JPH07159659A - Method for aligning optical semiconductor device - Google Patents

Method for aligning optical semiconductor device

Info

Publication number
JPH07159659A
JPH07159659A JP30629893A JP30629893A JPH07159659A JP H07159659 A JPH07159659 A JP H07159659A JP 30629893 A JP30629893 A JP 30629893A JP 30629893 A JP30629893 A JP 30629893A JP H07159659 A JPH07159659 A JP H07159659A
Authority
JP
Japan
Prior art keywords
optical
semiconductor element
optical semiconductor
optical lens
lens
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30629893A
Other languages
Japanese (ja)
Inventor
Hiroshi Tashiro
博志 田代
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electronics Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electronics Corp filed Critical Matsushita Electronics Corp
Priority to JP30629893A priority Critical patent/JPH07159659A/en
Publication of JPH07159659A publication Critical patent/JPH07159659A/en
Pending legal-status Critical Current

Links

Landscapes

  • Semiconductor Lasers (AREA)
  • Optical Couplings Of Light Guides (AREA)

Abstract

PURPOSE:To accurately align the optical axis of an optical lens with the light emitting point of an optical semiconductor element and to obtain stable and high coupling efficiency with the optical fiber. CONSTITUTION:By image-picking up the optical semiconductor element 4 with an image pickup camera 12 through the optical lens 8 and optically performing alignment in order to align the light emitting point of the optical semiconductor element 4 disposed on a carrier base 2 with the optical axis of the optical lens 8 disposed on a mount base 1, the light emitting point of the optical semiconductor element 4 is easily and accurately aligned and adhered to the optical axis of the optical lens 8. Thus, the accurate and stable coupling efficiency with the optical fiber is obtained.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、情報伝送などに用い
られる光学系を内蔵した光半導体装置の位置合わせ方法
に関するものであり、詳しくは、光半導体素子と光学レ
ンズと光ファイバーからなる光半導体装置の位置合わせ
方法に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method of aligning an optical semiconductor device incorporating an optical system used for information transmission, and more specifically, to an optical semiconductor device including an optical semiconductor element, an optical lens and an optical fiber. The present invention relates to the alignment method of.

【0002】[0002]

【従来の技術】光ファイバー通信は高速大容量の長所を
持ち、情報化社会の進展とともに実用化されてきてい
る。この光ファイバー通信には、光源である半導体レー
ザなど光半導体素子からの光を効率よく光ファイバーに
入力させる技術が不可欠で、これを容易にするために、
光ファイバーと光学レンズと光半導体素子を一体化した
モジュール形状の光半導体装置として利用することが一
般的である。
2. Description of the Related Art Optical fiber communication has the advantage of high speed and large capacity, and has been put into practical use with the progress of the information society. For this optical fiber communication, a technology for efficiently inputting light from an optical semiconductor element such as a semiconductor laser as a light source into an optical fiber is indispensable. To facilitate this,
It is generally used as a module-shaped optical semiconductor device in which an optical fiber, an optical lens, and an optical semiconductor element are integrated.

