JPH07161380A - Solid electrolyte for sodium-sulfur battery and manufacture of sodium-sulfur battery using the solid electrolyte - Google Patents

Solid electrolyte for sodium-sulfur battery and manufacture of sodium-sulfur battery using the solid electrolyte

Info

Publication number
JPH07161380A
JPH07161380A JP5310029A JP31002993A JPH07161380A JP H07161380 A JPH07161380 A JP H07161380A JP 5310029 A JP5310029 A JP 5310029A JP 31002993 A JP31002993 A JP 31002993A JP H07161380 A JPH07161380 A JP H07161380A
Authority
JP
Japan
Prior art keywords
alumina
solid electrolyte
sodium
beta
powder
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5310029A
Other languages
Japanese (ja)
Other versions
JP3054795B2 (en
Inventor
Tetsuo Nakazawa
哲夫 中澤
Kazushige Kono
一重 河野
Hideo Okada
秀夫 岡田
Masaaki Oshima
正明 大島
Tadashi Maruyama
正 丸山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Tokyo Electric Power Company Holdings Inc
Original Assignee
Tokyo Electric Power Co Inc
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Electric Power Co Inc, Hitachi Ltd filed Critical Tokyo Electric Power Co Inc
Priority to JP5310029A priority Critical patent/JP3054795B2/en
Publication of JPH07161380A publication Critical patent/JPH07161380A/en
Application granted granted Critical
Publication of JP3054795B2 publication Critical patent/JP3054795B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)

Abstract

PURPOSE:To suppress the deterioration of beta-alumina-based ceramics due to humidity absorption by coating the beta-alumina-based ceramics with a water repelling material, granulating the ceramics to have prescribed particle size, and then firing the resulting ceramics. CONSTITUTION:A synthetic powder of beta''-alumina, a beta-alumina-based ceramic consisting of beta-alumina, or a ceramic containing both ceramics is coated with a water repelling material. The resulting powder is granulated into 30-100mum particle size and the granulated powder is molded and then sintered. As a result, at the time of production of solid electrolytes, deterioration and size alteration due to humidity absorption before sintering and damage and crack formation attributed to them at the time of sintering are suppressed and formability is improved. a sodium-sulfur battery having the solid electrolyte prepared in that way surely has high reliability. Furthermore, since coating with the water repelling material is done, materials containing water as a main component may be selected as a binder and a solvent at the time of granulation and thus there is a wide option to select binders and solvents.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明はβ″−アルミナ、β−ア
ルミナからなるベータアルミナ系セラミックス又は両者
を含むセラミックスの造粒粉を用いたナトリウム−硫黄
電池用固体電解質及びそれを用いたナトリウム−硫黄電
池に関する。
FIELD OF THE INVENTION The present invention relates to a solid electrolyte for sodium-sulfur batteries using β ″ -alumina, β-alumina ceramics composed of β-alumina, or a granulated powder of ceramics containing both, and sodium using the same. Regarding sulfur batteries.

【0002】[0002]

【従来の技術】ベータアルミナは酸化アルミニウムと酸
化ナトリウムの化合物で、その組成比及びリチア等の少
量の添加物の有無によって、結晶形態の異なるβ−アル
ミナ,β″−アルミナ等の数種類の化合物が知られてい
る。本発明で言及するベータアルミナとはこれらの化合
物、及びこれらの混合物の総称であり、またベータアル
ミナ系固体電解質とは、ベータアルミナを主相とした焼
結体、またはこれに結晶層の安定化を確保する1成分あ
るいはそれ以上の化合物を分散せしめた焼結体を意味す
る。ベータアルミナ系固体電解質は良好なイオン伝導性
を有し、伝導イオン種としてはナトリウムが最も一般的
であるが、その他の1価または2価の陽イオンも伝導可
能である。これらベータアルミナ系固体電解質は、近
年、電力貯蔵や電気自動車バッテリへの応用が期待され
ているナトリウム−硫黄電池等の高エネルギ密度の二次
電池の固体電解質への適用が行われている。
2. Description of the Related Art Beta-alumina is a compound of aluminum oxide and sodium oxide. Depending on the composition ratio and the presence or absence of a small amount of additives such as lithia, there are several kinds of compounds such as β-alumina and β ″ -alumina having different crystal forms. The beta-alumina referred to in the present invention is a general term for these compounds and their mixtures, and the beta-alumina-based solid electrolyte is a sintered body containing beta-alumina as a main phase, or It means a sintered body in which one or more compounds that secure the stability of the crystal layer are dispersed.Beta-alumina solid electrolyte has good ionic conductivity, and sodium is the most common conductive ionic species. However, other monovalent or divalent cations can also be conducted. It has been applied to a solid electrolyte of a high energy density secondary battery such as a sodium-sulfur battery, which is expected to be applied to a moving battery.

