potential (oxidation-reduction potential to hydrogen standard electrode, same hereinafter) is higher than that of metal impurities to be removed is used. It is preferable that the oxidation- reduction potential of water solution is higher than 0.6V. Substrate surface cleaning agent is characterized in that the oxidation-reduction potential of its water solution is higher than 0.6V.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は基体の表面洗浄方法及び
表面洗浄剤に係り、より詳細には、洗浄剤から基体表面
への金属不純物の逆汚染を防止し、安定的に、極めて清
浄な基体表面を達成することができる基体の表面洗浄方
法及び表面洗浄剤に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for cleaning a surface of a substrate and a surface cleaning agent, and more particularly, to prevent back contamination of metal impurities from the cleaning agent to the surface of the substrate and to stably and extremely clean the surface. The present invention relates to a method for cleaning a surface of a substrate and a surface cleaning agent that can achieve the surface of the substrate.

【0002】[0002]

【関連する技術】超LSIの寸法微細化に伴い、基板表
面の清浄化への要求は益々厳しいものになっている。清
浄化を妨げるものとして各種汚染物資がああり、汚染物
質の中でも、特に金属不純物は半導体素子の電気的特性
を劣化させるものであり、かかる劣化を防止するために
は、半導体素子が形成される基板の表面における金属不
純物の濃度を極力低下させる必要がある。そのため、基
板表面を洗浄剤により洗浄することが一般に行われる。
[Related Art] With the miniaturization of VLSI, the demand for cleaning the surface of the substrate is becoming more and more severe. There are various pollutants that hinder cleaning, and among the pollutants, metal impurities particularly deteriorate the electrical characteristics of the semiconductor element. To prevent such deterioration, the semiconductor element is formed. It is necessary to reduce the concentration of metal impurities on the surface of the substrate as much as possible. Therefore, the substrate surface is generally cleaned with a cleaning agent.

【0003】従来、この種の洗浄剤には、水及び酸、ア
ルカリ、酸化剤、界面活性剤等が一般に使用されてい
る。洗浄剤には、優れた洗浄性能と共に、洗浄剤から基
板への金属不純物の逆汚染を防止するため、洗浄剤中の
不純物濃度が極めて低いレベルである事が要求されてい
る。かかる要求を満足するため、半導体用薬品の高純度
化が推進され、精製直後の薬品に含まれる金属不純物濃
度は、現在の分析技術では検出が難しいレベルにまで達
している。
Conventionally, water, acids, alkalis, oxidizing agents, surfactants and the like have been generally used for this type of cleaning agent. The cleaning agent is required to have an extremely low impurity concentration in the cleaning agent in order to prevent reverse contamination of the metal impurities from the cleaning agent to the substrate in addition to excellent cleaning performance. In order to meet such requirements, the purification of chemicals for semiconductors has been promoted, and the concentration of metal impurities contained in the chemicals immediately after purification has reached a level that is difficult to detect by the current analytical techniques.

【0004】このように、洗浄剤については、不純物を
検出が難しいレベルにまで達しているにもかかわらず、
いまだ超清浄な表面が達成されないのは、現在洗浄のた
めに広く採用されている浸漬式洗浄槽においては、基板
から除去された金属不純物が、洗浄剤を汚染することが
避けられないためである。すなわち、表面から一旦脱離
した金属不純物は洗浄剤中に混入し洗浄剤を汚染する。
そして、汚染された洗浄剤から金属不純物が基板に付着
(逆汚染)してしまうためである。そこで、かかる逆付
着を防止する技術が求められていた。
As described above, although the cleaning agent has reached a level at which it is difficult to detect impurities,
The reason why the ultra-clean surface is not achieved yet is that the metal impurities removed from the substrate inevitably contaminate the cleaning agent in the immersion type cleaning bath which is widely used for cleaning at present. . That is, the metal impurities once detached from the surface are mixed in the cleaning agent and contaminate the cleaning agent.
Then, the metal impurities adhere to the substrate (reverse contamination) from the contaminated cleaning agent. Therefore, there has been a demand for a technique for preventing such reverse adhesion.