【0003】まず、従来の光半導体装置の構成について
説明する。図2は従来の光半導体装置の構成を示す側面
図であり、図3はそのマウントベース部の構成を詳細に
示した斜視図である。光学レンズ8と光半導体素子4を
一体的に有する構成であり、すでに光学レンズ8が配設
されたマウントベース1に、光半導体素子4を載置した
キャリアベース2を配設したのち、光の取り出し口とな
る光ファイバー11との結合部を有するパッケージ10
に封止されて成る。光半導体素子4はサブマウント3に
接着した後、キャリアベース2に搭載され、サブマウン
ト3を介して光半導体素子4の下部電極はキャリアベー
ス2と電気的に接続されている。光半導体素子4とサブ
マウント3とキャリアベース2のそれぞれの接着には、
長期安定性のために金属ロウ材を用いている。一方、光
半導体素子4の上部電極はキャリアベース2上に形成さ
れた導電部6と金属細線5により電気的に接続されてお
り、導電部6は絶縁部7によってキャリアベース2と電
気的に絶縁されている。
First, the structure of a conventional optical semiconductor device will be described. 2 is a side view showing the structure of a conventional optical semiconductor device, and FIG. 3 is a perspective view showing the structure of the mount base portion in detail. The optical lens 8 and the optical semiconductor element 4 are integrally provided, and the carrier base 2 on which the optical semiconductor element 4 is mounted is disposed on the mount base 1 on which the optical lens 8 is already disposed. A package 10 having a coupling portion with an optical fiber 11 which serves as an outlet.
It is sealed in. The optical semiconductor element 4 is mounted on the carrier base 2 after being bonded to the submount 3, and the lower electrode of the optical semiconductor element 4 is electrically connected to the carrier base 2 via the submount 3. To bond each of the optical semiconductor element 4, the submount 3, and the carrier base 2,
Metal brazing material is used for long-term stability. On the other hand, the upper electrode of the optical semiconductor element 4 is electrically connected to the conductive portion 6 formed on the carrier base 2 by the thin metal wire 5, and the conductive portion 6 is electrically insulated from the carrier base 2 by the insulating portion 7. Has been done.

【0004】以下、このような光半導体装置の従来の製
造方法について説明する。まず、マウントベース1の所
定の位置に光学レンズ8を搭載する。また、別の工程で
は、まず、サブマウント3に金属ロウ材を用いて光半導
体素子4を接着する。その後、キャリアベース2に同様
の方法により光半導体素子4が接着されたサブマウント
3を接着し、光半導体素子4の上部電極を金属細線5に
より導電部6と電気的に接続する。つぎの工程におい
て、光学レンズ8が配設されたマウントベース1に、光
半導体装置4を載置したキャリアベース2を、所定位置
範囲に位置合わせし、金属ロウ材で接着する。光半導体
素子4の位置合わせの方法として、マウントベース1に
刻印された位置合わせ用の目印9を用いて、上部からの
目視により左右方向に光半導体素子4の位置合わせを
し、金属ロウ材で接着を行う。
A conventional method of manufacturing such an optical semiconductor device will be described below. First, the optical lens 8 is mounted at a predetermined position on the mount base 1. In another step, first, the optical semiconductor element 4 is bonded to the submount 3 by using a metal brazing material. After that, the submount 3 to which the optical semiconductor element 4 is adhered is adhered to the carrier base 2 by the same method, and the upper electrode of the optical semiconductor element 4 is electrically connected to the conductive portion 6 by the metal thin wire 5. In the next step, the carrier base 2 on which the optical semiconductor device 4 is mounted is aligned with the mount base 1 on which the optical lens 8 is arranged within a predetermined position range, and bonded with a metal brazing material. As a method for aligning the optical semiconductor element 4, the optical semiconductor element 4 is aligned in the left-right direction by visual inspection from above using the alignment mark 9 engraved on the mount base 1, and a metal brazing material is used. Adhere.

【0005】上記製造工程により組み立てられたマウン
トベース1を、パッケージ10の所定の位置に金属ロウ
材で接着することで、光半導体装置が組み立てられる。
この光半導体装置は、光半導体素子4から出射された光
は光学レンズ8により集光され、光ファイバー11のコ
ア部に入力され信号として利用される。光半導体素子4
からの光を効率よく安定して光ファイバー11に入力す
るには、光学レンズ8の光軸と光半導体素子4の発光点
とを、合わせ所定位置範囲に精度よく配設する必要があ
る。
The optical semiconductor device is assembled by bonding the mount base 1 assembled by the above manufacturing process to a predetermined position of the package 10 with a metal brazing material.
In this optical semiconductor device, the light emitted from the optical semiconductor element 4 is condensed by the optical lens 8 and input to the core portion of the optical fiber 11 to be used as a signal. Optical semiconductor element 4
In order to efficiently and stably input the light from the optical fiber 11 to the optical fiber 11, it is necessary to accurately arrange the optical axis of the optical lens 8 and the light emitting point of the optical semiconductor element 4 in a predetermined position range.