【0003】しかし、ナトリウム−硫黄電池の固体電解
質に用いられるβ″−アルミナおよび/またはβ−アル
ミナからなるベータアルミナ系セラミックス粉は吸湿性
が強く、製造工程中に水分を吸着し、その成形体は寸法
変化を起こして場合によっては亀裂を発生したり破損す
ることもある。特に焼結前の造粒粉あるいは成形体の吸
湿による劣化は顕著で、大きな問題となっている。
However, beta-alumina-based ceramic powder composed of β ″ -alumina and / or β-alumina used for a solid electrolyte of a sodium-sulfur battery has a strong hygroscopic property and adsorbs water during the manufacturing process to form a molded product thereof. In some cases, the dimensional change causes cracks or breakage in some cases, and in particular, deterioration of granulated powder or compact before sintering due to moisture absorption is remarkable, which is a serious problem.

【0004】亀裂は劣化が顕著な場合には目視で確認で
きるが、焼結してから検出されるものもあり、前記固体
電解質の製造コストはもちろんのこと、その信頼性にお
いても大きな問題とされていた。
Although cracks can be visually confirmed when deterioration is remarkable, some cracks are detected after sintering, which is a serious problem not only in the manufacturing cost of the solid electrolyte but also in its reliability. Was there.

【0005】ベータアルミナ系セラミックスの吸湿によ
る劣化は、アルミナや窒化珪素等のセラミックスの吸湿
による劣化とは比較にならないほど大きい。
Deterioration of beta-alumina ceramics due to moisture absorption is incomparably larger than that of ceramics such as alumina and silicon nitride due to moisture absorption.

【0006】この問題点を避けるために、特公昭57−15
063 号公報では、吸湿の影響を小さくするため、仮焼,
焼結,焼鈍を行う技術が開示されている。また、特開平
2−14872 号公報では、ベータアルミナ系セラミックス
の原料、中間生成物を不活性ガスで封入して保存する技
術が開示されている。また、一般窯業では、特開平3−1
03374号公報において、0.6−4mm の粗大な造粒粉に
対して吸湿防止材をコーテイングする技術が開示されて
いる。
In order to avoid this problem, Japanese Patent Publication No. 57-15
In the 063 publication, in order to reduce the effect of moisture absorption, calcination,
Techniques for sintering and annealing are disclosed. In addition,
Japanese Unexamined Patent Publication No. 2-14872 discloses a technique in which a raw material of beta-alumina ceramics and an intermediate product are filled with an inert gas and stored. In addition, in general ceramic industry,
In Japanese Patent No. 03374, there is disclosed a technique of coating a moisture absorption preventing material on coarse granulated powder of 0.6-4 mm.

【0007】[0007]

【発明が解決しようとする課題】特公昭57−15063 号公
報或いは特開平2−14872号公報では、不活性ガスで封入
して保存したベータアルミナ系セラミックスであって
も、特に焼結前の造粒粉、あるいは成形体の吸湿による
劣化は顕著であるため、製造工程中に水分を吸着し、寸
法変化を起こしたり、亀裂を発生させることがある。こ
れは、特に高温多湿の季節において厳しい問題点とな
る。
According to Japanese Patent Publication No. 57-15063 or Japanese Patent Laid-Open No. 2-14872, even if a beta-alumina-based ceramic which is filled with an inert gas and preserved is used, the structure before sintering is particularly required. Since the deterioration of the granular powder or the molded product due to moisture absorption is remarkable, water may be adsorbed during the manufacturing process to cause dimensional changes or cracks. This is a serious problem especially in hot and humid seasons.

【0008】また、特開平3−103374号公報に記載の方
法は、0.6−4mmという粗大な造粒粉に対しては有効
に作用するが、ナトリウム−硫黄電池用固体電解質管の
製作に適用できる微細な造粒粉の製造に対しては、コー
テイング時に造粒粉の破損,凝集等が発生してしまい、
技術的に利用することが不可能である。
The method described in Japanese Patent Laid-Open No. 3-103374 works effectively for a coarse granulated powder of 0.6-4 mm, but it is useful for producing a solid electrolyte tube for sodium-sulfur batteries. For the production of applicable fine granulated powder, the granulated powder may be damaged or agglomerated during coating,
It is technically impossible to use.

【0009】本発明の目的は、吸湿による劣化が顕著で
ある焼結前の造粒粉、あるいは成形体の上述した問題点
を解決し、吸湿による劣化を抑制できるベータアルミナ
系セラミックス造粒粉を用いたナトリウム−硫黄電池用
固体電解質,ナトリウム−硫黄電池を提供することにあ
る。
An object of the present invention is to provide a granulated powder before sintering, which is significantly deteriorated by moisture absorption, or a beta-alumina-based ceramic granulated powder which can solve the above-mentioned problems of a molded body and suppress deterioration by moisture absorption. It is intended to provide a solid electrolyte for a sodium-sulfur battery used and a sodium-sulfur battery.