【0005】この問題を解決するために、表面洗浄剤に
エチレンジアミンテトラ酢酸の様なキレート剤を添加す
る方法(ドイツ公開特許第3822350号公報)、水
溶性有機スルフォン酸を添加する方法(特開平5ー18
2944公報)が提案されているが、これらの有機系添
加剤は、それ自身が基板の汚染源になる等の問題点があ
る。さらに、逆付着防止する技術とはいえ、実際には、
金属不純物が極めて微量(pptレベル)の場合にしか
効果がなく、従って、洗浄剤中の金属不純物を極めて低
い濃度に管理しておく必要があり、そのため、洗浄剤の
製造あるいは使用中における管理を厳密に行わざるを得
ないという問題を有し、また、寿命が短いという問題を
も有している。
In order to solve this problem, a method of adding a chelating agent such as ethylenediaminetetraacetic acid to a surface cleaning agent (German Patent Publication No. 3822350) and a method of adding a water-soluble organic sulfonic acid (Japanese Patent Laid-Open No. 5 (1998) -52035) -18
2944), these organic additives have a problem that they themselves become a source of contamination of the substrate. Furthermore, although it is a technique for preventing reverse adhesion, in reality,
It is effective only when the amount of metal impurities is extremely small (ppt level). Therefore, it is necessary to control the concentration of metal impurities in the cleaning agent to an extremely low level. It has a problem that it must be strictly carried out, and also has a problem that its life is short.

【0006】[0006]

【発明が解決しようとする課題】本発明は洗浄剤から基
体への金属不純物の逆汚染を防止し、かつ、安定的に、
厳密な濃度管理を行わずとも極めて清浄な基体の表面を
得る事のできる基体の表面洗浄方法及び表面洗浄剤を提
供することを目的とするものである。
DISCLOSURE OF THE INVENTION The present invention prevents reverse contamination of metal impurities from a cleaning agent to a substrate, and stably
It is an object of the present invention to provide a method for cleaning the surface of a substrate and a surface cleaning agent which can obtain an extremely clean surface of the substrate without strict concentration control.

【0007】[0007]

【課題を解決するための手段】上記課題を解決するため
の本発明の基体の表面洗浄方法は、水溶液の酸化還元電
位(水素標準電極に対する酸化還元電位、以下同じ)
を、除去しようとする不純物金属の酸化還元電位よりも
高い値に制御して基体表面の洗浄を行うことを特徴とす
る。
A method for cleaning a surface of a substrate according to the present invention for solving the above-mentioned problems is a redox potential of an aqueous solution (a redox potential with respect to a hydrogen standard electrode, the same applies hereinafter).
Is controlled to a value higher than the redox potential of the impurity metal to be removed, and the surface of the substrate is cleaned.

【0008】本発明の基体の表面洗浄剤は、水溶液の酸
化還元電位が0.6V以上であることを特徴とする。
The surface cleaning agent for a substrate of the present invention is characterized in that the redox potential of the aqueous solution is 0.6 V or more.

【0009】[0009]

【作用】以下に、本発明の作用を本発明をなすに際して
得た知見等に基づき説明する。 金属不純物の基体表
面への付着に関しては、付着し易い金属と付着しにくい
金属があることを知見した。かかる知見をてがかりに、
本発明者は、水溶液中における各種金属イオンのシリコ
ン基板への付着機構を研究した。すなわち、一般的に
は、金属不純物の基体表面への付着はファンデルワール
ス力によるものと考えられていたが、本発明者は、別の
付着機構によっているのではないかとの考えに基づき、
付着機構の根本的見直しを行った。付着の要因と考えら
れる事項は数限りなく存在するため(例えば、不純物の
濃度、不純物の重量等)、多大の実験を重ねた結果、付
着発生の有無は、水溶液の酸化還元電位に関係している
こと見いだした。しかし、酸化還元電位が付着発生の有
無に関係していることがわかったとはいえ、洗浄液の酸
化還元電位のみにより支配されるわけではないことも判
明し、そこで、さらに実験を重ね他の要因を探求したと
ころ、除去しようとうる金属不純物の酸化還元電位との
相対的関係で決定されていくことが判明した。
The operation of the present invention will be described below on the basis of the findings and the like obtained in making the present invention. Regarding the adhesion of metal impurities to the surface of the substrate, it has been found that there are metals that easily adhere and metals that hardly adhere. Based on this knowledge,
The present inventor studied the attachment mechanism of various metal ions to a silicon substrate in an aqueous solution. That is, it was generally thought that the adhesion of the metal impurities to the surface of the substrate was due to the Van der Waals force, but the present inventor, based on the idea that it may be due to another adhesion mechanism,
A fundamental review of the adhesion mechanism was performed. Since there are innumerable items that can be considered as factors of adhesion (for example, the concentration of impurities, the weight of impurities, etc.), as a result of extensive experiments, the presence or absence of adhesion is related to the redox potential of the aqueous solution. I found out that However, although it was found that the redox potential was related to the presence or absence of adhesion, it was also found that the redox potential is not governed only by the redox potential of the cleaning liquid, and further experiments were conducted to investigate other factors. Upon exploration, it was found that it is determined by the relative relationship with the redox potential of the metal impurities that are to be removed.

