JPH0716117Y2 - Fluid fitting - Google Patents

Fluid fitting

Info

Publication number
JPH0716117Y2
JPH0716117Y2 JP1989021886U JP2188689U JPH0716117Y2 JP H0716117 Y2 JPH0716117 Y2 JP H0716117Y2 JP 1989021886 U JP1989021886 U JP 1989021886U JP 2188689 U JP2188689 U JP 2188689U JP H0716117 Y2 JPH0716117 Y2 JP H0716117Y2
Authority
JP
Japan
Prior art keywords
bimetal
vibration
pressing portion
damping mechanism
outer peripheral
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP1989021886U
Other languages
Japanese (ja)
Other versions
JPH02113026U (en
Inventor
俊男 播磨
Original Assignee
株式会社ユニシアジェックス
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 株式会社ユニシアジェックス filed Critical 株式会社ユニシアジェックス
Priority to JP1989021886U priority Critical patent/JPH0716117Y2/en
Publication of JPH02113026U publication Critical patent/JPH02113026U/ja
Application granted granted Critical
Publication of JPH0716117Y2 publication Critical patent/JPH0716117Y2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Landscapes

  • Temperature-Responsive Valves (AREA)

Description

【考案の詳細な説明】 産業上の利用分野 本考案は、例えば自動車用内燃機関の冷却ファン等に用
いられる流体継手の改良に関する。
TECHNICAL FIELD The present invention relates to an improvement of a fluid coupling used for, for example, a cooling fan of an internal combustion engine for automobiles.

従来の技術 従来の内燃機関のファンカップリング装置に適用された
流体継手としては、例えば第7図に示すようなものが知
られている(特公昭59-47168号公報等参照)。
2. Description of the Related Art As a conventional fluid coupling applied to a fan coupling device for an internal combustion engine, for example, one shown in FIG. 7 is known (see Japanese Patent Publication No. 59-47168).

すなわち、内燃機関のクランク軸に支承されたハウジン
グ(図示せず)に、カバー1が固定され、該カバー1の
中心に回転軸2が軸受されており、この回転軸2の外端
には、内端3aが上記カバー1に固着された渦巻状のバイ
メタル3の他端3bが固定されている。また、このバイメ
タル3の前面に配置された支持プレート4は、3つのね
じ5…によりカバー1に固着されている。この支持プレ
ート4には、その外周部に第8図にも示すように軸方向
内側に折曲部4aが形成されていると共に、該折曲部4aの
内側に防振ゴム6が固着されている。この防振ゴム6
は、垂直面6aがバイメタル3の外周部に所定の接触しろ
を保持するように接触し、一方水平面6bがバイメタル3
の側面部に所定のクリアランスをもって対峙している。
したがって、低温時には、防振ゴム6の垂直面6aとバイ
メタル3の外周部との接触しろによる摩擦接触作用でバ
イメタル3の径方向と軸方向の振動が吸収される。一
方、高温時には、バイメタル3の内端3aが回転軸2と一
体に回動し、バイメタル3の外径が縮小して軸方向に振
動が生じ易くなるが、バイメタル3の側面部が防振ゴム
6の水平面6bに当接してバイメタル3の軸方向の振動が
吸収されるようになっている。
That is, a cover 1 is fixed to a housing (not shown) supported by a crankshaft of an internal combustion engine, and a rotary shaft 2 is supported at the center of the cover 1, and an outer end of the rotary shaft 2 is The other end 3b of the spiral bimetal 3 whose inner end 3a is fixed to the cover 1 is fixed. The support plate 4 arranged on the front surface of the bimetal 3 is fixed to the cover 1 with three screws 5. As shown in FIG. 8, a bent portion 4a is formed on the outer peripheral portion of the support plate 4 on the inner side in the axial direction, and a vibration-proof rubber 6 is fixed inside the bent portion 4a. There is. This anti-vibration rubber 6
The vertical surface 6a contacts the outer periphery of the bimetal 3 so as to maintain a predetermined contact margin, while the horizontal surface 6b contacts the bimetal 3
Face each other with a predetermined clearance.
Therefore, at low temperature, the radial and axial vibrations of the bimetal 3 are absorbed by the frictional contact action due to the contact margin between the vertical surface 6a of the antivibration rubber 6 and the outer peripheral portion of the bimetal 3. On the other hand, when the temperature is high, the inner end 3a of the bimetal 3 rotates together with the rotary shaft 2 and the outer diameter of the bimetal 3 is reduced, which makes it easier for vibration to occur in the axial direction. The vibration of the bimetal 3 in the axial direction is absorbed by contacting the horizontal surface 6b of the bimetal 6.