【0006】例えば、光ファイバー11としてコア径1
0μmのシングルモードファイバーを用い、光半導体素
子4として半導体レーザを用いた場合には、光学レンズ
8と光半導体素子4(半導体レーザ)の位置を所定の位
置から±20μmの精度で固定しなければ、光ファイバ
ー11との結合効率が著しく変化し、得られる光半導体
装置の特性が大幅に変動してしまう。これを抑えるため
に従来は、マウントベース1に刻印された位置合わせ用
の目印9により解決しようと試みられていた。
For example, the optical fiber 11 has a core diameter of 1
When a single-mode fiber of 0 μm is used and a semiconductor laser is used as the optical semiconductor element 4, the positions of the optical lens 8 and the optical semiconductor element 4 (semiconductor laser) must be fixed with an accuracy of ± 20 μm from a predetermined position. However, the coupling efficiency with the optical fiber 11 changes remarkably, and the characteristics of the obtained optical semiconductor device change greatly. In order to suppress this, hitherto, it has been attempted to solve the problem by the positioning mark 9 engraved on the mount base 1.

【0007】[0007]

【発明が解決しようとする課題】しかしながら、上記し
た従来の方法では、光学レンズ8と光半導体素子4の位
置合わせを上部からの目視で行うため、光学レンズ8の
光軸が精度よく特定できないし、また、マウントベース
1に刻印された位置合わせ用の目印9の位置精度は、機
械工作精度で決まり、通常±20μm程度にしか制御で
きないなどの問題がある。また、目視によるため、作業
者の個人差による位置精度のバラツキも問題になる。ま
た、光半導体素子4内に発光点を示す目印がないことに
より精度よく位置合わせできない。そのため、前述の光
半導体装置において必要とする位置精度を実現できな
い。
However, in the above-mentioned conventional method, since the optical lens 8 and the optical semiconductor element 4 are aligned with each other visually from above, the optical axis of the optical lens 8 cannot be accurately specified. Further, there is a problem that the positional accuracy of the positioning mark 9 engraved on the mount base 1 is determined by the machining accuracy and can usually be controlled only to about ± 20 μm. Further, since it is visually observed, there is a problem in that the positional accuracy varies due to individual differences among workers. In addition, since the optical semiconductor element 4 does not have a mark indicating a light emitting point, accurate alignment cannot be performed. Therefore, the positional accuracy required in the above-mentioned optical semiconductor device cannot be realized.

【0008】以上のように、従来の位置合わせ方法で
は、光学レンズ8の光軸と光半導体素子4の発光点とを
精度よく位置合わせできず、光半導体素子4からの光を
効率よく安定して光ファイバー11に入力できるように
製造することができないという問題があった。この発明
の目的は、光学レンズの光軸と光半導体素子の発光点と
の位置合わせが精度よくでき、光ファイバーとの安定し
た高結合効率を得ることができる光半導体装置の位置合
わせ方法を提供することである。
As described above, according to the conventional alignment method, the optical axis of the optical lens 8 and the light emitting point of the optical semiconductor element 4 cannot be accurately aligned, and the light from the optical semiconductor element 4 is efficiently and stably stabilized. However, there is a problem in that it cannot be manufactured so that it can be input to the optical fiber 11. An object of the present invention is to provide a method of aligning an optical semiconductor device, which enables accurate alignment of an optical axis of an optical lens and a light emitting point of an optical semiconductor element and can obtain stable high coupling efficiency with an optical fiber. That is.

【0009】[0009]

【課題を解決するための手段】上記の課題を解決するた
めにこの発明の光半導体装置の位置合わせ方法は、光半
導体素子を光学レンズに光学的に位置合わせするため
に、撮像用カメラにより光学レンズを介して光半導体素
子を撮像して、光学レンズの光軸に光半導体素子の発光
点を位置合わせすることを特徴とする。
In order to solve the above-mentioned problems, a method of aligning an optical semiconductor device according to the present invention uses an image pickup camera to optically align an optical semiconductor element with an optical lens. The optical semiconductor element is imaged through the lens, and the light emitting point of the optical semiconductor element is aligned with the optical axis of the optical lens.