【0010】この点を金属不純物としてCuを例にとり
説明する。水素標準電極(NHE)に対する酸化還元電
位E(V)が高いCuの様な金属イオンMn+は、次式の
反応によってシリコン基板から電子eを受け取るた
め、基板表面に非常に付着し易い事を見いだした。 Mn+ + ne- → M E(V) この様な付着し易い金属不純物の付着防止技術につい
て、さらに研究を重ねた結果、水溶液中の酸化還元電位
が0.6V(vs NHE)以上であるときは、基板へ
の金属不純物付着が起こらず、極めて清浄な基板表面を
得られる事を知得し、本発明を完成した。
This point will be described by taking Cu as an example of a metal impurity. Such metal ions M n + is a Cu redox potential E (V) is high relative to a standard hydrogen electrode (NHE), for receiving the electrons e over a silicon substrate by the following reaction, very attached easily that the surface of the substrate I found it. M n + + ne → ME (V) As a result of further research on the technique for preventing adhesion of such metal impurities that easily adhere, when the oxidation-reduction potential in the aqueous solution is 0.6 V (vs NHE) or more. Has found that an extremely clean substrate surface can be obtained without adhesion of metal impurities to the substrate, and completed the present invention.

【0011】この事実を示す実験結果を図1に示す。図
1から明かな如く、0.6Vを境として、Cuの付着は
激減していることがわかる。なお、図1における実験条
件は、超純水に、オゾン等の酸化剤を適宜添加して超純
水の酸化還元電位を変量させて実験を行ったものであ
る。この超純水には意図的に1ppmのCuCl2を添
加し、強制的に高濃度不純物含有水溶液とした。
Experimental results showing this fact are shown in FIG. As is apparent from FIG. 1, it can be seen that the Cu adhesion is drastically reduced at the boundary of 0.6V. Note that the experimental conditions in FIG. 1 are those in which an oxidizing agent such as ozone was appropriately added to ultrapure water to change the oxidation-reduction potential of ultrapure water. CuCl 2 of 1 ppm was intentionally added to this ultrapure water to forcibly make a high-concentration impurity-containing aqueous solution.

【0012】水溶液の酸化還元電位を0.6V以上にす
ると、基板への金属不純物付着が起こらない理由につい
ては、以下のように推察される。水溶液の酸化還元電位
が金属不純物イオンの酸化還元電位より小さい場合に
は、より大きな酸化還元電位を持つ金属不純物イオンが
優先的に基板から電子を受け取り、上式に従って基板に
付着する。しかし、水溶液の酸化還元電位が0.6V以
上になると、金属不純物イオンの酸化還元電位に対し十
分に大きくなり、水溶液中の酸化剤が優先的に基板から
電子を受け取るため、金属不純物イオンは電子を受け取
れなくなる。すなわち付着できなくなるものと考えられ
る。ここで、代表的金属イオンの標準状態における酸化
還元電位はCu+:0.521、Cu2+:0.337、
Fe3+:−0.036、Fe3+:−0.440、N
2+:−0.250V(vs NHE)で与えられてい
る。
The reason why metal impurities do not adhere to the substrate when the redox potential of the aqueous solution is set to 0.6 V or higher is presumed as follows. When the redox potential of the aqueous solution is smaller than the redox potential of the metal impurity ion, the metal impurity ion having a larger redox potential preferentially receives electrons from the substrate and adheres to the substrate according to the above formula. However, when the redox potential of the aqueous solution becomes 0.6 V or more, the redox potential of the metal impurity ions becomes sufficiently large, and the oxidizer in the aqueous solution preferentially receives the electrons from the substrate, so that the metal impurity ions become the electrons. I will not receive it. That is, it is considered that the particles cannot be attached. Here, the redox potentials of typical metal ions in the standard state are Cu + : 0.521, Cu 2+ : 0.337,
Fe 3+ : -0.036, Fe 3+ : -0.440, N
i 2+ : −0.250 V (vs NHE).

【0013】以上の説明はCuイオンを例にとり説明し
たが、要は、除去しようとする不純物金属の酸化還元電
位よりも水溶液の酸化還元電位を高くすればよく、必要
に応じ適宜水溶液の酸化還元電位を制御すればよいので
ある。なお、半導体素子の特性の劣化には、Cuが大き
く寄与しているため、水溶液の酸化還元電位を0.6V
以上にすれば、半導体素子の特性劣化を大幅に防止する
ことが可能となる。
In the above description, Cu ions were taken as an example, but the point is that the redox potential of the aqueous solution should be higher than the redox potential of the impurity metal to be removed, and the redox potential of the aqueous solution can be adjusted as necessary. It suffices to control the potential. Since Cu greatly contributes to the deterioration of the characteristics of the semiconductor element, the redox potential of the aqueous solution is set to 0.6 V.
With the above, it is possible to significantly prevent the deterioration of the characteristics of the semiconductor element.