【0010】[0010]

【課題を解決するための手段】本発明は前記課題を解決
するために、β″−アルミナ、β−アルミナからなるベ
ータアルミナ系セラミックス又は両者を含むセラミック
スの合成粉に撥水性物質をコーテイングし、次いで粒径
30−100μmの大きさに造粒し、該造粒粉を成形し
た後、焼成することを特徴とする。
In order to solve the above-mentioned problems, the present invention coats a synthetic powder of β ″ -alumina, β-alumina-based ceramics composed of β-alumina or ceramics containing both with a water-repellent substance, Next, it is characterized in that the granulated powder is granulated to a size of 30-100 μm, the granulated powder is molded, and then fired.

【0011】又、ベータアルミナ系セラミックス造粒粉
が平均粒径が30−100μmであり、撥水性物質をコ
ーテイングしたβ″−アルミナ、β−アルミナからなる
ベータアルミナ系セラミックス又は両者を含むセラミッ
クスの合成粉の集合体からなっており、該造粒粉を用い
て成形して焼成し、ナトリウム−硫黄電池用固体電解質
を製造し、また、該固体電解質を用いてナトリウム−硫
黄電池を作製することを特徴とする。
Further, the beta-alumina-based ceramic granulated powder has an average particle size of 30 to 100 μm and is synthesized with β ″ -alumina coated with a water-repellent substance, β-alumina-based ceramics composed of β-alumina, or a ceramic containing both. It is composed of an aggregate of powder, and molded and fired using the granulated powder to produce a solid electrolyte for sodium-sulfur battery, and also to produce a sodium-sulfur battery using the solid electrolyte. Characterize.

【0012】撥水性物質は水との接触角80度以上の材
料を用いることが望ましい。例えば、パラフィン系化合
物でC数が5以上のものや、油脂類である。油脂類はパ
ルミチン酸,ステアリン酸,オレイン酸,リノ−ル酸,
リノレイン酸,イワシ酸のうち1種以上よりなることが
好ましい。又、前記撥水性物質を前記合成粉に機械的に
(ボールミル等を用いて)混合・コーティングすること
ができる。この際、撥水性物質を溶解する溶媒と共に用
いなくても、混合・コーティングができる。
As the water-repellent substance, it is desirable to use a material having a contact angle with water of 80 degrees or more. For example, paraffinic compounds having a C number of 5 or more, and fats and oils. Oils and fats include palmitic acid, stearic acid, oleic acid, linoleic acid,
It is preferable to be composed of at least one of linoleic acid and sardine acid. Further, the water-repellent substance can be mechanically mixed (using a ball mill or the like) and coated on the synthetic powder. At this time, mixing / coating can be performed without using together with a solvent that dissolves the water-repellent substance.

【0013】撥水性物質をコーテイングした前記合成粉
に溶媒及び結合剤を添加して混合し、スラリーを調製し
て造粒粉を製造する際、溶媒としては例えば水又は有機
溶媒或いは水と有機溶媒の混合溶媒が適用できる。前記
有機溶媒としては、前記コーティングした撥水性物質を
溶解し難いもの、できれば溶解しないものを用いること
が好ましい。結合剤についても同様である。結合剤とし
ては、例えばポリビニルブチラール,ポリビニルアセタ
ール,ポリビニルアルコール,カルボキシルメチルセル
ロース,ポリエチレンオキシド,ヒドロキシメチルセル
ロース,ポリエチレンオキサイド等の一種以上よりなる
結合剤が適用できる。また、必要に応じてグリセリン,
エチレングリコール,フタル酸エステル他の一種以上か
らなる可塑剤を添加することもできる。
When a solvent and a binder are added to and mixed with the synthetic powder coated with a water-repellent substance to prepare a slurry to produce granulated powder, the solvent is, for example, water or an organic solvent or water and an organic solvent. The mixed solvent of can be applied. As the organic solvent, it is preferable to use one that is difficult to dissolve the coated water-repellent substance, and preferably one that does not dissolve it. The same applies to the binder. As the binder, for example, a binder made of one or more of polyvinyl butyral, polyvinyl acetal, polyvinyl alcohol, carboxymethyl cellulose, polyethylene oxide, hydroxymethyl cellulose, polyethylene oxide and the like can be applied. Also, if necessary, glycerin,
It is also possible to add a plasticizer composed of one or more of ethylene glycol, phthalic acid ester and the like.

【0014】例えば、前記造粒粉は、最大粒径が200
μm以下で、平均粒径が約30〜100μm程度のもの
を用いることができる。
For example, the granulated powder has a maximum particle size of 200.
Those having an average particle size of about 30 to 100 μm can be used.

