JPH07161282A - Impregnation type cathode structure - Google Patents

Impregnation type cathode structure

Info

Publication number
JPH07161282A
JPH07161282A JP31093693A JP31093693A JPH07161282A JP H07161282 A JPH07161282 A JP H07161282A JP 31093693 A JP31093693 A JP 31093693A JP 31093693 A JP31093693 A JP 31093693A JP H07161282 A JPH07161282 A JP H07161282A
Authority
JP
Japan
Prior art keywords
cathode
heater
silicon carbide
sleeve
impregnated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31093693A
Other languages
Japanese (ja)
Inventor
Takashi Shinjo
孝 新庄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31093693A priority Critical patent/JPH07161282A/en
Publication of JPH07161282A publication Critical patent/JPH07161282A/en
Pending legal-status Critical Current

Links

Landscapes

  • Solid Thermionic Cathode (AREA)

Abstract

PURPOSE:To attain stable action without generating any leak between a heater and a cathode over a long period by applying black color treatment by a silicon carbide film to an internal surface of a cathode sleeve in an impregnation type cathode structure. CONSTITUTION:In this impregnation type cathode structure, a silicon carbide film 231 is formed by a CVD method in an internal surface of a cylindrical cathode sleeve 23 consisting of molybdenum material. The silicon carbide film 231 may be formed by applying silicon carbide fine powder sintered. In the cathode structure thus applying black color treatment, a heater temperature is decreased by a 140 deg.Cbr to a 1190 deg.Cbr, for instance, as compared with that of applying no treatment. In this way, a leak current between a heater 22 and the cathode sleeve 23 is suppressed to 1muA or less over a long operation period.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、陰極線管用電子銃等
に用いられる含浸型陰極構体に関するものでる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an impregnated cathode assembly used in an electron gun for a cathode ray tube.

【0002】[0002]

【従来の技術】図4は通常のカラー陰極線管用電子銃の
三極部構造を示す図である。カラー陰極線管用電子銃
は、3個の陰極2を有し、各々の陰極2には、加熱用ヒ
ータ22が挿入されている。陰極2は支持円筒28を介
して支持板29に溶接等で接合されている。加熱用ヒー
タ22は、予めヒータタブ25に溶接されており、この
ヒータタブ25がヒータコネクタ26を介してヒータサ
ポート27に接合されている。なお、各陰極から放射さ
れる熱電子を制御するために、陰極2の前方に制御電極
3及び加速電極4が配置され、支持板29、ヒータサポ
ート27と共に、絶縁用ビードガラス5により、所定の
間隔に一体的に固定されている。
2. Description of the Related Art FIG. 4 is a diagram showing a three-pole structure of an ordinary electron gun for a color cathode ray tube. The electron gun for a color cathode ray tube has three cathodes 2, and a heater 22 for heating is inserted in each cathode 2. The cathode 2 is joined to the support plate 29 via a support cylinder 28 by welding or the like. The heater 22 for heating is previously welded to the heater tab 25, and the heater tab 25 is joined to the heater support 27 via the heater connector 26. In order to control thermoelectrons emitted from each cathode, a control electrode 3 and an accelerating electrode 4 are arranged in front of the cathode 2, and together with the support plate 29 and the heater support 27, a predetermined bead is provided by the insulating bead glass 5. It is integrally fixed to the space.

【0003】陰極電流は電極3、4に印加される電位差
によって制御され、陰極から放出された電子を高電圧が
印加された蛍光体に照射して、赤、緑、青の各色を発光
させ、所定の表示を得るものである。
The cathode current is controlled by the potential difference applied to the electrodes 3 and 4, and the electrons emitted from the cathode are irradiated to the phosphor to which a high voltage is applied to emit red, green and blue colors, A predetermined display is obtained.