【0010】[0010]

【作用】この発明によれば、光半導体素子を光学レンズ
を介して撮像用カメラで直接撮像するため、マウントベ
ースや他の部材の工作精度に関係なく、また、光学レン
ズとマウントベースの位置ずれを気にすることなく、光
学レンズの光軸と光半導体素子の発光点の位置合わせが
精度よくできる。また、光半導体素子は、光学レンズの
倍率により拡大されて見えるため、位置合わせの作業性
が向上する。さらに、光半導体素子内に発光領域を示す
位置マークを設ければ、光半導体素子内での発光点の位
置のバラツキの影響を少なくして、光半導体素子の発光
点を光学レンズの光軸に合わせることが可能になる。
According to the present invention, since the optical semiconductor element is directly imaged by the imaging camera through the optical lens, the positional deviation between the optical lens and the mount base is irrespective of the working accuracy of the mount base and other members. The position of the optical axis of the optical lens and the light emitting point of the optical semiconductor element can be accurately aligned without worrying about. Moreover, since the optical semiconductor element appears to be magnified by the magnification of the optical lens, the workability of alignment is improved. Furthermore, if a position mark indicating the light emitting region is provided in the optical semiconductor element, the influence of the variation in the position of the light emitting point in the optical semiconductor element is reduced, and the light emitting point of the optical semiconductor element is aligned with the optical axis of the optical lens. It becomes possible to match.

【0011】[0011]

【実施例】以下、この発明の実施例について図面を参照
しながら説明する。図1はこの発明の実施例における光
半導体装置のマウントベースとキャリアベースの位置合
わせの構成を示す斜視図である。この実施例における基
本的な製造工程は、従来の光半導体装置の製造方法と同
様であり、従来と異なる点は、撮像用カメラ12によ
り、光半導体素子4を光学レンズ8を介して直接撮像
し、位置合わせすることにある。以下、従来と異なる点
について、詳しく説明する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 is a perspective view showing a structure for aligning a mount base and a carrier base of an optical semiconductor device according to an embodiment of the present invention. The basic manufacturing process in this embodiment is the same as the conventional method for manufacturing an optical semiconductor device. The difference from the conventional method is that the imaging camera 12 directly images the optical semiconductor element 4 via the optical lens 8. , To align. Hereinafter, points different from the conventional one will be described in detail.

【0012】光学レンズ8が配設されたマウントベース
1に、光半導体素子4を載置したキャリアベース2を配
設する場合に、光学レンズ8を介して光半導体素子4の
対向側で、光学レンズ8の光軸の延長線上の所定位置に
設置した撮像用カメラ12により、光半導体素子4を撮
像し、位置合わせをおこなう。撮像用カメラ12の撮像
倍率はモニターに光学レンズ8の外周が納まるように設
定されている。モニターにはその撮像倍率に応じた尺度
で、光学レンズ8と光半導体素子4のそれぞれの位置合
わせ用基準領域を設けている。
When the carrier base 2 on which the optical semiconductor element 4 is mounted is disposed on the mount base 1 on which the optical lens 8 is disposed, when the optical base 8 is provided between the optical base 8 and the carrier base 2 on the opposite side. The optical semiconductor element 4 is imaged by the imaging camera 12 installed at a predetermined position on the extension line of the optical axis of the lens 8 to perform the alignment. The image pickup magnification of the image pickup camera 12 is set so that the outer periphery of the optical lens 8 fits on the monitor. The monitor is provided with reference regions for alignment of the optical lens 8 and the optical semiconductor element 4 on a scale according to the imaging magnification.