考案が解決しようとする課題 然し乍ら、上記従来の流体継手にあっては、防振ゴム6
が支持プレート4の折曲部4aの内側に固着され、該防振
ゴム6の内周面にバイメタル3の外周面が当接している
ため、バイメタル3の伸縮変形に伴う周方向への移動や
径方向の変形に追随して防振ゴム6が移動しない。した
がって、バイメタル3が縮径変形状態にあると、この外
周面が防振ゴム6から離間してしまうため、防振ゴム6
による制振作用が不十分になるばかりか、防振ゴム6が
固着されているのでバイメタル3の半径方向の振幅が大
きい場合は、防振ゴム6が追従し得ず、この点からも十
分な制振効果が得られない。
Problems to be Solved by the Invention However, in the above conventional fluid coupling, the vibration proof rubber 6
Is fixed to the inside of the bent portion 4a of the support plate 4 and the outer peripheral surface of the bimetal 3 is in contact with the inner peripheral surface of the antivibration rubber 6, so that the bimetal 3 can be moved in the circumferential direction due to expansion and contraction deformation. The anti-vibration rubber 6 does not move following the radial deformation. Therefore, when the bimetal 3 is in the reduced-diameter deformed state, the outer peripheral surface of the bimetal 3 is separated from the antivibration rubber 6.
In addition to the insufficient vibration damping effect due to the vibration damping rubber 6, the vibration damping rubber 6 cannot be followed when the amplitude of the bimetal 3 in the radial direction is large. Damping effect cannot be obtained.

しかも、バイメタル3が拡径方向へ大きく変形した場合
には、外周面が防振ゴム6に突き当たってそれ以上の拡
径変形が規制されてしまう。この結果、バイメタル3に
よるバルブプレートの連通孔に対する良好な開閉作動が
得られず、ひいては冷却ファンの高精度な制御が不可能
になる。
Moreover, when the bimetal 3 is largely deformed in the diameter expanding direction, the outer peripheral surface abuts the antivibration rubber 6 and further diameter expanding deformation is restricted. As a result, good opening and closing operation of the communication hole of the valve plate by the bimetal 3 cannot be obtained, which makes it impossible to control the cooling fan with high accuracy.

課題を解決するための手段 本考案は、上記従来の問題点に鑑みて案出されたもの
で、第1請求項の考案は、とりわけ制振機構が、バイメ
タルの渦巻間に転動自在に挾持される略円柱状のゴム製
支持体と、該支持体の両端部に設けられたフランジ部と
を備えたことを特徴としている。
Means for Solving the Problems The present invention has been devised in view of the above-mentioned conventional problems, and in the invention of the first claim, in particular, the vibration damping mechanism is rotatably held between the spirals of the bimetal. It is characterized in that it is provided with a substantially cylindrical rubber support, and flange portions provided at both ends of the support.

請求項2の考案は、制振機構が、バイメタルの外周面に
当接する押圧部と、該押圧部をばね部材を介して常時バ
イメタルの外周面に径方向から弾接させる可動部材とを
備えたことを特徴としている。
According to another aspect of the present invention, the vibration damping mechanism includes a pressing portion that comes into contact with the outer peripheral surface of the bimetal, and a movable member that constantly elastically contacts the outer peripheral surface of the bimetal from the radial direction with the pressing portion via the spring member. It is characterized by that.

作用 第1請求項の考案によれば、バイメタルが収縮あるいは
伸長変形し、周方向へ移動すると、支持体もバイメタル
の内外巻部位の周方向の力によって同方向へ自由に転動
する。また、バイメタルが径方向に移動すると、支持体
もそれに追随して径方向へ伸縮変形する。したがって、
バイメタルは、支持体により熱変形作用が規制されるこ
となく、常時自由な伸縮変形移動をする。
According to the invention of the first aspect, when the bimetal contracts or expands and moves in the circumferential direction, the support body also freely rolls in the same direction by the circumferential force of the inner and outer winding parts of the bimetal. Further, when the bimetal moves in the radial direction, the support body also expands and contracts in the radial direction following the movement. Therefore,
The bimetal always freely expands, contracts, and deforms without being restricted in its thermal deformation by the support.

