JPH07161303A - Indirectly heated cathode for cathode-ray tube - Google Patents

Indirectly heated cathode for cathode-ray tube

Info

Publication number
JPH07161303A
JPH07161303A JP31083993A JP31083993A JPH07161303A JP H07161303 A JPH07161303 A JP H07161303A JP 31083993 A JP31083993 A JP 31083993A JP 31083993 A JP31083993 A JP 31083993A JP H07161303 A JPH07161303 A JP H07161303A
Authority
JP
Japan
Prior art keywords
cathode
electron
electrode
ray tube
needle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31083993A
Other languages
Japanese (ja)
Inventor
Yasushi Takano
泰 鷹野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31083993A priority Critical patent/JPH07161303A/en
Publication of JPH07161303A publication Critical patent/JPH07161303A/en
Pending legal-status Critical Current

Links

Landscapes

  • Electrodes For Cathode-Ray Tubes (AREA)

Abstract

PURPOSE:To improve heat efficiency and to reduce a size by applying a thermionic emission material on an electron emitting cathode metal part which is heated to raise its own temperature by penetrating stimulation of an electron. CONSTITUTION:A strong electric field is generated in a tip needle part of an electrode 11 and electron emission is generated because of the potential difference impressed between the needle electrode 11 and a cathode 2. This electron collides against the cathode 2 in plus potential in comparison with the electrode 11, so that the cathode 2 is heated and its temperature is raised. The shape and the potential of an electron reflecting electrode 12 are selected so that, in this process, the electrons emitted toward the outer side beyond a metal part 22 for electron emission of the cathode 2 are 0801, to the inside by means of the electron reflecting electrode 12 in minus potential in comparison with the potential of the electrode 11, and ail. the electrons effectively collide against the metal part 22 on which a thermionic emission material 23 is applied. In this way, an indirect heated cathode type cathode structure having good heat efficiency can be provided.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は陰極線管用傍熱型陰極
の構造に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an indirectly heated cathode structure for a cathode ray tube.

【0002】[0002]

【従来の技術】図4は、従来一般に使用されている陰極
線管用傍熱型陰極の構造を示す略線図で、図において、
1はヒータ、2は陰極で、これは陰極スリーブ21、電
子放射用メタルからなる陰極スリーブ頭頂部22、熱電
子放射物質23、スリーブ保持機構24からなる。3は
通称G1電極と呼ばれている電子流量制御電極、4は通
称G2電極と呼ばれている電子流加速電極である。
2. Description of the Related Art FIG. 4 is a schematic diagram showing the structure of an indirectly heated cathode for a cathode ray tube which has been generally used in the past.
Reference numeral 1 is a heater, 2 is a cathode, which is composed of a cathode sleeve 21, a cathode sleeve top 22 made of a metal for electron emission, a thermionic emission material 23, and a sleeve holding mechanism 24. Reference numeral 3 is an electron flow rate control electrode commonly called G1 electrode, and 4 is an electron flow accelerating electrode commonly called G2 electrode.

【0003】次に動作について説明する。陰極2の中に
挿入されているヒータ1に通電して加熱することによ
り、陰極スリーブ21を加熱し、その陰極スリーブ頭頂
部22を、熱電子放射物質23が安定して熱電子を放射
し得る温度、即ち通常約800℃にまで加熱昇温させ、
熱電子放射物質23から熱電子を放射させて、これをG
1電極3とG2電極4により形成されている電界により
所定流量の電子ビーム流にしている。
Next, the operation will be described. By energizing and heating the heater 1 inserted in the cathode 2, the cathode sleeve 21 is heated, and the thermionic emissive material 23 can stably radiate thermoelectrons on the cathode sleeve top 22. Temperature, that is, usually heated up to about 800 ° C,
Thermionic emission material 23 emits thermionic electrons, and G
An electric field formed by the first electrode 3 and the G2 electrode 4 causes an electron beam flow of a predetermined flow rate.