【0013】撮像用カメラ12は移動可能な機構で、ま
ず、撮像用カメラ12を光軸方向に移動させ、光学レン
ズ8に焦点が一致する位置で撮像用カメラ12を固定す
る。つぎに、撮像用カメラ12の上下、左右の位置調整
をおこない、モニターの光学レンズ8の位置合わせ用基
準領域に光学レンズ8を一致させ、撮像用カメラ12の
上下、左右の位置調整を固定する。その後、光半導体素
子4と焦点の一致する位置まで撮像用カメラ12を再度
光軸方向に移動し固定する。つぎに、モニターの光半導
体素子4の位置合わせ用基準領域に一致するように、光
半導体素子4の発光点を示すメサ部を位置合わせし、金
属ロウ材によりキャリアベース2を接着する。
The image pickup camera 12 is a movable mechanism. First, the image pickup camera 12 is moved in the optical axis direction, and the image pickup camera 12 is fixed at a position where the optical lens 8 is in focus. Next, the vertical and horizontal positions of the imaging camera 12 are adjusted, the optical lens 8 is aligned with the alignment reference area of the optical lens 8 of the monitor, and the vertical and horizontal position adjustment of the imaging camera 12 is fixed. . After that, the imaging camera 12 is again moved in the optical axis direction and fixed to the position where the optical semiconductor element 4 is in focus. Next, the mesa portion showing the light emitting point of the optical semiconductor element 4 is aligned so as to coincide with the alignment reference region of the optical semiconductor element 4 of the monitor, and the carrier base 2 is bonded with the metal brazing material.

【0014】この実施例に用いた光半導体素子4は、電
極工程時に発光点に合わせて数μmの精度でメサ部を設
けており、これを光学レンズ8の中心に位置調整するこ
とで発光点の位置精度を更に改善できた。従来方法で
は、光学レンズ8と光半導体素子4の発光点との位置の
バラツキは±70μm程度に広がっていたが、この発明
の方法により±20μm以下に抑えることが可能となっ
た。この値は従来方法で述べた光ファイバー11への結
合効率を安定に保つのに充分な値である。これにより光
ファイバー11への入射効率の安定した、光ファイバー
11付きの光半導体装置の製造が可能になった。
The optical semiconductor element 4 used in this embodiment is provided with a mesa portion with an accuracy of several μm according to the light emitting point during the electrode process, and the light emitting point is adjusted by adjusting the position of the mesa portion at the center of the optical lens 8. The position accuracy of was improved. In the conventional method, the positional variation between the optical lens 8 and the light emitting point of the optical semiconductor element 4 spreads to about ± 70 μm, but it becomes possible to suppress it to ± 20 μm or less by the method of the present invention. This value is sufficient to keep the coupling efficiency with the optical fiber 11 described in the conventional method stable. As a result, it becomes possible to manufacture an optical semiconductor device with the optical fiber 11 that has a stable incidence efficiency on the optical fiber 11.

【0015】以上のようにこの実施例によれば、光半導
体素子4を光学レンズ8を介して撮像用カメラ12で撮
像して位置合わせするため、光学レンズ8の光軸に光半
導体素子4の発光点を容易に、しかも、精度よく位置合
わせできるようになった。また、光学レンズ8を撮像用
カメラ12で直接撮像するため、マウントベース1や他
の部材の工作精度に関係なく、光学レンズ8とマウント
ベース1の位置ずれを気にすることなく製造でき、更
に、光学レンズ8の倍率により光半導体素子4のメサ部
が拡大されてモニターに撮像されるため、光半導体素子
4の位置合わせ用基準領域に位置合わせがしやすくなっ
た。
As described above, according to this embodiment, since the optical semiconductor element 4 is imaged by the imaging camera 12 through the optical lens 8 and aligned, the optical semiconductor element 4 is aligned with the optical axis of the optical lens 8. The light emitting point can now be easily and accurately aligned. Further, since the optical lens 8 is directly imaged by the imaging camera 12, the optical lens 8 and the mount base 1 can be manufactured without being concerned about the positional deviation between the optical lens 8 and the mount base 1 regardless of the working accuracy of the mount base 1 and other members. Since the mesa portion of the optical semiconductor element 4 is magnified by the magnification of the optical lens 8 and is imaged on the monitor, it is easy to perform the alignment in the alignment reference area of the optical semiconductor element 4.