また、フランジ部によって支持体の軸方向の移動を規制
するため、不用意な抜け出しが防止される。
Further, since the flange portion restricts the movement of the support body in the axial direction, it is possible to prevent accidental slipping out.

第2請求項の考案によれば、バイメタルの振動を押圧部
を介してばね部材で吸収するため、十分な制振作用が得
られることは勿論のこと、バイメタルが上述のように周
方向へ移動すると押圧部がばね部材のばね力によってバ
イメタルの外周面に弾接しつつ摺動する。また、径方向
の変形に対しても押圧部は、バイメタルの外周面に弾接
しつつ径方向へ追随移動する。したがって、バイメタル
は、押圧部によって収縮,伸長作用が規制されることが
なくなる。
According to the invention of the second aspect, since the vibration of the bimetal is absorbed by the spring member via the pressing portion, it is of course possible to obtain a sufficient damping action, and the bimetal moves in the circumferential direction as described above. Then, the pressing portion slides while elastically contacting the outer peripheral surface of the bimetal by the spring force of the spring member. Further, even when the pressing portion is deformed in the radial direction, the pressing portion moves in the radial direction while elastically contacting the outer peripheral surface of the bimetal. Therefore, the contraction and extension of the bimetal are not restricted by the pressing portion.

実施例 以下、本考案の実施例を図面に基づいて詳述する。尚、
この実施例も従来と同様に内燃機関のファンカップリン
グ装置に適用されたものである。
Embodiment Hereinafter, an embodiment of the present invention will be described in detail with reference to the drawings. still,
This embodiment is also applied to a fan coupling device for an internal combustion engine as in the conventional case.

第3図は、本考案の第1の請求項の実施例を示し、101
はVベルトプーリ102を有する駆動軸、103は従動部材た
るハウジング、105は冷却ファン、106はロータ、107は
ハウジング103の内部を貯留室108と作動室109とに隔成
する仕切板、110,111はラビリンス溝、112は仕切板に形
成されて上記貯留室108と作動室109とを連通する連通
孔、113は側部カバー103aの軸受孔103bに軸受された回
転軸、114は一端部が該回転軸113に固定されかつ他端部
が上記連通孔112を開閉するバルブプレート、115は感温
部材たるバイメタルであって、このバイメタル115は、
細板を渦巻状に形成してなり、その外端部115aが側部カ
バー103aの前面に有する膨出部103cにかしめ固定されて
いる一方、中心端部115bが上記回転軸113の外端部にか
しめ固定されており、その有効長は、機関振動との共振
領域内の長さに設定されている。
FIG. 3 shows an embodiment of the first claim of the present invention.
Is a drive shaft having a V-belt pulley 102, 103 is a driven member housing, 105 is a cooling fan, 106 is a rotor, 107 is a partition plate that divides the interior of the housing 103 into a storage chamber 108 and a working chamber 109, and 110 and 111 are A labyrinth groove, 112 is a communication hole formed in a partition plate to connect the storage chamber 108 and the working chamber 109, 113 is a rotary shaft supported by a bearing hole 103b of the side cover 103a, and 114 is one end of which rotates. A valve plate fixed to the shaft 113 and having the other end opening and closing the communication hole 112, 115 is a bimetal which is a temperature-sensing member, and the bimetal 115 is
The thin plate is formed in a spiral shape, and the outer end 115a thereof is caulked and fixed to the bulging portion 103c provided on the front surface of the side cover 103a, while the central end 115b is the outer end of the rotary shaft 113. It is fixed by crimping, and its effective length is set to a length within a resonance region with engine vibration.