【0014】[0014]

【実施態様例】本発明において、水溶液の酸化還元電位
を、金属不純物の酸化還元電位以上(例えば、Cu:
0.6V(vs NHE)以上)にする方法は特に限定
されないが、通常水溶性酸化剤が好適に用いられる。 (水溶性酸化剤)水溶性酸化剤としては、少量で高い効
果が得られる事から、オゾン、硫酸、塩酸、硝酸、硝酸
塩が望ましい。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS In the present invention, the redox potential of an aqueous solution is equal to or higher than the redox potential of a metal impurity (for example, Cu:
The method for adjusting the voltage to 0.6 V (vs NHE) or higher is not particularly limited, but usually a water-soluble oxidizing agent is preferably used. (Water-soluble oxidizing agent) As the water-soluble oxidizing agent, ozone, sulfuric acid, hydrochloric acid, nitric acid, and nitrates are preferable because a high effect can be obtained with a small amount.

【0015】(添加量)オゾンの量としては、表面洗浄
剤全量に対して、好ましくは0.1ppm以上、より好
ましくは1ppm以上である。また、硫酸、塩酸、硝
酸、硝酸塩の量としては、好ましくは3ppm以上、よ
り好ましくは10ppm以上である。これら水溶性酸化
剤の量が、あまりに少ないと水溶液の酸化還元電位を
0.6V(vs NHE)以上に保てなくなり、洗浄剤
から基板への金属不純物の逆汚染を防止できなくなる。
(Amount of addition) The amount of ozone is preferably 0.1 ppm or more, more preferably 1 ppm or more, based on the total amount of the surface cleaning agent. The amount of sulfuric acid, hydrochloric acid, nitric acid, or nitrate is preferably 3 ppm or more, more preferably 10 ppm or more. If the amount of these water-soluble oxidizers is too small, the redox potential of the aqueous solution cannot be maintained at 0.6 V (vs NHE) or higher, and it becomes impossible to prevent reverse contamination of the substrate with metal impurities from the cleaning agent.

【0016】また、水及びフッ化水素酸及びまたはフッ
化アンモニウムからなる混合液に、本発明を適用する事
は極めて有用である。これらの混合液は、シリコン基板
表面の酸化膜除去、最終洗浄の目的で半導体製造工程に
おいて広く用いられている。シリコン基板表面の金属不
純物を酸化膜と共に除去すると同時に、本発明によっ
て、基板への再付着を防止すれば、極めて清浄な基板表
面を効率的に得る事ができる。この場合、水溶性酸化剤
としては、特にオゾン、硫酸、硝酸、硝酸塩が好まし
い。
Further, it is extremely useful to apply the present invention to a mixed liquid containing water and hydrofluoric acid and / or ammonium fluoride. These mixed liquids are widely used in the semiconductor manufacturing process for the purpose of removing the oxide film on the surface of the silicon substrate and final cleaning. If the metal impurities on the surface of the silicon substrate are removed together with the oxide film and at the same time reattachment to the substrate is prevented by the present invention, a very clean substrate surface can be efficiently obtained. In this case, as the water-soluble oxidizing agent, ozone, sulfuric acid, nitric acid, and nitrates are particularly preferable.

【0017】また、本発明の表面洗浄剤の調整に際して
は、基板、被洗浄物の種類に応じてアルカリ、水溶性ア
ルコール、界面活性剤の様な各種の公知添加剤を加えて
も良い。 (水)本発明では、水として、例えば、図2に示す特性
の超純水がが好適に用いられるが、これらに限定される
ものではない。特に、超純水中における金属不純物の含
有量の制御を厳密に行うことを必須としない点は前述し
た通り本発明の一つの利点となっている。
When preparing the surface cleaning agent of the present invention, various known additives such as alkali, water-soluble alcohol, and surfactant may be added depending on the type of the substrate and the object to be cleaned. (Water) In the present invention, for example, ultrapure water having the characteristics shown in FIG. 2 is preferably used, but the water is not limited to these. Particularly, it is one of the advantages of the present invention that the strict control of the content of metal impurities in the ultrapure water is not essential.