【0015】本発明で言及するナトリウム−硫黄電池と
は、ナトリウム−硫黄電池の他に、陽極活物質として遷
移金属塩やアルミニウム塩を用いた、いわゆるNa/X
と呼ばれる電池、硫黄にアルミニウム塩,セレン塩,テ
ルル塩を加えたもの、及びナトリウムの代わりに他のア
ルカリ金属,アルカリ土類金属を用いたものを含む。ナ
トリウム−硫黄電池の場合、陽極及び陰極活物質は共に
電池作動温度において液体であり、以下の可逆反応によ
り充放電が行われる。
The sodium-sulfur battery referred to in the present invention means, in addition to the sodium-sulfur battery, so-called Na / X which uses a transition metal salt or an aluminum salt as an anode active material.
Batteries, which include aluminum salt, selenium salt, and tellurium salt added to sulfur, and those which use other alkali metal or alkaline earth metal instead of sodium. In the case of a sodium-sulfur battery, both the anode and cathode active materials are liquid at the battery operating temperature, and charge / discharge is performed by the following reversible reaction.

【0016】[0016]

【化1】 [Chemical 1]

【0017】[0017]

【化2】 [Chemical 2]

【0018】ここで3≦x≦5の範囲の値である。Here, the value is in the range of 3 ≦ x ≦ 5.

【0019】ナトリウム−硫黄電池の構造の一例を図3
に示す。
An example of the structure of a sodium-sulfur battery is shown in FIG.
Shown in.

【0020】このナトリウム−硫黄電池は、陽極活物質
である硫黄と集電材である陽極3と、陽極を収容する陽
極容器6と、金属ナトリウムからなる陰極2と、陰極を
収容する陰極容器5と、陽極容器6と陰極容器5とを絶
縁する絶縁材4と、電池内部で陽極3と陰極2を隔てる
固体電解質管1からなる。
This sodium-sulfur battery has sulfur as an anode active material, an anode 3 as a current collector, an anode container 6 for containing the anode, a cathode 2 made of metallic sodium, and a cathode container 5 for containing the cathode. An insulating material 4 that insulates the anode container 6 and the cathode container 5 from each other, and a solid electrolyte tube 1 that separates the anode 3 and the cathode 2 inside the battery.

【0021】前記合成粉は、α−アルミナ粉末,炭酸ナ
トリウム粉末,炭酸リチウム粉末等の原料を焼成して焼
成体を作成し、その焼成体を粉砕して得ることができ
る。
The synthetic powder can be obtained by firing a raw material such as α-alumina powder, sodium carbonate powder and lithium carbonate powder to prepare a fired body, and pulverizing the fired body.

【0022】[0022]

【作用】本発明により、β″−アルミナ、β−アルミナ
からなるベータアルミナ系セラミックス又は両者を含む
セラミックスの合成粉や該合成粉からなる造粒粉を成形
後焼結して固体電解質を製造する際、焼結前の吸湿によ
る劣化,寸法の変化やこれに起因する焼結の際の破損,
亀裂の発生等を効果的に抑制することができ、成形性を
向上させることができる。また、焼成工程での破損の発
生を抑制でき、良好なナトリウム−硫黄電池用固体電解
質を製造できる。
According to the present invention, β ″ -alumina, β-alumina-based ceramics composed of β-alumina, or synthetic powder of ceramics containing both, or granulated powder composed of the synthetic powder is molded and sintered to produce a solid electrolyte. In this case, deterioration due to moisture absorption before sintering, dimensional change and damage caused by sintering,
It is possible to effectively suppress the occurrence of cracks and improve the formability. Further, it is possible to suppress the occurrence of damage in the firing step, and it is possible to manufacture a good solid electrolyte for sodium-sulfur batteries.

【0023】また、前記固体電解質を組み込んだナトリ
ウム−硫黄電池は、高い信頼性を確保できる。又、本発
明では、撥水性物質をコーティングした合成粉を用いて
造粒粉を製造するので、造粒の際のバインダや溶媒とし
て、水を主成分とするものを選択してもよく、選択の幅
が大きく広がる。
Further, the sodium-sulfur battery incorporating the solid electrolyte can secure high reliability. Further, in the present invention, since the granulated powder is produced using the synthetic powder coated with the water-repellent substance, it is possible to select a binder or solvent containing water as the main component at the time of granulation. The width of the

【0024】[0024]

【実施例】【Example】

(実施例1)α−アルミナ粉末,炭酸ナトリウム粉末,
炭酸リチウム粉末を、酸化物換算重量比でそれぞれ9
0.6%,8.7%,0.7% になるように所定量秤量、
混合し1200℃で3時間焼成してβ″−アルミナ仮焼
体を得た。この仮焼体を振動ボールミルで1時間粉砕し
てβ″−アルミナの合成粉を得る。この際、仮焼体100
重量部に対してステアリン酸を3重量部添加した。添加
したステアリン酸は、仮焼体の振動ボールミルによる粉
砕時に前記合成粉末に均一にコーテイングされた。前記
合成粉の平均粒径は約0.7μm 程度であった。次にこ
の合成粉末に、バインダとしてPVB(ポリビニルブチ
ラール)の1−ブタノール溶液を混合しスプレードライ
ヤを用いて造粒粉を得た。造粒粉の平均粒径は53μm
だった。
(Example 1) α-alumina powder, sodium carbonate powder,
Lithium carbonate powder was added in an oxide conversion weight ratio of 9 each.
Weigh a predetermined amount so that it becomes 0.6%, 8.7%, 0.7%,
The mixture was mixed and calcined at 1200 ° C. for 3 hours to obtain a β ″ -alumina calcined body. The calcined body was crushed for 1 hour by a vibrating ball mill to obtain a β ″ -alumina synthetic powder. At this time, the calcined body 100
3 parts by weight of stearic acid was added to parts by weight. The added stearic acid was uniformly coated on the synthetic powder when the calcined body was pulverized by a vibrating ball mill. The average particle size of the synthetic powder was about 0.7 μm. Next, a 1-butanol solution of PVB (polyvinyl butyral) was mixed as a binder with this synthetic powder, and a granulated powder was obtained using a spray dryer. The average particle size of the granulated powder is 53 μm
was.