そして、上記バイメタル115の最外巻部位115cとその内
側の内巻部位115dとの隙間Cには、第1図及び第2図に
示すように3つの制振機構120…が周方向へ等間隔に設
けられている。この制振機構120は、円柱状のゴム製支
持体121と、該支持体121の両端部に一体に設けられたフ
ランジ部122,122とからなり、上記支持体121はその直径
長さが上記隙間C巾長さL1と同一に設定れ、一方軸方向
の長さがバイメタル115の巾長さL2と略同一に設定され
ている。またフランジ部122,122は、その直径長さが隙
間Cの巾長さL1よりも若干大きく設定されている。した
がって、上記支持体121は、フランジ部122,122によって
軸方向の移動が規制されていると共に、内外巻部位115
c,115dの内外周面115e,115fに当接しつつ転動自在に配
置されている。
Then, in the gap C between the outermost winding portion 115c of the bimetal 115 and the inner winding portion 115d on the inner side thereof, as shown in FIGS. 1 and 2, three damping mechanisms 120 are equidistantly arranged in the circumferential direction. It is provided in. The vibration damping mechanism 120 includes a cylindrical rubber support 121 and flanges 122, 122 integrally provided at both ends of the support 121. The support 121 has a diameter length of the gap C. The width length L 1 is set to be the same, and the axial length is set to be substantially the same as the width length L 2 of the bimetal 115. Further, the flange portions 122, 122 are set such that the diameter length thereof is slightly larger than the width length L 1 of the gap C. Therefore, the support member 121 is restricted from moving in the axial direction by the flange portions 122 and 122, and the inner and outer winding portions 115 are formed.
The c and 115d are arranged so that they can roll while contacting the inner and outer peripheral surfaces 115e and 115f.

以下、本実施例の作用について説明する。すなわち、機
関始動後に機関振動が側部カバー103aを介してバイメタ
ル115に伝達されると、各制振機構120…の支持体121…
がその振動を効果的に吸収してバイメタル115の振動を
十分に抑制する。したがって、バイメタル115の外端部1
15aや中心端部115bに近傍に有する折曲個所x,yのひび割
れや折損が確実に防止されると共に、軸受孔103bと回転
軸113間の摩耗が防止される。
The operation of this embodiment will be described below. That is, when the engine vibration is transmitted to the bimetal 115 via the side cover 103a after the engine is started, the supports 121 ...
Effectively absorbs the vibration and sufficiently suppresses the vibration of the bimetal 115. Therefore, the outer end 1 of the bimetal 115
It is possible to reliably prevent cracks and breaks at the bent portions x and y near the central portion 15a and the central end 115b, and prevent wear between the bearing hole 103b and the rotary shaft 113.

しかも、ラジェータ付近の空気温度が所定温度より低い
場合は、バイメタル115が固定外端部115aから中心端部1
15bまでの有効長範囲が収縮変形し、第1図の実線矢印
で示すように外巻部位115cが時計方向へ移動すると、制
振機構120の支持体121が内外巻部位115c,115dの内外周
面115e,115fから周方向の力を受けて時計方向に転動す
る。一方、逆に暖機後などにおいて、空気温度が所定温
度よりも高くなった場合、バイメタル115が伸長変形し
て外巻部位115cが破線矢印で示すように上述とは逆移動
するため、支持体121は内外巻部位115c,115dの周方向の
力により反時計方向に転動する。また、バイメタル115
が、上述のように時計あるいは反時計方向の移動の他に
半径方向(せん断方向)にも移動すると、支持体121も
それに追随して半径方向に弾性変形する。このため、バ
イメタル115の熱変形作用が抑制されず、滑らかな伸縮
変形移動が得られる。したがって、バルブプレート114
が、回転軸113を介して連通孔112を精度良く開閉するの
で冷却ファン105の高精度な回転制御が可能になる。
尚、制振機構120の配設位置は、バイメタル115の最外巻
部位115c付近のみに限らず、内方側に配置するようにす
れば、回転軸113の揺動も防止することができる。
Moreover, when the air temperature near the radiator is lower than the predetermined temperature, the bimetal 115 moves from the fixed outer end portion 115a to the central end portion 1a.
When the effective length range up to 15b is contracted and deformed and the outer winding portion 115c moves clockwise as indicated by the solid arrow in FIG. 1, the support 121 of the vibration damping mechanism 120 causes the inner and outer winding portions 115c and 115d to have inner and outer circumferences. The surface 115e, 115f receives a force in the circumferential direction and rolls clockwise. On the other hand, when the air temperature becomes higher than the predetermined temperature after warming up, on the other hand, the bimetal 115 expands and deforms, and the outer winding portion 115c moves in the opposite direction as shown by the broken line arrow. The 121 rolls counterclockwise by the circumferential force of the inner and outer winding parts 115c and 115d. Also, bimetal 115
However, if the support 121 also moves in the radial direction (shear direction) in addition to the clockwise or counterclockwise movement as described above, the support 121 also elastically deforms in the radial direction. Therefore, the thermal deformation action of the bimetal 115 is not suppressed, and smooth expansion / contraction deformation movement can be obtained. Therefore, the valve plate 114
However, since the communication hole 112 is opened and closed with high precision via the rotary shaft 113, the rotation control of the cooling fan 105 can be performed with high precision.
The position of the vibration damping mechanism 120 is not limited to the vicinity of the outermost winding portion 115c of the bimetal 115, but if the vibration damping mechanism 120 is arranged on the inner side, the swing of the rotary shaft 113 can be prevented.