【0018】(基体)本発明の表面洗浄剤は、金属、セ
ラミックス、プラスチック、磁性体、超伝導体等の洗浄
に使用されるが、高清浄な基板表面が得られる事から、
半導体基板の洗浄に好適である。半導体の中でも特にシ
リコンに対して顕著な効果を発揮する。
(Substrate) The surface cleaning agent of the present invention is used for cleaning metals, ceramics, plastics, magnetic materials, superconductors and the like, and since a highly clean substrate surface can be obtained,
It is suitable for cleaning semiconductor substrates. Among the semiconductors, it exerts a remarkable effect particularly on silicon.

【0019】[0019]

【実施例】以下、実施例によって本発明を具体的に説明
するが、本発明はその要旨を越えない限り以下の実施例
に限定されるものではない。 (実施例1〜11、比較例1〜4) ・表面洗浄剤の調整 超純水に表1に記載の割合で水溶性酸化剤を添加、混合
して表面洗浄剤を調整した。表面洗浄剤の酸化還元電位
は(株)堀場制作所製 酸化還元電位測定用金属電極
(型式:6861ー10C)を用いて測定した。
EXAMPLES The present invention will be described in detail below with reference to examples, but the present invention is not limited to the following examples as long as the gist thereof is not exceeded. (Examples 1 to 11 and Comparative Examples 1 to 4) Preparation of Surface Cleaning Agent A surface cleaning agent was prepared by adding and mixing a water-soluble oxidizing agent in ultrapure water at a ratio shown in Table 1. The redox potential of the surface cleaning agent was measured using a metal electrode for redox potential measurement (Model: 6861-10C, manufactured by Horiba Ltd.).

【0020】・汚染洗浄液からの金属付着試験 各々の表面洗浄剤に、金属不純物として塩化銅(II)を
Cuイオン濃度が1ppmになるように添加し汚染させ
た。汚染洗浄剤に、シリコン基板[Cz(引上法作製)
N型 100面の単結晶基板]を3分間浸漬後、10
分間の超純水リンスを行い、窒素ガス吹き付けにより乾
燥して、基板表面の金属不純物(銅)汚染量を全反射蛍
光X線分析装置により分析した。
Metal Adhesion Test from Contaminated Cleaning Solution Copper (II) chloride as a metal impurity was added to each surface cleaning agent so that the Cu ion concentration would be 1 ppm and contaminated. Silicone substrate [Cz (prepared by pulling method)
N-type 100-sided single crystal substrate] for 3 minutes and then 10
After rinsing with ultrapure water for 1 minute and drying by blowing nitrogen gas, the amount of metal impurities (copper) contaminated on the substrate surface was analyzed by a total reflection X-ray fluorescence analyzer.

【0021】[0021]

【表1】 上記表1から明かなように、洗浄液の酸化還元電位を
0.6V以上に制御して洗浄を行った実施例では、金属
不純物の付着が激減している。なお、理由は明かではな
いが、本発明は、シリコンの単結晶基板に対し特に有効
であった。 (実施例12〜15、比較例5、6) ・表面洗浄剤の調整 超純水にフッ化水素酸、フッ化アンモニウム及び水溶性
酸化剤を表2に示すように添加、混合して表面洗浄剤を
調整した。表面洗浄剤の酸化還元電位は実施例1と同様
にして測定した。
[Table 1] As can be seen from Table 1 above, in the example in which the cleaning was performed by controlling the oxidation-reduction potential of the cleaning liquid to 0.6 V or higher, the adhesion of metal impurities was drastically reduced. Although the reason is not clear, the present invention was particularly effective for a silicon single crystal substrate. (Examples 12 to 15, Comparative Examples 5 and 6) Adjustment of Surface Cleaning Agent Hydrofluoric acid, ammonium fluoride and water-soluble oxidizing agent were added to ultrapure water as shown in Table 2 and mixed to clean the surface. The agent was adjusted. The redox potential of the surface cleaning agent was measured in the same manner as in Example 1.

【0022】・汚染洗浄液からの金属付着試験 実施例1と同様にして金属付着試験を行った。その結果
も表2に示す。
Metal Adhesion Test from Contaminated Cleaning Solution A metal adhesion test was conducted in the same manner as in Example 1. The results are also shown in Table 2.

【0023】[0023]

【表2】 上記表2から明かなように、洗浄液の酸化還元電位を
0.6V以上に制御して洗浄を行った実施例では、金属
不純物の付着が激減している。
[Table 2] As is clear from Table 2 above, in the examples in which the redox potential of the cleaning liquid was controlled to 0.6 V or higher for cleaning, the adhesion of metal impurities was drastically reduced.