【0025】比較のために粉砕時にステアリン酸添加の
ない合成粉末も製造し、同様に造粒した。
For comparison, a synthetic powder without addition of stearic acid at the time of crushing was also produced and granulated in the same manner.

【0026】両者の造粒粉を温度25度、相対湿度65
%の環境に置いて吸湿による重量変化を比較した。図1
に示すように、本発明の造粒粉の吸湿量は上記の環境に
2時間放置した時点で比較例の約1/5であり、顕著に
ベータアルミナ系固体電解質の吸湿劣化を抑制させる効
果があることが認められた。
Both of the granulated powders were heated to a temperature of 25 ° C. and a relative humidity of 65.
%, And the change in weight due to moisture absorption was compared. Figure 1
As shown in FIG. 5, the moisture absorption amount of the granulated powder of the present invention is about ⅕ of that of the comparative example when left in the above environment for 2 hours, and it has a remarkable effect of suppressing the moisture absorption deterioration of the beta-alumina solid electrolyte. It was confirmed that there was.

【0027】(実施例2)実施例1と同じβ″−アルミ
ナ仮焼体の粉砕時に、ステアリン酸に代えてパルミチン
酸,オレイン酸,リノール酸,リノレイン酸,イワシ酸
を添加して、実施例1と同様の方法で造粒粉を製造して
吸湿量を比較した。その結果、いずれも上記の撥水性物
質の添加のないものと比べて1/4〜1/5の吸湿量で
あることが認められた。
(Example 2) When the same β "-alumina calcined body as in Example 1 was pulverized, palmitic acid, oleic acid, linoleic acid, linoleic acid and sardine acid were added instead of stearic acid. The granulated powder was produced in the same manner as in No. 1, and the amount of moisture absorption was compared, and as a result, the amount of moisture absorption was 1/4 to 1/5 as compared with that without addition of the water-repellent substance. Was recognized.

【0028】(実施例3)実施例1と同じβ″−アルミ
ナ仮焼体の粉砕時に、ステアリン酸に代えて比重約0.
9 、融点65度のパラフィンを添加して、実施例と同
様の方法で平均粒径が76μmの造粒粉を製造して吸湿
量を比較した。その結果、上記の撥水性物質の添加のな
いものと比べて1/6の吸湿量であることが認められ
た。
(Example 3) At the time of pulverizing the same β "-alumina calcined body as in Example 1, the specific gravity was changed to about 0.1 instead of stearic acid.
9. Paraffin having a melting point of 65 degrees was added, and a granulated powder having an average particle size of 76 μm was produced in the same manner as in the example, and the moisture absorption amounts were compared. As a result, it was confirmed that the moisture absorption amount was ⅙ of that of the case without the above water-repellent substance.

【0029】(実施例4)実施例2で粉砕して製造した
合成粉末にバインダとしてPVA(ポリビニルアルコー
ル)の水溶液を混合しスプレードライヤを用いて平均粒
径が35μmの造粒粉を得た。
Example 4 The synthetic powder produced by pulverization in Example 2 was mixed with an aqueous solution of PVA (polyvinyl alcohol) as a binder and a spray dryer was used to obtain granulated powder having an average particle size of 35 μm.

【0030】比較のために粉砕時に撥水性物質の添加の
ない合成粉末も製造し、同様に造粒した。
For comparison, a synthetic powder having no water-repellent substance added at the time of pulverization was also produced and granulated in the same manner.