【0004】[0004]

【発明が解決しようとする課題】従来の傍熱型陰極は以
上のように構成されているので、本来は熱電子放射部の
みを所定の温度まで加熱昇温させれば十分なところ、熱
電子放射部以外の部分まで加熱することになり、熱効率
は極めて悪かった。熱効率改善のため、従来から、設計
上、陰極部構造をできる限り小さくし、熱輻射損失がで
きるだけ小さくなるようにしている。例えば、ヒータ1
の発熱箇所をできるだけ小さくし、陰極スリーブ21へ
の熱伝達を効率よくし、また、陰極支持体24からの伝
導による熱損失が少なくなるように設計上配慮してい
る。
Since the conventional indirectly heated cathode is constructed as described above, it is originally sufficient to heat only the thermionic emission portion to a predetermined temperature. The heat efficiency was extremely poor because heating was applied to parts other than the radiating part. In order to improve thermal efficiency, conventionally, the structure of the cathode part is designed to be as small as possible so that the heat radiation loss is as small as possible. For example, heater 1
The heat generation point of (1) is made as small as possible, the heat transfer to the cathode sleeve 21 is made efficient, and the heat loss due to conduction from the cathode support 24 is reduced.

【0005】然るに、ヒータ1の発熱箇所を小さくする
ためには、細い芯線のヒータ材を使用しなければならな
いため、使用中の断線など信頼性の上で問題があり、細
くすることには限度があった。さらに、ヒータ1を、陰
極スリーブ21から電気的に絶縁するために、アルミナ
等で被覆する必要があり、これによってもヒータの発熱
部をある程度以上小さく設計することができなかった。
一方、ヒータ1の発熱を効率よく陰極スリーブ21に捕
捉させるためには、陰極スリーブ21の長さをある程度
以上短くすることもできなかった。さらに、ヒータ1自
身の熱伝導によるヒータ支持体への熱伝導損失も無視で
きないものがあった。
However, in order to reduce the heat-generating portion of the heater 1, a heater material having a thin core wire must be used. Therefore, there is a problem in reliability such as disconnection during use, and there is a limit to thinning. was there. Further, the heater 1 needs to be coated with alumina or the like in order to electrically insulate it from the cathode sleeve 21, which also makes it impossible to design the heating portion of the heater to be smaller than a certain extent.
On the other hand, in order to efficiently capture the heat generated by the heater 1 in the cathode sleeve 21, the length of the cathode sleeve 21 could not be shortened to a certain extent or more. Further, the heat conduction loss to the heater support due to the heat conduction of the heater 1 itself cannot be ignored.

【0006】以上のような制限条件により、従来の陰極
構造で一般に使用されているものの内、最も効率のよい
ものでも次のような構造寸法になっている。 G1電極孔直径・・・・・・・0.4mm 陰極スリーブ直径・・・・・・1.5mm 陰極スリーブ長さ・・・・・・3mm このような構造の陰極では、ヒータの熱効率即ちヒータ
の電力効率は、概算で1%以下であると推定できる。
Due to the above-mentioned limiting conditions, the most efficient one among those generally used in the conventional cathode structure has the following structural dimensions. G1 electrode hole diameter: 0.4 mm Cathode sleeve diameter: 1.5 mm Cathode sleeve length: 3 mm In the cathode having such a structure, the thermal efficiency of the heater, that is, the heater. The power efficiency can be estimated to be less than 1%.

【0007】この発明は上記のような問題点を解決する
ためになされたもので、傍熱型陰極の熱効率、即ち傍熱
型陰極の加熱電力の効率を改善するとともに、陰極構造
の小型化、ひいては陰極線管自体の全長の短縮を実現し
ようとするものである。
The present invention has been made to solve the above problems, and improves the thermal efficiency of the indirectly heated cathode, that is, the efficiency of heating power of the indirectly heated cathode, and reduces the size of the cathode structure. As a result, it is intended to reduce the total length of the cathode ray tube itself.