【0016】なおこの実施例では、光半導体素子4に形
成したメサ部を位置合わせ用の目印としたが、光半導体
素子4を実際に発光させたうえで同様の方法を用いれ
ば、効果は更に顕著となる。また、この実施例では撮像
用カメラ12を移動可能な機構にしたが、マウントベー
ス1の撮像用カメラ12に対する角度を一定にできるよ
うな冶具を用いれば、固定型の撮像用カメラ12も使用
可能であることがわかっている。これは光学レンズ8の
効果により、光学レンズ8と光半導体素子4の位置合わ
せが光学レンズ8の倍率で拡大されるためであり、作業
性の向上に寄与できる。
In this embodiment, the mesa portion formed on the optical semiconductor element 4 is used as a positioning mark, but if the same method is used after the optical semiconductor element 4 is actually made to emit light, the effect is further enhanced. It becomes remarkable. In addition, although the imaging camera 12 is movable in this embodiment, the fixed imaging camera 12 can also be used by using a jig capable of keeping the angle of the mount base 1 with respect to the imaging camera 12 constant. I know that. This is because the alignment of the optical lens 8 and the optical semiconductor element 4 is expanded by the magnification of the optical lens 8 due to the effect of the optical lens 8, which can contribute to the improvement of workability.

【0017】また、上記固定型の方法でモニターによる
映像認識処理方法などを用いれば設備の自動化も可能で
ある。
Further, the equipment can be automated by using the image recognition processing method using a monitor in the fixed method.

【0018】[0018]

【発明の効果】以上のようにこの発明の光半導体素子の
位置合わせ方法は、光半導体素子を光学レンズを介して
撮像用カメラで直接撮像するため、マウントベースや他
の部材の工作精度に関係なく、また、光学レンズとマウ
ントベースの位置ずれを気にすることなく、光学レンズ
の光軸と光半導体素子の発光点の位置合わせを精度よく
行うことができ、光ファイバーとの安定した高結合効率
を得ることができる。また、光半導体素子は、光学レン
ズの倍率により拡大されて見えるため、位置合わせの作
業性が向上する。さらに、光半導体素子内に発光領域を
示す位置マークを設ければ、光半導体素子内での発光点
の位置のバラツキの影響を少なくして、光半導体素子の
発光点を光学レンズの光軸に合わせることが可能にな
る。
As described above, according to the method of aligning an optical semiconductor element of the present invention, since the optical semiconductor element is directly imaged by the imaging camera through the optical lens, it is related to the working accuracy of the mount base and other members. In addition, the optical axis of the optical lens and the light emitting point of the optical semiconductor element can be accurately aligned without worrying about the positional deviation between the optical lens and the mount base, and stable high coupling efficiency with the optical fiber is achieved. Can be obtained. Moreover, since the optical semiconductor element appears to be magnified by the magnification of the optical lens, the workability of alignment is improved. Furthermore, if a position mark indicating the light emitting region is provided in the optical semiconductor element, the influence of the variation in the position of the light emitting point in the optical semiconductor element is reduced, and the light emitting point of the optical semiconductor element is aligned with the optical axis of the optical lens. It becomes possible to match.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例における光半導体装置のマウ
ントベースとキャリアベースの位置合わせの構成を示す
斜視図である。
FIG. 1 is a perspective view showing a configuration for aligning a mount base and a carrier base of an optical semiconductor device according to an embodiment of the present invention.

【図2】従来の光半導体装置の構成を示す側面図であ
る。
FIG. 2 is a side view showing a configuration of a conventional optical semiconductor device.

【図3】従来の光半導体装置のマウントベース部の構成
を詳細に示す斜視図である。
FIG. 3 is a perspective view showing in detail the structure of a mount base portion of a conventional optical semiconductor device.