【0031】両者の造粒粉を温度25度,相対湿度65
%の環境に置いて吸湿による重量変化を比較した。本発
明の造粒粉の吸湿量は実施例1で設定したと同じ環境に
2時間放置した時点で比較例の約1/5〜1/6であ
り、顕著にベータアルミナ系固体電解質の吸湿劣化を抑
制させる効果があることが認められた。また、この時、
撥水性物質の添加のない粉末を使用したものは、造粒前
にPVA(ポリビニルアルコール)の水溶液を混合して
スラリーを調製するとスラリーの粘度が顕著に高くなっ
てしまい、その安定性が低下した。しかし、撥水性物質
を添加した本発明の合成粉末ではスラリーの粘度の経時
変化がなく、安定で品質の一定した造粒粉が得られた。
Both of the granulated powders were heated at a temperature of 25 ° C. and a relative humidity of 65.
%, And the change in weight due to moisture absorption was compared. The moisture absorption amount of the granulated powder of the present invention is about 1/5 to 1/6 of that of the comparative example when left for 2 hours in the same environment as set in Example 1, and the moisture absorption deterioration of the beta-alumina solid electrolyte is remarkable. It was confirmed that there is an effect of suppressing. Also at this time,
In the case of using the powder without addition of the water-repellent substance, when the slurry was prepared by mixing the aqueous solution of PVA (polyvinyl alcohol) before granulation, the viscosity of the slurry was remarkably increased, and the stability was lowered. . However, with the synthetic powder of the present invention to which the water repellent substance was added, the viscosity of the slurry did not change with time, and a stable and consistent granulated powder was obtained.

【0032】(実施例5)実施例1および実施例4で製
造した造粒粉を使用して、200MPaの圧力を用いて
冷間静水圧プレス(CIP)を行い、外径18.5mm ,
厚さ2mm,長さ270mmの袋管状のβ″−アルミナ成形
体を得た。この成形体を温度25度,相対湿度65%の
環境に置いて吸湿による成形体の径方向の寸法変化を比
較した。図2に示すように本発明の造粒粉を使用した成
形体は吸湿による膨張量が、比較例の約1/5〜1/6
であり、顕著にベータアルミナ系固体電解質の吸湿劣化
を抑制させる効果があることが認められた。
(Example 5) Using the granulated powders produced in Examples 1 and 4, cold isostatic pressing (CIP) was carried out at a pressure of 200 MPa to obtain an outer diameter of 18.5 mm,
A tubular tubular β ″ -alumina molded product having a thickness of 2 mm and a length of 270 mm was obtained. The molded product was placed in an environment of a temperature of 25 ° C. and a relative humidity of 65% to compare the dimensional change in the radial direction of the molded product due to moisture absorption. As shown in Fig. 2, the molded product using the granulated powder of the present invention has an expansion amount due to moisture absorption of about 1/5 to 1/6 that of the comparative example.
Therefore, it was confirmed that the effect of significantly suppressing the moisture absorption deterioration of the beta-alumina-based solid electrolyte is suppressed.

【0033】(実施例6)実施例5で成形した2種類の
造粒粉からなる袋管状のβ″−アルミナ成形体を脱バイ
ンダした後、1600℃で10分間焼結した。引き続い
て1400℃で3時間焼なましして、各種類15本ずつ
で合計30本のβ″−アルミナ袋管焼結体を得た。ま
た、比較のために粉砕時に撥水性物質の添加のない試料
のβ″−アルミナ袋管焼結体も15本製作した。その結
果、本発明の前記2種類の造粒粉からなる合計30本の
β″−アルミナ袋管焼結体は全数合格品であった。一
方、比較試料では、15本製作した中で2本に亀裂欠陥
が発生していた。
Example 6 A bag-shaped β ″ -alumina molded body formed of two kinds of granulated powder molded in Example 5 was debindered and then sintered at 1600 ° C. for 10 minutes. Annealing was performed for 3 hours to obtain a total of 30 β ″ -alumina bag tube sintered bodies of 15 kinds of each kind. For comparison, fifteen β ″ -alumina bag tube sintered compacts, which were samples to which no water-repellent substance was added at the time of pulverization, were also manufactured. All of the β ″ -alumina bag tube sintered products of No. 1 were acceptable products. On the other hand, in the comparative sample, crack defects were generated in 2 of 15 manufactured samples.

【0034】(実施例7)実施例6で製作した本発明及
び比較試料のβ″−アルミナ袋管焼結体のうち各5本に
ついて内圧破壊強度を測定した。その結果、本発明の実
施例1に基づいて製作したβ″−アルミナ袋管焼結体の
強度の平均値は141MPa、本発明の実施例4に基づいて製
作したβ″−アルミナ袋管焼結体の強度の平均値は139M
Paであった。一方、比較試料のβ″−アルミナ袋管焼結
体の強度の平均値は129MPaであり、本発明のβ″−アル
ミナ袋管焼結体の強度の方が比較試料より優れていた。
また、それぞれの試料についてNa/Naセルによって
β″−アルミナ袋管焼結体の径方向の抵抗率を測定した
ところ、350℃においてどの試料も2.8Ω・cm であ
り、ナトリウム−硫黄電池の固体電解質として用いるの
に適した値であった。
(Embodiment 7) The internal pressure fracture strength was measured for each of the β ″ -alumina bag tube sintered bodies of the present invention and the comparative sample manufactured in Example 6, and the results were evaluated. The average value of the strength of the β ″ -alumina bag tube sintered body manufactured according to Example 1 was 141 MPa, and the average value of the strength of the β ″ -alumina bag tube sintered body manufactured according to Example 4 of the present invention was 139M.
It was Pa. On the other hand, the average strength of the β ″ -alumina bag tube sintered body of the comparative sample was 129 MPa, and the strength of the β ″ -alumina bag tube sintered body of the present invention was superior to the comparative sample.
Also, when the radial resistivity of the β ″ -alumina bag tube sintered body was measured by Na / Na cell for each sample, all samples were 2.8 Ω · cm at 350 ° C. The value was suitable for use as a solid electrolyte.