【0008】[0008]

【課題を解決するための手段】この発明に係る陰極線管
用傍熱型陰極は、電子放射手段からの放射電子を加速し
て、電子放射用陰極メタル部に射突させて加熱昇温さ
せ、このメタル部に被着されている熱電子放射物質を加
熱するようにしたものである。また、電子放射手段は電
界放射型の針状電極により構成されたものである。ま
た、電界放射型の針状電極と電子放射用陰極メタル部と
の間に、上記針状電極から放射された電子が有効に電子
放射用陰極メタル部に射突するようにする電子反射電極
を設けたものである。また、電子放射手段は電界放射型
の針状電極の集合体により構成したものである。また、
電界放射型の針状電極の集合体の個々の針状電極に、電
界電子放射量を制御するゲート電極を設けたものであ
る。また、電界放射型の針状電極の集合体の電子放射密
度を、集合体の中心部と周辺部で変えるようにしたもの
である。
The indirectly heated cathode for a cathode ray tube according to the present invention accelerates the emitted electrons from the electron emitting means and causes them to collide with the electron emitting cathode metal portion for heating and heating. The thermoelectron emitting material adhered to the metal part is heated. The electron emission means is composed of a field emission needle electrode. Further, between the field emission type needle-shaped electrode and the electron emission cathode metal portion, an electron reflection electrode is provided so that the electrons emitted from the needle-shaped electrode can effectively strike the electron emission cathode metal portion. It is provided. Further, the electron emitting means is constituted by an assembly of field emission type needle electrodes. Also,
A gate electrode for controlling the amount of field electron emission is provided on each needle electrode of the assembly of field emission type needle electrodes. Further, the electron emission density of the field emission type needle-shaped electrode assembly is changed between the central portion and the peripheral portion of the assembly.

【0009】[0009]

【作用】この発明における傍熱型陰極は、電界放射型の
針状電極から電子を放射させ、これを電子放射用メタル
部に射突させることにより電子放射用メタル部を加熱昇
温し、この部分に被着されている熱電子放射物質から熱
電子を放射させるようにしている。電界放射による電子
放射には電力が殆どいらず、効率上有利である。
In the indirectly heated cathode according to the present invention, electrons are emitted from the field emission type needle-shaped electrode, and the electrons are projected onto the electron emission metal part to heat and raise the temperature of the electron emission metal part. Thermions are emitted from the thermionic emission material deposited on the part. Electron emission by field emission requires little electric power and is advantageous in efficiency.

【0010】[0010]

【実施例】【Example】

実施例1.以下この発明を実施例により説明する。図1
において、11は電界放射型の針状電極、12は例えば
筒状の電子反射電極、2は陰極で、電子放射用メタル部
22、熱電子放射物質23、陰極保持機構24とからな
る。3はG1電極、4はG2電極である。
Example 1. The present invention will be described below with reference to examples. Figure 1
In the figure, 11 is a field emission type needle electrode, 12 is, for example, a cylindrical electron reflection electrode, 2 is a cathode, and includes an electron emission metal part 22, a thermoelectron emission material 23, and a cathode holding mechanism 24. 3 is a G1 electrode and 4 is a G2 electrode.

【0011】次に動作を説明する。針状電極11と陰極
2との間に印加された電位差により、針状電極11の先
端針状部に強い電界が生じ、電子放射が発生する。この
電子は、針状電極11よりプラス電位である陰極2に衝
突し、熱エネルギーとなり、陰極2を加熱昇温させる。
このとき、陰極2の電子放射用メタル部22より外に向
かって放射された電子は、針状電極11の電位よりマイ
ナス電位である電子反射電極12により内側に曲げら
れ、電子放射用メタル部22にすべての電子が有効に衝
突するように、電子反射電極12の形状及びその電位を
選択する。
Next, the operation will be described. Due to the potential difference applied between the needle-shaped electrode 11 and the cathode 2, a strong electric field is generated at the tip needle-shaped portion of the needle-shaped electrode 11, and electron emission is generated. The electrons collide with the cathode 2 having a positive potential from the needle-shaped electrode 11 and become thermal energy, heating the cathode 2 to raise its temperature.
At this time, the electrons emitted outward from the electron emission metal portion 22 of the cathode 2 are bent inward by the electron reflection electrode 12 having a potential lower than the potential of the needle-shaped electrode 11, and the electron emission metal portion 22. The shape of the electron reflection electrode 12 and its potential are selected so that all the electrons effectively collide with.