また、支持体121は、フランジ部122,122がバイメタル11
5の巾方向の両側縁に係止して軸方向への移動が規制さ
れるため、バイメタル115からの不用意な抜け出しが防
止される。さらに、各制振機構120同志を連結部材を介
して夫々回転自在に連結しておけば使用中に制振機構12
0が偏ることがない。さらに、制振機構120は、円柱状の
ものに限らず、バイメタル115内の隙間Cに配置される
略扇形のものでも、バイメタル115の巻線自体を環状に
囲繞するものでもよい。さらにまた、バイメタル115に
接して側部カバー103aとの間に配置してもよい。
Further, in the support 121, the flange portions 122, 122 have the bimetal 11
Since it is locked to both side edges of the width direction of 5 and its movement in the axial direction is restricted, it is prevented from accidentally coming out of the bimetal 115. Furthermore, if each damping mechanism 120 is rotatably connected to each other via a connecting member, the damping mechanism 12 can be used during use.
0 is not biased. Further, the vibration damping mechanism 120 is not limited to the columnar shape, and may be a substantially fan-shaped one arranged in the gap C in the bimetal 115, or one surrounding the winding of the bimetal 115 in an annular shape. Furthermore, it may be placed in contact with the bimetal 115 and between the side cover 103a.

第4図及び第5図は第2請求項の第1実施例を示してお
り、制振機構130が側部カバー103aに枢着されている。
具体的に説明すれば制振機構130は、バイメタル115の外
側に配置された略く字形の可動部材131と、該可動部材1
31の一端部131aに有する軸136に回転自在に設けられた
円筒状のゴム製押圧部132とを備えており、上記可動部
材131は、上記一端部131aが上記バイメタル115の最外巻
部材115cの外周に沿って円弧状に形成されていると共
に、折曲中央部が枢支ピン133を介して側部カバー103a
に回転自在に設けられている。また、他端部131bと側部
カバー103aに固定された支持ピン134との間に弾装され
たコイルスプリング135によって図中反時計方向に回転
力が付与されている。一方、上記押圧部132は、金属材
からなり、その外周面132aが上記可動部材131の反時計
方向の回転力によってバイメタル115の外巻部位115cを
中心側に転動自在に押圧している。
4 and 5 show the first embodiment of the second aspect of the present invention, in which the damping mechanism 130 is pivotally attached to the side cover 103a.
More specifically, the vibration damping mechanism 130 includes a substantially V-shaped movable member 131 arranged outside the bimetal 115, and the movable member 1
31 includes a cylindrical rubber pressing portion 132 rotatably provided on a shaft 136 provided at one end 131a of the movable member 131, and the movable member 131 has the one end 131a of the outermost winding member 115c of the bimetal 115. Is formed in an arc shape along the outer periphery of the side cover 103a via the pivot pin 133 at the center of bending.
It is rotatably installed. A coil spring 135 elastically mounted between the other end 131b and the support pin 134 fixed to the side cover 103a applies a rotational force counterclockwise in the drawing. On the other hand, the pressing portion 132 is made of a metal material, and its outer peripheral surface 132a presses the outer winding portion 115c of the bimetal 115 to the center side by the counterclockwise rotation force of the movable member 131 so as to be rollable.