【0035】[0035]

【発明の効果】本発明により、ナトリウム−硫黄電池用
固体電解質を製造する際、粉末および成形体の吸湿に伴
う劣化、成形体の変形や亀裂の発生等の抑制ができ、焼
成工程での破損の発生も低減できる。また、高い信頼性
を有するナトリウム−硫黄電池を製作できる。
According to the present invention, when a solid electrolyte for a sodium-sulfur battery is manufactured, it is possible to suppress deterioration of powder and a molded body due to moisture absorption, deformation of the molded body, generation of cracks, etc., and damage in the firing step. Occurrence of can be reduced. Also, a highly reliable sodium-sulfur battery can be manufactured.

【図面の簡単な説明】[Brief description of drawings]

【図1】ベータアルミナ系造粒粉の吸湿量の時間変化
図。
FIG. 1 is a time change diagram of a moisture absorption amount of beta-alumina-based granulated powder.

【図2】成形体の吸湿に伴う寸法変化図。FIG. 2 is a dimensional change diagram associated with moisture absorption of a molded body.

【図3】本発明の対象とするナトリウム−硫黄電池の全
体構造を示す断面図。
FIG. 3 is a sectional view showing the overall structure of a sodium-sulfur battery to which the present invention is applied.

【符号の説明】[Explanation of symbols]

1…固体電解質管、2…金属ナトリウムを主体とする陰
極、3…硫黄と集電材からなる陽極、4…絶縁材、5…
陰極容器、6…陽極容器。
1 ... Solid electrolyte tube, 2 ... Cathode mainly containing sodium metal, 3 ... Anode composed of sulfur and current collector, 4 ... Insulating material, 5 ...
Cathode container, 6 ... Anode container.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 秀夫 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 大島 正明 東京都千代田区神田神保町二丁目2番30号 東京電力株式会社開発研究所内 (72)発明者 丸山 正 東京都千代田区神田神保町二丁目2番30号 東京電力株式会社開発研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Hideo Okada Inventor Hideo Okada 7-1-1, Omika-cho, Hitachi City, Ibaraki Hitachi Co., Ltd. Hitachi Research Laboratory (72) Inventor Masaaki Oshima 2-chome, Kandajinbocho, Chiyoda-ku, Tokyo No. 30 TEPCO Ltd. R & D Lab. (72) Inventor Tadashi Maruyama 2-30, Kanda Jinbocho, Chiyoda-ku, Tokyo TEPCO R & D Lab.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】β″−アルミナ、β−アルミナからなるベ
ータアルミナ系セラミックス又は両者を含むセラミック
スの造粒粉を成形後焼成するナトリウム−硫黄電池用固
体電解質の製造方法において、β″−アルミナ、β−ア
ルミナからなるベータアルミナ系セラミックス又は両者
を含むセラミックスの合成粉に撥水性物質をコーティン
グし、次いで粒径30−100μmの大きさに造粒し、
該造粒粉を成形した後、焼成することを特徴とするナト
リウム−硫黄電池用固体電解質の製造方法。
1. A process for producing a solid electrolyte for a sodium-sulfur battery, which comprises firing granulated powder of β ″ -alumina, β-alumina-based ceramics composed of β-alumina, or ceramics containing both of them, followed by firing. Synthetic powder of beta-alumina-based ceramics composed of β-alumina or ceramics containing both is coated with a water-repellent substance, and then granulated to a particle size of 30-100 μm,
A method for producing a solid electrolyte for sodium-sulfur batteries, which comprises firing the granulated powder and then firing the granulated powder.
【請求項2】β″−アルミナ、β−アルミナからなるベ
ータアルミナ系セラミックス又は両者を含むセラミック
スの造粒粉を成形後、焼成してなるナトリウム−硫黄電
池用固体電解質において、前記造粒粉が撥水性物質をコ
ーテイングしたβ″−アルミナ、β−アルミナからなる
ベータアルミナ系セラミックス又は両者を含むセラミッ
クスの合成粉の集合体からなり、前記造粒粉を成形後、
焼成されてなることを特徴とするナトリウム−硫黄電池
用固体電解質。
2. A solid electrolyte for a sodium-sulfur battery, which is obtained by molding granulated powder of β ″ -alumina, β-alumina-based ceramics composed of β-alumina, or ceramics containing both, and firing the granulated powder. Β ″ -alumina coated with a water-repellent substance, β-alumina-based ceramics composed of β-alumina or an aggregate of synthetic powders of ceramics containing both, and after molding the granulated powder,
A solid electrolyte for a sodium-sulfur battery, characterized by being calcined.
【請求項3】室温では固体であり動作温度で液体の陽極
活物質及び集電材から構成される陽極と、該陽極を収容
する陽極容器、室温では固体であり動作温度で液体金属
の陰極活物質からなる陰極、該陰極を収容する陰極容器
を有し、該陽極容器と該陰極容器が絶縁されており、該
陽極と該陰極が固体電解質で隔てられているナトリウム
−硫黄電池において、前記固体電解質が請求項2記載の
前記固体電解質からなることを特徴とするナトリウム−
硫黄電池。
3. An anode composed of an anode active material and a current collector which is solid at room temperature and liquid at operating temperature, and an anode container for housing the anode, and a cathode active material which is solid at room temperature and liquid metal at operating temperature. And a cathode container for accommodating the cathode, wherein the anode container and the cathode container are insulated from each other, and the anode and the cathode are separated by a solid electrolyte. Is a solid electrolyte according to claim 2,
Sulfur battery.
JP5310029A 1993-12-10 1993-12-10 Solid electrolyte for sodium-sulfur battery and method for producing sodium-sulfur battery using the same Expired - Fee Related JP3054795B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5310029A JP3054795B2 (en) 1993-12-10 1993-12-10 Solid electrolyte for sodium-sulfur battery and method for producing sodium-sulfur battery using the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5310029A JP3054795B2 (en) 1993-12-10 1993-12-10 Solid electrolyte for sodium-sulfur battery and method for producing sodium-sulfur battery using the same