【0012】このような構造においては、従来の陰極構
造と異なり、ヒータ自体からの熱伝導損失、陰極スリー
ブからの放射熱損失が存在せず、熱効率のよい傍熱型の
陰極構造を得ることができる。さらに、電子放射用メタ
ル部22の温度分布が所定の値になるように、射突する
電子の射突密度分布を電子反射電極12の形状及び電位
を選択することにより容易に実現できる。
In such a structure, unlike the conventional cathode structure, there is no heat conduction loss from the heater itself and radiant heat loss from the cathode sleeve, and an indirectly heated cathode structure with good thermal efficiency can be obtained. it can. Furthermore, the projecting density distribution of the projecting electrons can be easily realized by selecting the shape and potential of the electron reflecting electrode 12 so that the temperature distribution of the metal part 22 for electron emission has a predetermined value.

【0013】実施例2.図2はこの発明の他の実施例を
示すものである。この実施例では、陰極2に射突させる
電子の発生源として、針状電極の集合体111を使用し
ている。針状電極の集合体111は、真空マイクロエレ
クトロニックスなる学問分野でフィールドエミションア
レイ(FEA)と呼ばれているもので、例えば次の文献
に紹介されている。 IVOR BODIE,「PHYSICAL CONS
IDERATIONIN VACCUM MICROE
LECTRONICS DEVICES」 (IEEE TRANSACTIONS ON ELE
CTRONDEVICES, VOL.36,NO.1
1,NOV.1989,PP2641−2644)
Example 2. FIG. 2 shows another embodiment of the present invention. In this embodiment, an aggregate 111 of needle-like electrodes is used as a source of electrons that are made to strike the cathode 2. The aggregate 111 of needle-like electrodes is called a field emission array (FEA) in the academic field of vacuum microelectronics, and is introduced in the following document, for example. IVOR BODIE, "PHYSICAL CONS
IDERATION IN VACCUM MICROE
LECTRONICS DEVICES "(IEEE TRANSACTIONS ON EE
CTRONDEVICES, VOL. 36, NO. 1
1, NOV. 1989, PP2641-2644).

【0014】図3はFEAの中の一素子の基本構造を示
す断面図である。図3において、51は金属ベース電
極、52はカソードチップ(針状電極)、53は第1絶
縁体、54は金属ゲート電極、55は第2絶縁体、56
は金属陽極(電子放射用メタル22に相当する)を示し
ている。一般に、カソードチップ52の先端は半径0.
01μm以下にまで先鋭化されており、数μm以下の距
離に配置された金属陽極56に印加されている電位によ
り、カソードチップ52の先端に強い電界が発生し、電
子を放射する。電子の放射量は、通常1μm以下の距離
に配置された金属ゲート電極54によって制御できる。
FIG. 3 is a sectional view showing the basic structure of one element in the FEA. In FIG. 3, 51 is a metal base electrode, 52 is a cathode tip (needle electrode), 53 is a first insulator, 54 is a metal gate electrode, 55 is a second insulator, and 56.
Indicates a metal anode (corresponding to the metal 22 for electron emission). Generally, the tip of the cathode tip 52 has a radius of 0.
A sharp electric field is sharpened to less than 01 μm, and a strong electric field is generated at the tip of the cathode tip 52 by the potential applied to the metal anode 56 arranged at a distance of several μm or less, and electrons are emitted. The amount of emitted electrons can be controlled by the metal gate electrode 54 which is normally arranged at a distance of 1 μm or less.

【0015】このように、FEAの中の一素子は、極め
て微細な構造であるので、動作電圧の低減、イオンスパ
ッタによるチップの損傷の低減、比較的低真空での使用
を可能とし、安定した放射電流を得ることができる。さ
らに、FEAはこのような素子を1cm2あたり104
上集積したものである。FEAは多数のチップを集積し
ているので、冗長度が大きく、多数のチップの中に例え
不具合なものがあっても、全体に及ぼす影響は少ない。
As described above, since one element in the FEA has an extremely fine structure, it is possible to reduce the operating voltage, damage to the chip due to ion sputtering, and use in a relatively low vacuum, and it is stable. The emission current can be obtained. Further, the FEA is such that 10 4 or more such elements are integrated per 1 cm 2 . Since the FEA integrates a large number of chips, it has a high degree of redundancy, and even if there are defective ones among a large number of chips, the overall effect is small.