【0004】次に、陰極近傍の構造について図5により
説明する。陰極2は、通常、タングステン多孔質体にバ
リウム等の酸化物を含浸させた陰極基体21と、陰極基
体加熱用のヒータ22と、加熱用ヒータ22を収容する
ための陰極スリーブ23と、陰極基体保持用のカップ2
4とから構成されている。これらの部材を使用し、陰極
基体21とカップ24とはかしめ等で、またカップ24
と陰極スリーブ23とは溶接等でそれぞれ接続されてい
る。
Next, the structure near the cathode will be described with reference to FIG. The cathode 2 is usually a cathode substrate 21 obtained by impregnating a tungsten porous body with an oxide such as barium, a heater 22 for heating the cathode substrate, a cathode sleeve 23 for housing the heater 22 for heating, and a cathode substrate. Holding cup 2
4 and. By using these members, the cathode base 21 and the cup 24 can be caulked, etc.
The cathode sleeve 23 and the cathode sleeve 23 are connected by welding or the like.

【0005】次に、含浸型陰極の特徴について説明す
る。含浸型陰極は、酸化バリウムを主成分とするいわゆ
る酸化物陰極に比べて、長期間にわたって高電流密度動
作ができ、安定した電子放射が確保できる。しかしなが
ら、陰極基体21の動作温度が約1000℃brと高
く、図6に示すような、内面を黒色処理せずに金属表面
の露出した従来の陰極スリーブを使用した場合、ヒータ
22の動作温度は、後述するダークヒータを使用した場
合でも1300℃br以上必要であり、このような高温
での動作は、陰極構体の信頼性にも影響を与えるもので
あった。
Next, the features of the impregnated cathode will be described. The impregnated cathode can operate at a high current density for a long period of time and can secure stable electron emission, as compared with a so-called oxide cathode containing barium oxide as a main component. However, the operating temperature of the cathode base 21 is as high as about 1000 ° C. br, and when the conventional cathode sleeve having an exposed metal surface is used without blackening the inner surface as shown in FIG. Even when the dark heater described later is used, the temperature is required to be 1300 ° C. br or higher, and the operation at such a high temperature also affects the reliability of the cathode assembly.

【0006】このように構成された陰極構体において、
通常、陰極電流を制御するためには、加速電極4に50
0〜800Vの固定電圧を、制御電極3には接地電圧0
Vを印加し、陰極2は0〜200Vの範囲で、陰極電流
の度合いに応じて電圧を変化させる。また、ヒータ22
には、その端子間に、陰極動作温度約1000℃brを
達成できるような数Vの電圧を印加するが、ヒータ端子
の一方は接地電圧となっている。それ故、一般的には、
陰極基体21とヒータ22との間の電位差は最大で20
0Vとなり、その値はヒータ22に対して陰極基体21
の方が正となる方向である。
In the cathode assembly having such a structure,
Normally, in order to control the cathode current, 50
A fixed voltage of 0 to 800 V is applied to the control electrode 3 with a ground voltage of 0.
V is applied, and the cathode 2 changes its voltage in the range of 0 to 200 V according to the degree of the cathode current. Also, the heater 22
, A voltage of several V is applied between the terminals so that a cathode operating temperature of about 1000 ° C. br is applied, but one of the heater terminals is at the ground voltage. Therefore, in general,
The maximum potential difference between the cathode substrate 21 and the heater 22 is 20.
It becomes 0 V, and the value is 0 V with respect to the heater 22.
Is the more positive direction.

【0007】ところで、上記のように、所定の電圧を各
端子に印加して動作させた場合、陰極とヒータとの間に
最大200Vの電圧がかかるため、普通両者の間にはア
ルミナ(Al23)粒子の焼結体を挿入して絶縁を保つ
構造としている。具体的には図7に断面を示すように、
ヒータ芯線221の回りにアルミナを約100μmの厚
さに電着、焼結させたアルミナ層222を、さらに、ア
ルミナとタングステンの混合物を数μm厚で塗布したダ
ーク層223を設けたダークヒータを用いている。な
お、ダーク層を形成した理由は、ヒータの熱輻射効率を
向上させ、ヒータ自身の温度を下げるためである。
By the way, as described above, when a predetermined voltage is applied to each terminal for operation, a maximum voltage of 200 V is applied between the cathode and the heater, so that alumina (Al 2 It has a structure in which a sintered body of O 3 ) particles is inserted to maintain insulation. Specifically, as shown in the cross section in FIG.
A dark heater is provided around the heater core wire 221. An alumina layer 222 is formed by electrodeposition and sintering of alumina to a thickness of about 100 μm, and a dark layer 223 is formed by coating a mixture of alumina and tungsten to a thickness of several μm. ing. The reason for forming the dark layer is to improve the heat radiation efficiency of the heater and lower the temperature of the heater itself.