【0024】[0024]

【発明の効果】本発明の表面洗浄剤を使用することによ
り、洗浄剤が金属不純物に汚染された場合でも、金属不
純物が基板に付着する事(逆汚染)を防止できるので、
安定的に、極めて清浄な基板表面を形成することができ
る。
By using the surface cleaning agent of the present invention, even if the cleaning agent is contaminated with metal impurities, it is possible to prevent the metal impurities from adhering to the substrate (reverse contamination).
An extremely clean substrate surface can be stably formed.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の作用を説明するための酸化還元電位と
付着量との関係を示すグラフである。
FIG. 1 is a graph showing a relationship between a redox potential and an attached amount for explaining an operation of the present invention.

【図2】本発明において好適に用いられる水の特性を示
す表である。
FIG. 2 is a table showing characteristics of water preferably used in the present invention.

Claims (13)

【特許請求の範囲】[Claims] 【請求項1】 水溶液の酸化還元電位(水素標準電極に
対する酸化還元電位)。以下同じ)を、除去しようとす
る不純物金属の酸化還元電位よりも高い値に制御して基
体表面の洗浄を行うことを特徴とする基体の表面洗浄方
法。
1. A redox potential of an aqueous solution (a redox potential with respect to a hydrogen standard electrode). The same shall apply hereinafter) is controlled to a value higher than the oxidation-reduction potential of the impurity metal to be removed, and the surface of the substrate is cleaned.
【請求項2】 前記水溶液の酸化還元電位を0.6V以
上とすることを特徴とする請求項1記載の基体の表面洗
浄方法。
2. The method for cleaning the surface of a substrate according to claim 1, wherein the redox potential of the aqueous solution is set to 0.6 V or more.
【請求項3】 前記水溶液は、水に、オゾン、硫酸、塩
酸、硝酸、硝酸塩から選ばれる少なくとも一種の水溶性
酸化剤を配合してなる請求項1又は2に記載の基体の表
面洗浄方法。
3. The method for cleaning the surface of a substrate according to claim 1, wherein the aqueous solution is prepared by mixing water with at least one water-soluble oxidizing agent selected from ozone, sulfuric acid, hydrochloric acid, nitric acid and nitrates.
【請求項4】 前記水溶液は、水及びフッ化水素酸及び
またはフッ化アンモニウムからなる混合液に、オゾン、
硫酸、硝酸、硝酸塩から選ばれる少なくとも一種の水溶
性酸化剤を配合してなる請求項1又は2に記載の基体の
表面洗浄方法。
4. The aqueous solution is a mixture of water and hydrofluoric acid and / or ammonium fluoride, ozone,
The surface cleaning method for a substrate according to claim 1 or 2, wherein at least one water-soluble oxidizing agent selected from sulfuric acid, nitric acid, and nitrates is mixed.
【請求項5】 オゾンの濃度が0.1ppm以上である
ことを特徴とする請求項3又は4に記載の基体の表面洗
浄方法。
5. The method for cleaning the surface of a substrate according to claim 3, wherein the concentration of ozone is 0.1 ppm or more.
【請求項6】 硫酸、塩酸、硝酸、硝酸塩の濃度が3p
pm以上であることを特徴とする請求項3又は4に記載
の基体の表面洗浄方法。
6. The concentration of sulfuric acid, hydrochloric acid, nitric acid and nitrate is 3 p.
The surface cleaning method for a substrate according to claim 3 or 4, wherein the surface cleaning method is pm or more.
【請求項7】 基体表面はシリコンであることを特徴と
する請求項1乃至5のいずれか1項記載の基体の表面洗
浄方法。
7. The method for cleaning the surface of a substrate according to claim 1, wherein the surface of the substrate is silicon.
【請求項8】 水溶液の酸化還元電位が0.6V以上で
あることを特徴とする基体の表面洗浄剤。
8. A substrate surface cleaning agent, wherein the redox potential of the aqueous solution is 0.6 V or more.
【請求項9】 水に、オゾン、硫酸、塩酸、硝酸、硝酸
塩から選ばれる少なくとも一種の水溶性酸化剤を配合し
てなる請求項8に記載の基体の表面洗浄剤
9. The surface cleaning agent for a substrate according to claim 8, wherein at least one water-soluble oxidizing agent selected from ozone, sulfuric acid, hydrochloric acid, nitric acid and nitrate is mixed with water.
【請求項10】 水及びフッ化水素酸及びまたはフッ化
アンモニウムからなる混合液に、オゾン、硫酸、硝酸、
硝酸塩から選ばれる少なくとも一種の水溶性酸化剤を配
合してなる請求項8記載の基体の表面洗浄剤
10. A mixed solution of water, hydrofluoric acid and / or ammonium fluoride is added with ozone, sulfuric acid, nitric acid,
9. The surface cleaning agent for a substrate according to claim 8, which comprises at least one water-soluble oxidizing agent selected from nitrates.
【請求項11】 オゾンの濃度が0.1ppm以上であ
ることを特徴とする請求項9又は10に記載の基体の表
面洗浄剤。
11. The substrate surface cleaning agent according to claim 9, wherein the ozone concentration is 0.1 ppm or more.
【請求項12】 硫酸、塩酸、硝酸、硝酸塩の濃度が3
ppm以上であることを特徴とする請求項9又は10に
記載の基体の表面洗浄剤。
12. The concentration of sulfuric acid, hydrochloric acid, nitric acid, and nitrates is 3
The surface cleaning agent for a substrate according to claim 9 or 10, wherein the surface cleaning agent is at least ppm.
【請求項13】 前記基体の表面はシリコンからなるこ
とを特徴とする請求項8乃至12のいずれか1項記載の
基体の表面洗浄剤。
13. The surface cleaning agent for a substrate according to claim 8, wherein the surface of the substrate is made of silicon.
JP31091093A 1993-12-10 1993-12-10 Substrate surface cleaning method and surface cleaning agent Expired - Lifetime JP3751324B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP31091093A JP3751324B2 (en) 1993-12-10 1993-12-10 Substrate surface cleaning method and surface cleaning agent
PCT/JP1994/002073 WO1995016277A1 (en) 1993-12-10 1994-12-09 Surface cleaning method and surface cleaning agent of substrate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31091093A JP3751324B2 (en) 1993-12-10 1993-12-10 Substrate surface cleaning method and surface cleaning agent