したがって、この実施例によれば機関振動がバイメタル
115に伝達されると、押圧部132がコイルスプリング135
のばね力を介してその振動を二重に吸収するため、バイ
メタル115の制振効果が一層向上する。
Therefore, according to this embodiment, the engine vibration is bimetal.
When it is transmitted to 115, the pressing portion 132 causes the coil spring 135 to
Since the vibration is doubly absorbed via the spring force of, the damping effect of the bimetal 115 is further improved.

しかも、バイメタル115の上述のような熱変形により外
巻部位115cが時計あるいは反時計方向に変形移動する
と、押圧部132が外巻部位115cの外周面115gを押圧しつ
つ転動する。このため、バイメタル115の変形移動作用
が抵抗なく行なわれる。とりわけ、押圧部132は、可動
部材131によってバイメタル115の半径方向に移動自在に
支持されているため、該バイメタル115の半径方向への
変形移動に対しても外巻部位115cの外周面115gに当接し
つつ追随移動するので、バイメタル115の収縮・伸長作
用が押圧部132によって抑制されることがない。この結
果、バイメタル115の制振効果が得られることは勿論の
こと変形移動性がさらに良好となる。尚、上記押圧部13
2は、ボールベアリング等で軸受してもよい。
Moreover, when the outer winding portion 115c is deformed in the clockwise or counterclockwise direction due to the above-described thermal deformation of the bimetal 115, the pressing portion 132 rolls while pressing the outer peripheral surface 115g of the outer winding portion 115c. Therefore, the deforming and moving action of the bimetal 115 is performed without resistance. In particular, since the pressing portion 132 is supported by the movable member 131 so as to be movable in the radial direction of the bimetal 115, the pressing portion 132 contacts the outer peripheral surface 115g of the outer winding portion 115c even when the bimetal 115 is deformed in the radial direction. Since the contact metal moves in contact with each other, the contraction / extension action of the bimetal 115 is not suppressed by the pressing portion 132. As a result, not only the damping effect of the bimetal 115 is obtained, but also the deformation mobility is further improved. Incidentally, the pressing portion 13
2 may be a ball bearing or the like.

第6図は本考案の第2請求項の第2実施例を示し、押圧
部132を回転自在とせずに軸136に固定すると共に金属材
で成形し、この外周面に低摩擦材の層138を形成したも
のである。したがって、押圧部132が、バイメタル115の
外周面にコイルスプリング135のばね力で弾接しつつ滑
らかに摺動するため、バイメタル115の制振作用と良好
な変形移動が得られる。
FIG. 6 shows a second embodiment of the second aspect of the present invention, in which the pressing portion 132 is fixed to the shaft 136 without being freely rotatable and is formed of a metal material, and a low friction material layer 138 is formed on the outer peripheral surface thereof. Is formed. Therefore, since the pressing portion 132 slides smoothly on the outer peripheral surface of the bimetal 115 while elastically contacting with the spring force of the coil spring 135, the damping action of the bimetal 115 and good deformation movement can be obtained.

尚、上記押圧部132は、上述のものに限定されず、可動
部材131の先端を延長して軸方向内側へ直角に折曲形成
し、この折曲部を押圧部とすることも可能であり、この
ようにすれば可動部材131と押圧部とを一体にプレス成
形でき、製造コストの低廉化が図れる。この場合、押圧
部のバイメタル115と当接する外周面に上述のような低
摩擦材の層を形成すれば、バイメタル115の良好な変形
移動が得られることは云うまでもない。
The pressing portion 132 is not limited to the one described above, and it is also possible to extend the tip of the movable member 131 and bend it to the inner side in the axial direction at a right angle, and use this bending portion as the pressing portion. By doing so, the movable member 131 and the pressing portion can be integrally press-molded, and the manufacturing cost can be reduced. In this case, it goes without saying that good deformation movement of the bimetal 115 can be obtained by forming a layer of the low friction material as described above on the outer peripheral surface of the pressing portion that abuts the bimetal 115.