【0008】しかしながら、含浸型陰極では、陰極動作
温度が高いため、前述のダークヒータを用いた場合で
も、陰極スリーブ23として、図6に示すような、内面
に黒色処理を施していない金属表面の露出した耐熱性金
属材料を使用したときは、ヒータ温度は1300℃br
以上となり、高温のため、ヒータと陰極間の漏洩電流
は、陰極線管製作後の初期段階では1μA以内であるも
のの、長期の動作中に絶縁特性の劣化が発生し、場合に
よっては10μA以上の値となって陰極電圧の不必要な
降下を引き起こし、含浸型陰極の実用化の障害となって
いた。
However, since the impregnated cathode has a high cathode operating temperature, even when the above-mentioned dark heater is used, the cathode sleeve 23 has a metal surface which is not black-treated as shown in FIG. When using an exposed heat-resistant metal material, the heater temperature is 1300 ° C br
Due to the high temperature, the leakage current between the heater and the cathode is 1 μA or less in the initial stage after manufacturing the cathode ray tube, but the insulation characteristics deteriorate during long-term operation, and in some cases, the value is 10 μA or more. As a result, the cathode voltage is unnecessarily lowered, which is an obstacle to the practical application of the impregnated cathode.

【0009】[0009]

【発明が解決しようとする課題】上記のように、含浸型
陰極を使用した陰極線管では、陰極動作温度が高いため
にヒータ温度が高くなり、解決手段の一つとして、ヒー
タ外面に黒色層を形成して熱輻射効率を高め、加熱特性
を向上させたダークヒータを用いてきた。しかしなが
ら、このダークヒータを使用した場合でも、ヒータ温度
が1300℃br以上となって依然として高温であり、
長期動作中におけるヒータと陰極間の漏洩電流が増大
し、陰極の電圧降下によって適正な電気信号が印加され
ないといった不具合が生ずることがしばしばあった。
As described above, in the cathode ray tube using the impregnated cathode, the heater temperature becomes high because the cathode operating temperature is high. As one of the means for solving the problem, a black layer is formed on the outer surface of the heater. A dark heater that has been formed to improve the heat radiation efficiency and improve the heating characteristics has been used. However, even when this dark heater is used, the heater temperature is still higher than 1300 ° C br,
In many cases, the leakage current between the heater and the cathode during long-term operation increased, and a voltage drop at the cathode prevented the proper electrical signal from being applied.

【0010】この発明は上記の問題点を解決するために
なされたもので、動作中のヒータ温度をさらに下げるた
めに、表面が黒色化されたダークヒータを用いるだけで
なく、陰極スリーブ内面にも黒色処理を施し、陰極温度
は変えずにヒータ温度をさらに下げて、長期間にわたっ
てヒータと陰極間に漏洩電流の発生しない安定した動作
を可能にする含浸型陰極を提供しようとするものであ
る。
The present invention has been made to solve the above-mentioned problems, and in order to further lower the heater temperature during operation, not only a dark heater whose surface is blackened but also a cathode sleeve inner surface is used. An object of the present invention is to provide an impregnated-type cathode that is subjected to black treatment and further lowers the heater temperature without changing the cathode temperature to enable stable operation without generating leakage current between the heater and the cathode for a long period of time.

【0011】[0011]

【課題を解決するための手段】この発明に係る含浸型陰
極構体は、閉口した端部頭頂部に熱電子放出用の陰極基
体が設けられ、内部に加熱用ヒータが挿入される筒状の
陰極スリーブの内面に炭化珪素薄膜を形成したものであ
る。また、炭化珪素薄膜を、CVD(Chemical
Vapor Deposition)法により形成し
たものである。また、炭化珪素薄膜を、炭化珪素微粉末
を塗布して焼結することにより形成したものである。
SUMMARY OF THE INVENTION An impregnated cathode assembly according to the present invention is a tubular cathode in which a cathode base for thermionic emission is provided at the closed top of the end and a heating heater is inserted therein. A silicon carbide thin film is formed on the inner surface of the sleeve. Further, a silicon carbide thin film is formed by CVD (Chemical).
It is formed by the Vapor Deposition method. Further, the silicon carbide thin film is formed by applying fine powder of silicon carbide and sintering it.