Publications (2)

Publication Number Publication Date
JPH07161672A true JPH07161672A (en) 1995-06-23
JP3751324B2 JP3751324B2 (en) 2006-03-01

Family

ID=18010865

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31091093A Expired - Lifetime JP3751324B2 (en) 1993-12-10 1993-12-10 Substrate surface cleaning method and surface cleaning agent

Country Status (2)

Country Link
JP (1) JP3751324B2 (en)
WO (1) WO1995016277A1 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6129098A (en) * 1997-08-29 2000-10-10 Kabushiki Kaisha Ultraclean Technology Research Institute Apparatus for injecting constant quantitative chemicals and a method thereof
US6348157B1 (en) 1997-06-13 2002-02-19 Tadahiro Ohmi Cleaning method
US6503464B1 (en) 1999-08-12 2003-01-07 Sipec Corporation Ultraviolet processing apparatus and ultraviolet processing method
US6630031B1 (en) * 1999-08-12 2003-10-07 Sipec Corporation Surface purification apparatus and surface purification method
WO2009035089A1 (en) * 2007-09-14 2009-03-19 Sanyo Chemical Industries, Ltd. Cleaning agent for electronic material
US7569135B2 (en) 2002-01-31 2009-08-04 Ebara Corporation Electrolytic processing apparatus and substrate processing apparatus and method
WO2016013239A1 (en) * 2014-07-22 2016-01-28 住友電気工業株式会社 Method for cleaning compound semiconductor and solution for cleaning of compound semiconductor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7107332B2 (en) * 2020-06-02 2022-07-27 栗田工業株式会社 Separation membrane cleaning method

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS60106586A (en) * 1983-11-15 1985-06-12 Asahi Glass Co Ltd Treatment of waste water containing mercury
FR2650303B1 (en) * 1989-07-26 1993-12-10 Ugine Aciers Chatillon Gueugnon PROCESS FOR ACIDIC STRIPPING OF METAL PRODUCTS CONTAINING TITANIUM OR AT LEAST ONE CHEMICAL ELEMENT OF THE TITANIUM FAMILY
JP2776583B2 (en) * 1989-10-03 1998-07-16 日本電気株式会社 Semiconductor substrate processing solution and processing method
JPH03132030A (en) * 1989-10-18 1991-06-05 Fujitsu Ltd Cleaning of silicon wafer
JPH03218629A (en) * 1989-11-22 1991-09-26 Fujitsu Ltd Cleaning of semiconductor substrate
JPH03228328A (en) * 1990-02-02 1991-10-09 Nec Corp Water washing method of semiconductor substrate
JP2841627B2 (en) * 1990-02-02 1998-12-24 日本電気株式会社 Semiconductor wafer cleaning method