【0016】このようなFEAを本発明に適用する場
合、金属陽極56が直接電子放射用メタル部22である
ことが最も望ましいが、FEA製造上支障がある場合に
は、他の金属板で一旦構成してから、電子放射メタル部
22に接合してもよい。
When such FEA is applied to the present invention, it is most preferable that the metal anode 56 is the metal part 22 for direct electron emission. However, if there is a problem in FEA manufacturing, another metal plate is used once. After being configured, it may be bonded to the electron emitting metal portion 22.

【0017】一般に、FEAは半導体集積回路製造技術
を使用して制作されるので、電界電子放射密度を、集合
体の例えば中心部と周辺部とで変化させることも製造上
容易なことであり、傍熱型陰極面で、中心部より周辺部
で温度が低下しやすい傾向を、射突電子流量の分布を変
えて一様化することもできる。
Generally, since the FEA is manufactured by using the semiconductor integrated circuit manufacturing technique, it is easy to manufacture the FEA by changing the field electron emission density between the central part and the peripheral part of the assembly. On the indirectly heated cathode surface, the tendency that the temperature tends to lower in the peripheral portion than in the central portion can be made uniform by changing the distribution of the projecting electron flow rate.

【0018】以上のようなFEAを本発明に適用するこ
とにより、次の特徴を出すことができる。 1)安定した電界放射電子流を得ることができる。 2)金属ゲート電極54の電位を変化することにより、
陰極温度を容易に変化できる。 3)陰極構造全体を極めて小さくすることができる。 4)素子の集積分布を設計上変えることにより、電子放
射メタル部22の温度分布を設計上任意に変えることが
できる。
By applying the above FEA to the present invention, the following characteristics can be obtained. 1) A stable field emission electron flow can be obtained. 2) By changing the potential of the metal gate electrode 54,
The cathode temperature can be changed easily. 3) The entire cathode structure can be made extremely small. 4) The temperature distribution of the electron emitting metal portion 22 can be arbitrarily changed in design by changing the integrated distribution of the elements in design.

【0019】[0019]

【発明の効果】以上のように、この発明によれば、陰極
線管用傍熱型陰極を、加速された電子の射突刺激により
昇温加熱させるので、加熱用ヒータを使用した従来のも
のに比べて傍熱型陰極の加熱電力を低減できる。
As described above, according to the present invention, since the indirectly heated cathode for a cathode ray tube is heated to a high temperature by the impact stimulus of accelerated electrons, it can be compared with the conventional one using a heater for heating. The heating power for the indirectly heated cathode can be reduced.

【0020】また、射突刺激用の電子の発生源として電
界放射型陰極を採用することにより、傍熱型陰極の加熱
電力の効率を一層高めることができる。
Further, by adopting the field emission type cathode as the source of the electrons for the impact stimulation, the efficiency of the heating power of the indirectly heated cathode can be further enhanced.

【0021】また、電界放射部の射突部間に電子を反射
するための電極を設置し、電界放射された電子を有効に
陰極部に射突させることにより、傍熱型陰極の加熱電力
を低減できる。
In addition, an electrode for reflecting electrons is installed between the projecting portions of the field emission section, and the field-emitted electrons are effectively emitted to the cathode section, thereby heating power of the indirectly heated cathode. It can be reduced.

【0022】また、微細な針状陰極の集合体を使用する
ことにより、電界放射陰極に冗長性をもたせ、且つ微細
構造であるために、電界放射特性を安定化させることが
できる。
Further, by using an assembly of fine needle-shaped cathodes, the field emission cathode can be made redundant and the field emission characteristics can be stabilized because of its fine structure.