【符号の説明】[Explanation of symbols]

4 光半導体素子 8 光学レンズ 11 光ファイバー 12 撮像用カメラ 4 Optical semiconductor element 8 Optical lens 11 Optical fiber 12 Imaging camera

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 光半導体素子から出射される光を光学レ
ンズを通して光ファイバーに入力する光半導体装置の位
置合わせ方法であって、 前記光半導体素子を前記光学レンズに光学的に位置合わ
せするために、撮像用カメラにより前記光学レンズを介
して前記光半導体素子を撮像して、前記光学レンズの光
軸に前記光半導体素子の発光点を位置合わせすることを
特徴とする光半導体装置の位置合わせ方法。
1. A method of aligning an optical semiconductor device, wherein light emitted from an optical semiconductor element is input to an optical fiber through an optical lens, wherein the optical semiconductor element is optically aligned with the optical lens. A method for aligning an optical semiconductor device, comprising: capturing an image of the optical semiconductor element through the optical lens with an imaging camera, and aligning a light emitting point of the optical semiconductor element with an optical axis of the optical lens.
JP30629893A 1993-12-07 1993-12-07 Method for aligning optical semiconductor device Pending JPH07159659A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30629893A JPH07159659A (en) 1993-12-07 1993-12-07 Method for aligning optical semiconductor device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30629893A JPH07159659A (en) 1993-12-07 1993-12-07 Method for aligning optical semiconductor device

Publications (1)

Publication Number Publication Date
JPH07159659A true JPH07159659A (en) 1995-06-23

Family

ID=17955420

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30629893A Pending JPH07159659A (en) 1993-12-07 1993-12-07 Method for aligning optical semiconductor device

Country Status (1)

Country Link
JP (1) JPH07159659A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454972B1 (en) * 2002-12-31 2004-11-06 삼성전자주식회사 Passive alignment device for optical element
WO2007114053A1 (en) * 2006-04-06 2007-10-11 Nippon Telegraph And Telephone Corporation Single-core bidirectional optical transmitting/receiving module and its manufacturing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100454972B1 (en) * 2002-12-31 2004-11-06 삼성전자주식회사 Passive alignment device for optical element
WO2007114053A1 (en) * 2006-04-06 2007-10-11 Nippon Telegraph And Telephone Corporation Single-core bidirectional optical transmitting/receiving module and its manufacturing method
JP5144498B2 (en) * 2006-04-06 2013-02-13 日本電信電話株式会社 Single fiber bidirectional optical transceiver module and manufacturing method thereof

Similar Documents

Publication Publication Date Title
JP2534412B2 (en) Device pair alignment apparatus and method thereof
EP0762170B1 (en) Optical-axis alignment method, optical-axis alignment device, inspection method of optical devices, inspection device of optical devices, method of producing optical module, and apparatus of producing optical module
US7153042B2 (en) Optic device
JPH04254390A (en) Method and apparatus for passive adjustment of diode laser and optical fiber
JP2007133011A (en) Optical coupling structure, manufacturing method therefor, and optical module
JPH0688923A (en) Method for matching position of optoelectronic part and optical axis of optical fiber and device using method thereof
US7527186B2 (en) Method and apparatus for mapping a position of a capillary tool tip using a prism
JPH0980273A (en) Optical device
US5024504A (en) Method of aligning and packaging an optoelectronic component with a single-mode optical fiber array
EP0777263A2 (en) Method and apparatus for alignment and bonding
JP2009230031A (en) Optical module
JPH07235566A (en) Mounting structure of optical element
JP4514316B2 (en) Manufacturing method of semiconductor laser module
JPH07159659A (en) Method for aligning optical semiconductor device
JPH085876A (en) Module for light transmission and lens holder member used for the same
JPH07199006A (en) Optical subassembly and optical module
JPH07120643A (en) Semiconductor laser with lens and its manufacture
JPH08334655A (en) Method for packaging optical element
JPH0990176A (en) Semiconductor optical element module
JPH06188458A (en) Optical element module
JP3209250B2 (en) Optoelectronic integrated circuit mounting device
JPH0447983Y2 (en)
JP2538904B2 (en) Hybrid optical integrated circuit assembly device
JPH04349233A (en) Optical element and its packaging method
JPH08153926A (en) Mounting method of semiconductor laser chip and its mounting equipment