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6348157B1 (en) 1997-06-13 2002-02-19 Tadahiro Ohmi Cleaning method
US6129098A (en) * 1997-08-29 2000-10-10 Kabushiki Kaisha Ultraclean Technology Research Institute Apparatus for injecting constant quantitative chemicals and a method thereof
US6503464B1 (en) 1999-08-12 2003-01-07 Sipec Corporation Ultraviolet processing apparatus and ultraviolet processing method
US6533902B1 (en) 1999-08-12 2003-03-18 Sipec Corporation Ultraviolet processing apparatus and ultraviolet processing method
US6630031B1 (en) * 1999-08-12 2003-10-07 Sipec Corporation Surface purification apparatus and surface purification method
US7569135B2 (en) 2002-01-31 2009-08-04 Ebara Corporation Electrolytic processing apparatus and substrate processing apparatus and method
WO2009035089A1 (en) * 2007-09-14 2009-03-19 Sanyo Chemical Industries, Ltd. Cleaning agent for electronic material
WO2016013239A1 (en) * 2014-07-22 2016-01-28 住友電気工業株式会社 Method for cleaning compound semiconductor and solution for cleaning of compound semiconductor
JPWO2016013239A1 (en) * 2014-07-22 2017-07-13 住友電気工業株式会社 Method for cleaning compound semiconductor, solution for cleaning compound semiconductor
EP3174087A4 (en) * 2014-07-22 2018-03-14 Sumitomo Electric Industries, Ltd. Method for cleaning compound semiconductor and solution for cleaning of compound semiconductor
US10043654B2 (en) 2014-07-22 2018-08-07 Sumitomo Electric Industries, Ltd. Method for rinsing compound semiconductor, solution for rinsing compound semiconductor containing gallium as constituent element, method for fabricating compound semiconductor device, method for fabricating gallium nitride substrate, and gallium nitride substrate

Also Published As

Publication number Publication date
WO1995016277A1 (en) 1995-06-15
JP3751324B2 (en) 2006-03-01

Similar Documents

Publication Publication Date Title
KR100340274B1 (en) Cleaning Method of Semiconductor Substrate
JP2857042B2 (en) Cleaning liquid for silicon semiconductor and silicon oxide
JP3075290B2 (en) Cleaning liquid for semiconductor substrates
JP2586304B2 (en) Semiconductor substrate cleaning solution and cleaning method
KR100437429B1 (en) Cleaning water for electronic material and cleaning method of electronic material
JPH07161672A (en) Substrate surface cleaning method and surface cleaning agent
KR0157251B1 (en) Cleaning method of semiconductor substrate
EP1567633B1 (en) Semiconductor surface treatment and mixture used therein
JP3325739B2 (en) Silicon wafer cleaning method
JP3689871B2 (en) Alkaline cleaning solution for semiconductor substrates
JP3887846B2 (en) High-purity ethylenediaminedioltohydroxyphenylacetic acid and surface treatment composition using the same
JPH03208900A (en) Washing method for silicon wafer
JPH03208899A (en) Washing method for silicon wafer
JP3198878B2 (en) Surface treatment composition and substrate surface treatment method using the same
JPH07142436A (en) Cleaning liquid and cleaning method for silicon wafer
JP3503326B2 (en) Semiconductor surface treatment solution
JPH0750281A (en) Cleaning method for silicon wafer
JP2749938B2 (en) Cleaning method for semiconductor wafer
JPH06163496A (en) Liquid for cleaning silicon wafer, and cleaning method
KR100370695B1 (en) Silicon Wafer Cleaning Liquid and Silicon Wafer Cleaning Method
JPH07321080A (en) Method for cleaning silicon wafer
KR970000699B1 (en) Cleaning method of substrate surface using reaction rate-control
JPH08306650A (en) Cleaning method of substrate and alkaline cleaning composition using for the method
JPH09283480A (en) Washing method of semiconductor substrate
KR100235944B1 (en) Cleaning method for semiconductor device

Legal Events

Date Code Title Description
A61 First payment of annual fees (during grant procedure)

Effective date: 20051207

Free format text: JAPANESE INTERMEDIATE CODE: A61

R150 Certificate of patent (=grant) or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091216

Year of fee payment: 4

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101216

R360 Written notification for declining of transfer of rights

Free format text: JAPANESE INTERMEDIATE CODE: R360

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 5

Free format text: PAYMENT UNTIL: 20101216

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313117

Free format text: JAPANESE INTERMEDIATE CODE: R313113

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101216

Year of fee payment: 5

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111216

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 6

Free format text: PAYMENT UNTIL: 20111216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121216

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 7

Free format text: PAYMENT UNTIL: 20121216

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121216

Year of fee payment: 7

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (prs date is renewal date of database)

Year of fee payment: 8

Free format text: PAYMENT UNTIL: 20131216

EXPY Cancellation because of completion of term