【0023】また、微細な針状電極のそれぞれに電界電
子放射量を制御するためのゲート電極を設けることによ
り、傍熱型陰極の温度を容易に制御することができる。
Further, the temperature of the indirectly heated cathode can be easily controlled by providing each of the fine needle electrodes with a gate electrode for controlling the amount of field electron emission.

【0024】また、微細な針状電極の集合体の電子放射
密度を集合体の中心部と周辺部とで変化させ、傍熱型陰
極の温度分布を所望の値に設計することができる。
Further, the electron emission density of the assembly of fine needle-shaped electrodes can be changed between the central portion and the peripheral portion of the assembly to design the temperature distribution of the indirectly heated cathode to a desired value.

【0025】さらにまた、微細な針状陰極を採用するこ
とにより、傍熱型陰極の構造自体を小型化でき、陰極線
管用電子銃の全長の短縮が可能となり、陰極線管自体の
全長を短縮できる。
Further, by adopting the fine needle-shaped cathode, the structure itself of the indirectly heated cathode can be downsized, the total length of the electron gun for the cathode ray tube can be shortened, and the total length of the cathode ray tube itself can be shortened.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す略線断面図である。FIG. 1 is a schematic line sectional view showing a first embodiment of the present invention.

【図2】この発明の実施例2を示す略線断面図である。FIG. 2 is a schematic line sectional view showing a second embodiment of the present invention.

【図3】この発明において使用されるFEAの一素子の
構造を示す断面図である。
FIG. 3 is a sectional view showing the structure of one element of the FEA used in the present invention.

【図4】従来の傍熱型陰極の構造を示す略線断面図であ
る。
FIG. 4 is a schematic cross-sectional view showing the structure of a conventional indirectly heated cathode.

【符号の説明】[Explanation of symbols]

2 陰極 22 電子放射用メタル部 23 熱電子放射物質 24 陰極保持機構 11 電界放射型の針状電極 111 電界放射型針状電極集合体 12 電子反射電極 51 金属ベース電極 52 カソードチップ 53 第1絶縁体 54 金属ゲート電極 55 第2絶縁体 56 金属陽極 2 Cathode 22 Electron Emission Metal Part 23 Thermionic Emissive Material 24 Cathode Holding Mechanism 11 Field Emission Needle Electrode 111 Field Emission Needle Electrode Assembly 12 Electron Reflection Electrode 51 Metal Base Electrode 52 Cathode Chip 53 First Insulator 54 Metal Gate Electrode 55 Second Insulator 56 Metal Anode

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 電子の放射手段と、放射された電子を加
速し、その電子の射突刺激により加熱昇温される電子放
射用陰極メタル部と、この電子放射用陰極メタル部に被
着されている熱電子放射物質とを備えたことを特徴とす
る陰極線管用傍熱型陰極。
1. An electron emission means, an electron emission cathode metal part for accelerating the emitted electron, and being heated to a temperature by a collision stimulus of the electron, and attached to the electron emission cathode metal part. An indirectly heated cathode for a cathode ray tube, comprising:
【請求項2】 電子の放射手段は、電界放射型の針状電
極により射突刺激用の電子を得るようになされているこ
とを特徴とする請求項1記載の陰極線管用傍熱型陰極。
2. The indirectly heated cathode for a cathode ray tube according to claim 1, wherein the electron emitting means is adapted to obtain electrons for impact stimulation by a field emission type needle electrode.
【請求項3】 電界放射型の針状電極と電子放射用陰極
メタル部との間に、上記針状電極から放射された電子が
有効に電子放射用陰極メタル部に射突するようにする電
子反射電極を設けたことを特徴とする請求項2記載の陰
極線管用傍熱型陰極。
3. Electrons between the field emission type needle-shaped electrode and the electron emission cathode metal portion so that the electrons emitted from the needle-shaped electrode effectively strike the electron emission cathode metal portion. The indirectly heated cathode for a cathode ray tube according to claim 2, wherein a reflective electrode is provided.
【請求項4】 電子の放射手段は、電界放射型の針状電
極の集合体により射突刺激用の電子を得るようになされ
ていることを特徴とする請求項1記載の陰極線管用傍熱
型陰極。
4. The indirectly heated type for a cathode ray tube according to claim 1, wherein the electron emitting means is adapted to obtain electrons for impact stimulation by an assembly of field emission type needle electrodes. cathode.
【請求項5】 電界放射型の針状電極の個々に電界電子
放射量を制御するゲート電極を設けたことを特徴とする
請求項4記載の陰極線管用傍熱型陰極。
5. The indirectly heated cathode for a cathode ray tube according to claim 4, wherein each of the field emission needle electrodes is provided with a gate electrode for controlling the amount of field electron emission.
【請求項6】 電界放射型の針状電極の集合体の電子放
射密度を、集合体の中心部と周辺部で変えるようにした
ことを特徴とする請求項4または請求項5記載の陰極線
管用傍熱型陰極。
6. The cathode ray tube according to claim 4, wherein the electron emission density of the assembly of field emission type needle-shaped electrodes is changed between the central part and the peripheral part of the assembly. Indirect heating type cathode.
JP31083993A 1993-12-10 1993-12-10 Indirectly heated cathode for cathode-ray tube Pending JPH07161303A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31083993A JPH07161303A (en) 1993-12-10 1993-12-10 Indirectly heated cathode for cathode-ray tube