考案の効果 以上の説明で明らかなように、本考案によれば、ゴム製
支持体や押圧部によってバイメタルに対する十分な制振
効果が得られることは勿論のこと、バイメタルの周方向
及び径方向の伸縮変形時には、前記支持体がそれに追随
して転動したりあるいは弾性変形するため、バイメタル
は支持体に熱変形作用が規制されることなく常時自由な
変形作用が得られる。また、押圧部もバイメタルの周方
向及び径方向の伸縮変形に伴い該バイメタルの外周面に
弾接しつつ摺動しかつ径方向へ自由に移動するため、バ
イメタルの常時自由な変形作用を得ることができる。
Effects of the Invention As is clear from the above description, according to the present invention, it is possible to obtain a sufficient vibration damping effect on the bimetal by the rubber support and the pressing portion, as well as the circumferential and radial directions of the bimetal. At the time of expansion and contraction, the support rolls or elastically deforms following the support, so that the bimetal can always obtain a free deformation without being restricted by the thermal deformation of the support. Further, the pressing portion also slides while elastically contacting the outer peripheral surface of the bimetal and freely moves in the radial direction as the bimetal expands and contracts in the circumferential direction and the radial direction. it can.

この結果、バイメタルの熱変形による従動部材内の作動
流体の作動量を高精度に制御でき、ひいては駆動軸から
従動部材への駆動トルクの伝達制御精度が向上する。
As a result, the working amount of the working fluid in the driven member due to the thermal deformation of the bimetal can be controlled with high accuracy, and the accuracy of controlling the transmission of the drive torque from the drive shaft to the driven member is improved.

更に、支持体は、両端部のフランジ部によってバイメタ
ルからの不用意な脱落が防止される。
Further, the support body is prevented from being accidentally detached from the bimetal by the flange portions at both end portions.

【図面の簡単な説明】[Brief description of drawings]

第1図は、本考案の第1請求項に対応する第1実施例を
示す要部正面図、第2図は本実施例の要部側断面図、第
3図は本実施例の全体構成を示す断面図、第4図は第2
請求項の第1実施例を示す断面図、第5図は本実施例の
正面図、第6図は第2請求項の第2実施例を示す正面
図、第7図は従来の流体継手を示す断面図、第8図は同
従来の要部正面図である。 101…駆動軸、103…ハウジング(従動部材)、115…バ
イメタル(感温部材)、120,130…制振機構、121…支持
体、122…フランジ部、131…可動部材、132…押圧部、1
35…コイルスプリング(ばね部材)。
FIG. 1 is a front view of an essential part showing a first embodiment corresponding to the first claim of the present invention, FIG. 2 is a sectional side view of an essential part of this embodiment, and FIG. 3 is an overall configuration of this embodiment. FIG. 4 is a sectional view showing
Sectional view showing the first embodiment of the claims, FIG. 5 is a front view of the present embodiment, FIG. 6 is a front view of the second embodiment of the second claim, and FIG. 7 is a conventional fluid coupling. The sectional view shown in FIG. 8 is a front view of the main part of the same. 101 ... Drive shaft, 103 ... Housing (driven member), 115 ... Bimetal (temperature sensitive member), 120,130 ... Vibration damping mechanism, 121 ... Support body, 122 ... Flange portion, 131 ... Movable member, 132 ... Pressing portion, 1
35 ... Coil spring (spring member).

Claims (2)