【0012】[0012]

【作用】陰極スリーブ材料として通常使用しているモリ
ブデンまたはタンタル等の耐熱性金属は、金属表面の熱
輻射率が0.3〜0.4程度であり、この陰極スリーブ
の内面にタングステンとアルミナの微粉末を塗布した場
合は約0.6程度である。ところで、本発明のようにタ
ングステンとアルミナの微粉末の代わりに、炭化珪素を
使用した黒色処理を施すことによって、熱輻射率を0.
8程度まで向上させることが可能となる。
A heat-resistant metal such as molybdenum or tantalum, which is usually used as a cathode sleeve material, has a thermal emissivity of about 0.3 to 0.4 on the metal surface. When fine powder is applied, it is about 0.6. By the way, as in the present invention, the thermal emissivity can be reduced to 0.
It is possible to improve it to about 8.

【0013】熱輻射率の向上により、陰極スリーブはヒ
ータからの伝熱を効率よく吸収し、ヒータへの入熱量が
一定の場合にはヒータ温度を下げることができる。炭化
珪素薄膜を用いた本発明でのヒータ温度下げ幅は、10
0〜150℃br程度であり、従来のダークヒータで1
300℃br以上であったヒータ温度を1200℃br
以下にすることが可能になる。なお、タングステンとア
ルミナの微粉末を塗布した場合のヒータ温度は1200
〜1250℃brである。
By improving the thermal emissivity, the cathode sleeve can efficiently absorb the heat transfer from the heater, and the heater temperature can be lowered when the amount of heat input to the heater is constant. The heater temperature reduction range in the present invention using the silicon carbide thin film is 10
It is about 0-150 ℃ br, and it is 1 with the conventional dark heater.
Change the heater temperature from 300 ° C br or higher to 1200 ° C br
You can: The heater temperature is 1200 when fine powder of tungsten and alumina is applied.
˜1250 ° C. br.

【0014】このように、ヒータ温度を1200℃br
以下にした場合は、陰極とヒータ間に所定の電圧を印加
した場合でも絶縁破壊は起こらず、長期間にわたって安
定した絶縁特性を示して、漏洩電流を1μA以下に保持
できる。
In this way, the heater temperature is set to 1200 ° C. br
In the following cases, dielectric breakdown does not occur even when a predetermined voltage is applied between the cathode and the heater, stable insulation characteristics are exhibited over a long period of time, and the leakage current can be maintained at 1 μA or less.

【0015】[0015]

【実施例】【Example】

実施例1.図1はこの発明に係る含浸型陰極の陰極構体
を示すもので、これはモリブデン材料からなる円筒形の
陰極スリーブ23の内面に炭化珪素薄膜231がCVD
(Chemical Vapor Depositio
n)法により形成されている。
Example 1. FIG. 1 shows a cathode assembly of an impregnated cathode according to the present invention, in which a silicon carbide thin film 231 is formed by CVD on the inner surface of a cylindrical cathode sleeve 23 made of a molybdenum material.
(Chemical Vapor Deposition
n) method.

【0016】図2は図1に示す陰極構体を図4に示すよ
うな電子銃に組み込み、陰極基体21上の温度が100
0℃brとなるようにヒータ印加電圧を設定し、その時
のダークヒータ温度を測定した結果を示すもので、炭化
珪素薄膜による黒色処理を施した陰極構体10本と未処
理の陰極構体10本とを比較している。なお、比較品は
効果を判定するため、黒色処理の有無以外はまったく同
じ構成のものを用いている。この結果から明らかなよう
に、黒色処理を施したものは、未処理のものに比べてヒ
ータ温度が140℃br低下し、1190℃brとなっ
た。
In FIG. 2, the cathode assembly shown in FIG. 1 is incorporated in an electron gun as shown in FIG.
The heater applied voltage is set to be 0 ° C.br, and the dark heater temperature at that time is measured. The results are shown in FIGS. 10A and 10B, and 10 cathode structures that are black-treated with a silicon carbide thin film and 10 untreated cathode structures. Are comparing. In addition, in order to determine the effect, the comparative product has the same configuration except for the presence or absence of black treatment. As is clear from this result, the heater temperature of the black-treated one was 140 ° C. br lower than that of the untreated one, which was 1190 ° C. br.

【0017】実施例2.図1に示す実施例1のCVD法
による炭化珪素薄膜の代わりに、炭化珪素の微粉末を塗
布、焼結することによって形成した炭化珪素薄膜による
黒色処理を施してもよい。図3は本実施例におけるヒー
タ温度を示すもので、黒色処理を施していないもの(図
2参照)に比べてヒータ温度を130℃br低下させる
ことができ、1200℃brにすることができた。
Example 2. Instead of the silicon carbide thin film formed by the CVD method according to the first embodiment shown in FIG. 1, black treatment may be performed using a silicon carbide thin film formed by coating and sintering fine powder of silicon carbide. FIG. 3 shows the heater temperature in this example, and the heater temperature can be lowered by 130 ° C. br and can be set to 1200 ° C. br as compared with the heater not subjected to the black treatment (see FIG. 2). .

【0018】炭化珪素の微粉末は、平均粒度3μmのも
のを使用し、酢酸ブチルと硝化綿を混合した溶剤に分散
させたものを陰極スリーブ内に塗布し、真空中で160
0℃にて10分間焼結させることにより炭化珪素薄膜を
形成した。
Fine powder of silicon carbide having an average particle size of 3 μm is used, and a fine powder of silicon carbide dispersed in a solvent in which butyl acetate and nitrification cotton are mixed is applied to the inside of the cathode sleeve, and 160
A silicon carbide thin film was formed by sintering at 0 ° C. for 10 minutes.

【0019】[0019]

【発明の効果】以上のように、この発明は、含浸型陰極
構体の陰極スリーブの内面に、炭化珪素薄膜により黒色
処理を施すことによって、ヒータ温度を100〜150
℃br下げることができ、さらにダークヒータと組み合
わせることによりヒータ温度を1200℃br以下にす
ることを可能とした。これにより、ヒータと陰極間の漏
洩電流は長期間の動作期間にわたって1μAに抑えら
れ、信頼性の高い含浸型陰極が得られた。
As described above, according to the present invention, the inner surface of the cathode sleeve of the impregnated cathode assembly is subjected to black treatment with a silicon carbide thin film so that the heater temperature is 100 to 150.
The temperature of the heater can be lowered to 1200 ° C. br or lower by combining with a dark heater. As a result, the leakage current between the heater and the cathode was suppressed to 1 μA over a long period of operation, and a highly reliable impregnated cathode was obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1及び実施例2の陰極構体を
示す断面図である。
FIG. 1 is a cross-sectional view showing a cathode assembly according to first and second embodiments of the present invention.

【図2】実施例1のヒータ温度特性を示す図である。FIG. 2 is a diagram showing a heater temperature characteristic of the first embodiment.

【図3】実施例2のヒータ温度特性を示す図である。FIG. 3 is a diagram showing a heater temperature characteristic of the second embodiment.

【図4】一般的なカラー陰極線管用電子銃の三極部の構
造を示す断面図である。
FIG. 4 is a cross-sectional view showing a structure of a triode portion of an electron gun for a general color cathode ray tube.

【図5】図4の陰極近傍を拡大して示す断面図である。FIG. 5 is an enlarged sectional view showing the vicinity of the cathode of FIG.

【図6】従来の陰極構体を示す断面図である。FIG. 6 is a cross-sectional view showing a conventional cathode assembly.

【図7】一般的なダークヒータの断面図である。FIG. 7 is a cross-sectional view of a general dark heater.

【符号の説明】[Explanation of symbols]

2 陰極 21 陰極基体 22 加熱用ヒータ 221 ヒータ芯線 222 アルミナ層 223 ダーク層 23 陰極スリーブ 231 炭化珪素薄膜 2 cathode 21 cathode base 22 heating heater 221 heater core wire 222 alumina layer 223 dark layer 23 cathode sleeve 231 silicon carbide thin film

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】 閉口した端部頭頂部に熱電子放出用の陰
極基体が設けられ、内部に加熱用ヒータが挿入される筒
状の陰極スリーブ、この陰極スリーブの内面に形成され
た炭化珪素薄膜を備えたことを特徴とする含浸型陰極構
体。
1. A cylindrical cathode sleeve in which a cathode substrate for emitting thermoelectrons is provided at the closed top of the end, and a heater for heating is inserted therein, and a silicon carbide thin film formed on the inner surface of the cathode sleeve. An impregnated-type cathode assembly comprising:
【請求項2】 炭化珪素薄膜は、CVD(Chemic
al VaporDeposition)法により形成
したことを特徴とする請求項1記載の含浸型陰極構体。
2. A silicon carbide thin film is formed by CVD (Chemic).
2. The impregnated-type cathode assembly according to claim 1, wherein the impregnated-type cathode assembly is formed by an Al Vapor Deposition method.
【請求項3】 炭化珪素薄膜は、炭化珪素微粉末を塗布
して焼結することにより形成したことを特徴とする請求
項1記載の含浸型陰極構体。
3. The impregnated-type cathode assembly according to claim 1, wherein the silicon carbide thin film is formed by applying silicon carbide fine powder and sintering it.
JP31093693A 1993-12-10 1993-12-10 Impregnation type cathode structure Pending JPH07161282A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31093693A JPH07161282A (en) 1993-12-10 1993-12-10 Impregnation type cathode structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31093693A JPH07161282A (en) 1993-12-10 1993-12-10 Impregnation type cathode structure

Publications (1)

Publication Number Publication Date
JPH07161282A true JPH07161282A (en) 1995-06-23

Family

ID=18011175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31093693A Pending JPH07161282A (en) 1993-12-10 1993-12-10 Impregnation type cathode structure

Country Status (1)

Country Link
JP (1) JPH07161282A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614147B2 (en) 2000-01-11 2003-09-02 Hitachi, Ltd. Cathode ray tube having an improved indirectly heated cathode structure

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6614147B2 (en) 2000-01-11 2003-09-02 Hitachi, Ltd. Cathode ray tube having an improved indirectly heated cathode structure

Similar Documents

Publication Publication Date Title
US4185223A (en) Electron gun structure
US3195004A (en) Cathode heater for electron discharge devices
US6124667A (en) Electron gun for a cathode-ray tube for image display having an electrode with a reduced electron beam limiting hole and a cathode with an electron emissive layer mainly made of an oxide of an alkaline metal and containing an oxide of a rare earth metal
US3240978A (en) Cathode assembly for an electron tube
JPH07161282A (en) Impregnation type cathode structure
US4912362A (en) Sturdy oxide cathode for cathode ray tube
US6091189A (en) Cathode for an electron tube
JPH07153384A (en) Electron gun for cathode-ray tube
JP2878634B2 (en) Cathode for electron tube
US3363136A (en) Thermionic cathodes
US6545397B2 (en) Cathode for electron tube
US2875361A (en) Auxiliary heaters to aid in activation of cathode ray type guns
US3361922A (en) Cathode-grid assembly with means for preventing the formation of electron emissive materials upon the grid element
KR100407956B1 (en) Cathode for Cathode Ray Tube and Method of manufacturing the same
KR0123733B1 (en) Serial solid thermionic cathode
KR100189836B1 (en) Fea electron gun for color braun tube and manufacturing method thereof
KR970009775B1 (en) Manufacture of impregnated type cathode
JPH11213859A (en) Negative electrode structure, electron gun structure and electron tube
KR100244219B1 (en) Activation method of submerged type cathode
JPH07161307A (en) Electron gun and electron tube provided with electron gun
JPH06150811A (en) Manufacture of impregnated type cathode and electron tube
JPH11195368A (en) Impregnated negative electrode structure, electron gun structure, and electron tube
JPH0778548A (en) Direct heat type oxide negative electrode
JPH0696662A (en) Electronic tube cathode
KR20010089378A (en) Cathode structure for cathode ray tube