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31083993A JPH07161303A (en) 1993-12-10 1993-12-10 Indirectly heated cathode for cathode-ray tube

Publications (1)

Publication Number Publication Date
JPH07161303A true JPH07161303A (en) 1995-06-23

Family

ID=18010016

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31083993A Pending JPH07161303A (en) 1993-12-10 1993-12-10 Indirectly heated cathode for cathode-ray tube

Country Status (1)

Country Link
JP (1) JPH07161303A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091187A (en) * 1998-04-08 2000-07-18 International Business Machines Corporation High emittance electron source having high illumination uniformity
EP3518266A1 (en) * 2018-01-30 2019-07-31 Siemens Healthcare GmbH Thermionic emission device

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6091187A (en) * 1998-04-08 2000-07-18 International Business Machines Corporation High emittance electron source having high illumination uniformity
EP3518266A1 (en) * 2018-01-30 2019-07-31 Siemens Healthcare GmbH Thermionic emission device
WO2019149482A1 (en) 2018-01-30 2019-08-08 Siemens Healthcare Gmbh Emission device

Similar Documents

Publication Publication Date Title
US8300769B2 (en) Microminiature X-ray tube with triode structure using a nano emitter
JP2003263951A (en) Field emission type electron source and driving method
CN101529549A (en) Emitter for X-ray tubes and heating method therefore
JPH08287854A (en) X-ray tube with low temperatured emitter
EP0448133A2 (en) A directly heated cathode assembly
US20030002628A1 (en) Method and system for generating an electron beam in x-ray generating devices
US6890230B2 (en) Method for activating nanotubes as field emission sources
KR20020065625A (en) Segmented gate drive for dynamic beam shape correction in field emission cathodes
JP2629521B2 (en) Electron gun and cathode ray tube
JP2607251B2 (en) Field emission cathode
JP2956612B2 (en) Field emitter array, method of manufacturing the same, and method of driving the same
JPH07161303A (en) Indirectly heated cathode for cathode-ray tube
Schwoebel et al. Emission uniformity enhancement between microfabricated tips in cold cathode arrays
JP2787899B2 (en) Cold cathode, electron gun and microwave tube using the same
JP2787901B2 (en) Method of manufacturing field emission cold cathode
US6373182B1 (en) Mounting for cathode in an electron gun
JP3293605B2 (en) Field emission type cold cathode mounted electron gun with focusing electrode
JP2610414B2 (en) Display device
JP3198362B2 (en) Electron emitting device and image forming apparatus
JP2001266780A (en) X-ray generating apparatus
JP2903880B2 (en) Cold cathode electron gun
US2310662A (en) Electrode spacer
JP2005251502A (en) Electric field electron emitting device
JP2000133179A (en) Electron beam generating device
JP2632365B2 (en) Electron emitting device and method of manufacturing the same