【実用新案登録請求の範囲】[Scope of utility model registration request] 【請求項1】駆動軸に回転自在に支承された従動部材の
外側に渦巻状のバイメタルを装着し、該バイメタルの熱
変形を得て上記従動部材内の作動流体の作動量を制御す
ると共に、バイメタルの所定個所に該バイメタルの振動
吸収用の制振機構を当接してなる流体継手において、 前記制振機構は、バイメタルの渦巻間に転動自在に挾持
される略円柱状のゴム製支持体と、該支持体の両端部に
設けられたフランジ部とを備えたことを特徴とする流体
継手。
1. A spiral bimetal is mounted on the outer side of a driven member rotatably supported by a drive shaft, and thermal deformation of the bimetal is obtained to control the working amount of the working fluid in the driven member. A fluid coupling in which a vibration-damping mechanism for absorbing vibration of the bimetal is in contact with a predetermined portion of the bimetal, wherein the vibration-damping mechanism is a substantially cylindrical rubber support that is rotatably held between the spirals of the bimetal. And a flange portion provided on both end portions of the support, a fluid coupling.
【請求項2】駆動軸に回転自在に支承された従動部材の
外側に渦巻状のバイメタルを装着し、該バイメタルの熱
変形を得て上記従動部材内の作動流体の作動量を制御す
ると共に、バイメタルの所定個所に該バイメタルの振動
吸収用の制振機構を当接してなる流体継手において、 前記制振機構は、バイメタルの外周面に当接する押圧部
と、該押圧部をばね部材を介して常時バイメタルの外周
面に径方向から弾接させる可動部材とを備えたことを特
徴とする流体継手。
2. A spiral bimetal is attached to the outside of a driven member rotatably supported by a drive shaft, and thermal deformation of the bimetal is obtained to control the working amount of the working fluid in the driven member. In a fluid coupling in which a vibration-damping mechanism for absorbing vibration of the bimetal is in contact with a predetermined portion of the bimetal, the vibration-damping mechanism includes a pressing portion that contacts the outer peripheral surface of the bimetal, and the pressing portion via a spring member. A fluid coupling comprising: a movable member that is always in radial contact with the outer peripheral surface of a bimetal.
JP1989021886U 1989-02-27 1989-02-27 Fluid fitting Expired - Lifetime JPH0716117Y2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1989021886U JPH0716117Y2 (en) 1989-02-27 1989-02-27 Fluid fitting

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1989021886U JPH0716117Y2 (en) 1989-02-27 1989-02-27 Fluid fitting

Publications (2)

Publication Number Publication Date
JPH02113026U JPH02113026U (en) 1990-09-10
JPH0716117Y2 true JPH0716117Y2 (en) 1995-04-12

Family

ID=31239512

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1989021886U Expired - Lifetime JPH0716117Y2 (en) 1989-02-27 1989-02-27 Fluid fitting

Country Status (1)

Country Link
JP (1) JPH0716117Y2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5920632B2 (en) * 2013-02-07 2016-05-18 株式会社デンソー Valve timing adjustment device
JP6745868B2 (en) * 2018-12-27 2020-08-26 株式会社牧野フライス製作所 Tool holder

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947168A (en) * 1982-09-09 1984-03-16 フアナツク株式会社 Bolt gripper

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0296037U (en) * 1989-01-20 1990-07-31

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5947168A (en) * 1982-09-09 1984-03-16 フアナツク株式会社 Bolt gripper

Also Published As

Publication number Publication date
JPH02113026U (en) 1990-09-10

Similar Documents

Publication Publication Date Title
EP0400772B1 (en) Torsional spring tensioner with stabilizer
JPS6215778B2 (en)
JPH0861430A (en) Torque transmission gear cooperating with friction clutch
US6602140B2 (en) Apparatus for damping torsional vibrations
JPH063223B2 (en) Torsional vibration damper
JP3467051B2 (en) Positioning spring for positioning a plurality of rollers of a triplan joint and a triplan joint using the same
JPH0716117Y2 (en) Fluid fitting
JPH0113851Y2 (en)
JPH09506157A (en) Double damping flywheel
JP3618121B2 (en) Centrifugal pendulum absorber
US5117955A (en) Temperature-controlled fluid friction coupling
JP2007278451A (en) Fluid coupling
JP5074961B2 (en) Centrifugal clutch device for vehicle
JP3785188B2 (en) Dump flywheel
JP2581953Y2 (en) Torque fluctuation absorber
JPS5947168B2 (en) Bimetal vibration isolator for temperature-sensitive viscous fluid joints
JP3565397B2 (en) Friction resistance generating mechanism and damper mechanism
JP2511297Y2 (en) V-belt continuously variable transmission
CA1321515C (en) Fuel injection timing apparatus
JPH05346138A (en) Torque transmission device
JPH0245532Y2 (en)
JP2002168262A (en) Run-off prevention device for tripod-type constant- velocity universal joint
JP2600912Y2 (en) Timer device for fuel injection pump
JPH0629548Y2 (en) Torque fluctuation absorber
EP3597960A1 (en) Dual-mass flywheel

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term