Publications (2)

Publication Number Publication Date
JPH07161380A true JPH07161380A (en) 1995-06-23
JP3054795B2 JP3054795B2 (en) 2000-06-19

Family

ID=18000307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5310029A Expired - Fee Related JP3054795B2 (en) 1993-12-10 1993-12-10 Solid electrolyte for sodium-sulfur battery and method for producing sodium-sulfur battery using the same

Country Status (1)

Country Link
JP (1) JP3054795B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523068A (en) * 2009-04-01 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for storing and transporting electrochemical energy

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7568962B2 (en) 2007-04-16 2009-08-04 Ridemakerz, Llc Modular toy vehicle

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012523068A (en) * 2009-04-01 2012-09-27 ビーエーエスエフ ソシエタス・ヨーロピア Method for storing and transporting electrochemical energy
US9972857B2 (en) 2009-04-01 2018-05-15 Basf Se Method for storing and transporting electrochemical energy

Also Published As

Publication number Publication date
JP3054795B2 (en) 2000-06-19

Similar Documents

Publication Publication Date Title
CN107851843B (en) Solid electrolyte sheet, method for producing same, and sodium ion all-solid-state secondary battery
KR20190137153A (en) Lithium-Garnet Solid Electrolyte Composites, Tape Products, and Methods Thereof
US3895963A (en) Process for the formation of beta alumina-type ceramics
KR101764801B1 (en) Lithium-ion-conducting material, lithium-ion-conducting solid electrolyte using lithium-ion-conducting material, electrode protection layer for lithium ion cell, and method for manufacturing lithium-ion-conducting material
JP2009080970A (en) Lithium ion conductive solid electrolyte, and manufacturing method thereof
CN111978082B (en) Strontium magnesium niobate doped modified sodium bismuth titanate based energy storage ceramic material and preparation method thereof
JPH0159232B2 (en)
CN110870123A (en) Solid electrolyte sheet, method for producing same, and all-solid-state secondary battery
JP2011079707A (en) Ceramic material and method for manufacturing the same
JP3054795B2 (en) Solid electrolyte for sodium-sulfur battery and method for producing sodium-sulfur battery using the same
JPH07149522A (en) Zirconia electrolyte powder and its production
KR101786056B1 (en) Lead-free piezoelectric seramic for low temperature firing having core-shell structure and method of manufacturing the same
JPH04240155A (en) Beta-alumina-based sintered body and production thereof
TWI227744B (en) Electroconductive oxide sintered compact, sputtering target comprising the sintered compact and methods for producing them
JPH07157369A (en) Ceramic granulated powder
CN114591080A (en) Preparation method and application of dielectric ceramic material with high energy storage density
JPS61256959A (en) High permittivity ceramic composition
JP2984208B2 (en) Molded body for ceramic sintered body, method for producing the same, ceramic sintered body using the molded body, and method for producing the same
JP2020045273A (en) Ion conductive oxide, and battery including the same, and method for producing ion conductive oxide
JP7171487B2 (en) Method for producing perovskite-type ion-conducting oxide
JP3446093B2 (en) Beta-alumina sintered body and method for producing the same
JP3377261B2 (en) Method for producing β-alumina powder
KR102168606B1 (en) Solid electrolyte comprising beta alumina and Preparation method thereof
KR20190030252A (en) Method for producing solid electrolyte and solide electrolyte produced by the method
JPH1045464A (en) Beta"alumina ceramic material for sodium-sulfur secondary cell and cell using that

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees