JPH0715960A - Power supply - Google Patents

Power supply

Info

Publication number
JPH0715960A
JPH0715960A JP18564293A JP18564293A JPH0715960A JP H0715960 A JPH0715960 A JP H0715960A JP 18564293 A JP18564293 A JP 18564293A JP 18564293 A JP18564293 A JP 18564293A JP H0715960 A JPH0715960 A JP H0715960A
Authority
JP
Japan
Prior art keywords
control element
power supply
self
load
extinguishing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP18564293A
Other languages
Japanese (ja)
Other versions
JP3030527B2 (en
Inventor
Yoshiyuki Sawada
善之 沢田
Takashi Nishio
尚 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sansha Electric Manufacturing Co Ltd
Original Assignee
Sansha Electric Manufacturing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sansha Electric Manufacturing Co Ltd filed Critical Sansha Electric Manufacturing Co Ltd
Priority to JP5185642A priority Critical patent/JP3030527B2/en
Publication of JPH0715960A publication Critical patent/JPH0715960A/en
Application granted granted Critical
Publication of JP3030527B2 publication Critical patent/JP3030527B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PURPOSE:To prevent damage to self arc-extinguishing control elements in controlling the phase of a load containing an inductance using the elements, by discharging energy accumulated in the inductance and controlling overvoltage applied to the self arc-extinguishing elements. CONSTITUTION:Main self arc-extinguishing control elements 4 and 5 and diodes 7 and 6 are connected together in series. The main self arc-extinguishing control elements are supplied with power from zero potential on a.c. voltage, and phase- controlled voltage is fed to a load. A series circuit is formed with self arc- extinguishing control elements 9 and 10 for flywheels that are turned on at the time of 'off' in phase control on the main self arc-extinguishing control elements 4 and 5, and flywheel diodes 11 and 12. The series circuit is connected in parallel with the load.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、スタジオ、劇場、舞
台に使用する調光装置、電気炉用電源、変圧器の1次電
圧制御等、交流電源を位相制御して使用する電源装置に
関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a power supply device for controlling the phase of an AC power supply, such as a light control device used in a studio, a theater or a stage, a power supply for an electric furnace, a primary voltage control of a transformer, etc. Is.

【0002】[0002]

【従来の技術】従来、電源装置として逆並列に接続した
2個のサイリスタを負荷と直列に接続し、サイリスタの
ゲートに制御信号を与えて、交流入力電源の各半サイク
ルごとにそれぞれサイリスタをスイッチ制御して、負荷
電流を位相制御していた。
2. Description of the Related Art Conventionally, two thyristors connected in anti-parallel as a power supply device are connected in series with a load, and a control signal is given to the gate of the thyristor to switch the thyristor every half cycle of an AC input power supply. The load current was controlled in phase.

【0003】ところが、サイリスタのスイッチング時に
単位時間当たり、大きな電流変化が生じ、ノイズ発生の
原因になっていた。また、サイリスタはゲート制御信号
を印加した後、サイリスタが自然転流するまでオンを続
けるので電力の利用率が悪いものであった。
However, when the thyristor is switched, a large current change occurs per unit time, which causes noise. In addition, since the thyristor continues to turn on after the gate control signal is applied until the thyristor spontaneously commutates, the power utilization rate is poor.

【0004】そこで、最近図5に示すような自己消弧性
のあるバイポーラトランジスタ,MOSFET又はIG
BT等の自己消弧型制御素子4,5と、この制御素子と
逆並列にダイオード6,7を設けた並列回路を2組逆方
向に直列接続した電源装置が提案されている。交流電源
1の零電圧時に駆動装置14からの駆動信号により、制
御素子4,5をオンさせると、例えば交流電源1,自己
消弧型制御素子4,ダイオード7を介して負荷2に図6
の実線で示すように交流電流が供給される。そして、こ
の半サイクルの所定位相で駆動信号をオンからオフへ変
化させると、図6(a)に示すように零にすることがで
きる。また、駆動信号をオフしたのち、この半サイクル
中に駆動信号を出力させ、制御素子をオンさせると、図
6(b)の実線で示すような交流電流が負荷に供給され
る。これにより電力の利用率を向上させることができ
る。
Therefore, recently, as shown in FIG. 5, a bipolar transistor, MOSFET or IG having a self-extinguishing property.
There has been proposed a power supply device in which two sets of self-extinguishing control elements 4 and 5 such as BT and parallel circuits in which diodes 6 and 7 are provided in antiparallel with the control elements are connected in series in the reverse direction. When the control elements 4 and 5 are turned on by the drive signal from the drive device 14 when the AC power source 1 has a zero voltage, the load 2 is applied to the load 2 through the AC power source 1, the self-extinguishing type control element 4 and the diode 7, for example.
An alternating current is supplied as indicated by the solid line. Then, when the drive signal is changed from on to off at a predetermined phase of this half cycle, it can be made zero as shown in FIG. 6 (a). Further, after turning off the drive signal, the drive signal is output and the control element is turned on during this half cycle, the alternating current as shown by the solid line in FIG. 6B is supplied to the load. Thereby, the utilization rate of electric power can be improved.

【0005】[0005]

【発明が解決しようとする課題】しかしながら、負荷が
変圧器、蛍光灯、誘導コイル等の誘導性の場合には、自
己消弧型制御素子4,5への駆動信号をオフし、自己消
弧型制御素子4,5をオフさせると、自己消弧型制御素
子がオン時に蓄えられた負荷のインダクタクスによるエ
ネルギーが放出されず、過大な振動電圧が発生し、自己
消弧型制御素子が破損することがあった。
However, when the load is inductive such as a transformer, a fluorescent lamp, an induction coil, etc., the drive signal to the self-extinguishing control elements 4 and 5 is turned off to turn off the self-extinction. When the self-extinguishing control elements are turned off, the energy due to the load inductors stored when the self-extinguishing control elements are turned on is not released, an excessive oscillating voltage is generated, and the self-extinguishing control elements are damaged. There was something to do.

【0006】[0006]

【課題を解決するための手段】本発明は、ダイオードが
直列に接続された主自己消弧型制御素子が、交流電源電
圧の零電位から通電され、位相制御された電圧をインダ
クタンス分を有する負荷に供給する電源装置において、
出力負荷と並列に上記自己消弧型制御素子の位相制御の
オフ時にオンするフライホイル用自己消弧型制御素子と
フライホイルダイオードの直列回路を設けている。
According to the present invention, a main self-extinguishing type control element in which diodes are connected in series is energized from a zero potential of an AC power supply voltage, and a phase-controlled voltage has a load having an inductance component. In the power supply that supplies
A series circuit of a flywheel self-extinguishing control element and a flywheel diode that are turned on when the phase control of the self-extinguishing control element is turned off is provided in parallel with the output load.

【0007】上記自己消弧型制御素子が、位相制御オフ
後に高周波チョッピングする自己消弧型制御素子であ
る。
The self-extinguishing control element is a self-extinguishing control element that performs high frequency chopping after phase control is turned off.

【0008】[0008]

【作用】主自己消弧型制御素子の位相制御のオフ時、フ
ライホイル用自己消弧型制御素子をオンさせ、インダク
タンス分に蓄積されたエネルギーがフライホイル用自己
消弧型制御素子を介して放出させる。
[Operation] When the phase control of the main self-extinguishing control element is turned off, the self-extinguishing control element for the flywheel is turned on, and the energy accumulated in the inductance is passed through the self-extinguishing control element for the flywheel. To release.

【0009】また、主自己消弧型制御素子が位相制御の
オフ後に高周波スイッチングさせて出力電流を位相制御
のオフ時からソフトダウンさせる。
Further, the main self-extinguishing type control element performs high frequency switching after the phase control is turned off to softly reduce the output current from the time when the phase control is turned off.

【0010】[0010]

【実施例】図1は本発明の第1の実施例の電源装置を主
としてブロックで示した図であり、図2は電源装置の各
部の波形図を示す。図1において1は交流電源、2は誘
導性負荷でインダクタンス分2aと抵抗分2bによって
構成されている。3は交流電源と負荷2との間に設けら
れた電源装置である。電源装置は互いに逆方向に直列接
続されたトランジスタ,MOSFET,IGBT等の主
自己消弧型制御素子4,5と、この主制御素子4,5と
それぞれ逆方向にダイオード6,7とが設けられてい
る。負荷2と並列に互いに逆方向に直列接続されたトラ
ンジスタ,MOSFET,IGBT等のフライホイル用
自己消弧型制御素子9,10とこれらフライホイル用自
己消弧型制御素子9,10とそれぞれ逆方向にフライホ
イルダイオード11,12とが設けられている。また、
主制御素子4,5は、主制御素子用駆動装置14の駆動
信号により駆動され、フライホイル用制御素子9,10
はフライホイル用制御素子駆動装置15の駆動信号によ
り駆動される。
1 is a block diagram of a power supply device according to a first embodiment of the present invention, and FIG. 2 is a waveform diagram of each part of the power supply device. In FIG. 1, 1 is an AC power supply and 2 is an inductive load, which is composed of an inductance component 2a and a resistance component 2b. Reference numeral 3 is a power supply device provided between the AC power supply and the load 2. The power supply device is provided with main self-extinguishing control elements 4 and 5 such as transistors, MOSFETs and IGBTs connected in series in opposite directions, and diodes 6 and 7 in opposite directions to the main control elements 4 and 5, respectively. ing. Self-extinguishing control elements 9 and 10 for flywheels such as transistors, MOSFETs and IGBTs connected in parallel to the load 2 in opposite directions, and self-extinguishing control elements 9 and 10 for flywheels, respectively, in opposite directions. Are provided with flywheel diodes 11 and 12. Also,
The main control elements 4 and 5 are driven by the drive signal of the main control element drive device 14, and the flywheel control elements 9 and 10 are driven.
Is driven by a drive signal of the flywheel control element driving device 15.

【0011】次に動作について説明する。今、交流電源
1のA端子の電位がB端子の電位より高い半波の場合、
交流電源1の零電位時刻に、主制御素子用駆動装置14
から主制御素子4に駆動信号が入力し、主制御素子4が
オンし、交流電源1,主制御素子4,ダイオード7,負
荷2,交流電源1に電流が流れる。この時、負荷2のイ
ンダクタンス分2aには図1の矢印方向に電圧が発生
し、エネルギーが蓄積される。
Next, the operation will be described. Now, when the potential of the A terminal of the AC power supply 1 is a half wave higher than the potential of the B terminal,
At the zero potential time of the AC power supply 1, the main control element drive device 14
A drive signal is input to the main control element 4 from this, the main control element 4 is turned on, and a current flows through the AC power supply 1, the main control element 4, the diode 7, the load 2, and the AC power supply 1. At this time, a voltage is generated in the inductance portion 2a of the load 2 in the direction of the arrow in FIG. 1, and energy is accumulated.

【0012】そして、時刻T1において、図2(b)に
示すように主制御素子用駆動装置14の駆動信号をオフ
し、図2(c)に示すようにフライホイル用制御素子駆
動装置15から駆動信号を出力し、フライホイル用制御
素子10をオンさせる。主制御素子4がオフすると、負
荷2のインダクタンス分2aは図1の矢印と逆方向の電
圧が誘起し、負荷2,フライホイル用制御素子10,フ
ライホイルダイオード11,負荷2に電流が流れ、図2
(a)に示すように電源装置3から出力される電圧は負
荷の抵抗10及び配線の抵抗によって減少する。次に時
刻T2においてフライホイル用制御素子駆動装置15の
駆動信号をオフし、フライホイル用制御素子10をオフ
させ、主制御素子用駆動装置14から駆動信号を出力し
主制御素子4をオンさせる。これにより交流電源1,主
制御素子4,ダイオード7,負荷2,交流電源1に電流
が流れ電源装置3の出力は図2(a)に示すように上昇
する。そして、時刻T3において主制御素子4をオフさ
せ、フライホイル用制御素子10をオンさせる。以下、
この半波において電源装置2の出力が0になるまで繰り
返す。なお、図2(a)における破線は交流電源の電圧
波形を示す。
At time T1, the drive signal of the main control element drive device 14 is turned off as shown in FIG. 2 (b), and the flywheel control element drive device 15 is turned off as shown in FIG. 2 (c). A drive signal is output and the flywheel control element 10 is turned on. When the main control element 4 is turned off, a voltage in the direction opposite to the arrow in FIG. 1 is induced in the inductance 2a of the load 2, and a current flows through the load 2, the flywheel control element 10, the flywheel diode 11, and the load 2. Figure 2
As shown in (a), the voltage output from the power supply device 3 decreases due to the resistance 10 of the load and the resistance of the wiring. Next, at time T2, the drive signal of the flywheel control element driving device 15 is turned off, the flywheel control element 10 is turned off, a drive signal is output from the main control element driving device 14, and the main control element 4 is turned on. . As a result, a current flows through the AC power supply 1, the main control element 4, the diode 7, the load 2, and the AC power supply 1, and the output of the power supply device 3 rises as shown in FIG. Then, at time T3, the main control element 4 is turned off and the flywheel control element 10 is turned on. Less than,
This half wave is repeated until the output of the power supply device 2 becomes zero. The broken line in FIG. 2A shows the voltage waveform of the AC power supply.

【0013】次に交流電源1のB端子の電位がA端子の
電位より高い半波においては、主制御素子駆動装置14
から主制御素子5に駆動信号を入力し、フライホイル用
制御素子駆動装置15からフライホイル用制御素子9に
駆動信号を入力し、上記のA端子の電位がB端子の電位
より高い半波と同様の動作を行う。なお、主制御素子5
がオンしているときには、交流電源1,負荷2,主制御
素子5,ダイオード6,交流電源1に電流が流れ、フラ
イホイル用制御素子9がオンしているときには、負荷
2,フライホイル用制御素子9,フライホイルダイオー
ド12,負荷2に電流が流れる。これにより、主自己消
弧型制御素子がオン時に蓄えられた負荷インダクタンス
のエネルギーは放出され、時刻T1時に過大な振動電圧
が発生することがない。
Next, in a half wave in which the potential of the B terminal of the AC power source 1 is higher than the potential of the A terminal, the main control element driving device 14
Drive signal is input to the main control element 5 from the flywheel control element drive device 15 and the drive signal is input from the flywheel control element drive device 15 to the flywheel control element 9 so that the potential of the A terminal is higher than the potential of the B terminal. Performs the same operation. The main control element 5
Is ON, a current flows through the AC power supply 1, the load 2, the main control element 5, the diode 6, and the AC power supply 1. When the flywheel control element 9 is ON, the load 2, flywheel control is performed. A current flows through the element 9, the flywheel diode 12, and the load 2. As a result, the energy of the load inductance stored when the main self-extinguishing control element is turned on is released, and an excessive oscillating voltage does not occur at time T1.

【0014】負荷が白熱ランプなどの抵抗負荷の場合、
主制御素子をオフさせると急激に電流が変化して振動
し、ランプ及び配線からうなりが生じやすい。このよう
な抵抗負荷で主制御素子をオフさせたとき、電流をソフ
トダウンさせるための第2の実施例を図3に示す。すな
わち、図3において図1と異なる点は、フライホイル部
8と負荷2との間に小さなリアクトル21を設けた点で
ある。なお、電源装置3と負荷2との距離があり、巻回
されているような場合には、配線のインダクタンスによ
ってリアクトル21を必要としないこともある。この図
3の電源装置の動作は上記図1の電源装置と同様に行わ
れる。
When the load is a resistive load such as an incandescent lamp,
When the main control element is turned off, the current suddenly changes and vibrates, and a beat is apt to occur from the lamp and the wiring. FIG. 3 shows a second embodiment for softening the current when the main control element is turned off by such a resistance load. That is, FIG. 3 differs from FIG. 1 in that a small reactor 21 is provided between the flywheel portion 8 and the load 2. If there is a distance between the power supply device 3 and the load 2 and they are wound, the reactor 21 may not be required due to the inductance of the wiring. The operation of the power supply device of FIG. 3 is performed in the same manner as the power supply device of FIG.

【0015】図4は第3の実施例であり、交流電源の電
源ラインにダイオード25〜28のブリッジ型整流回路
を設け、その整流回路の出力に主自己消弧型制御素子2
9、及び負荷と並列にフライホイルダイオード31〜3
4のブリッジ型整流回路と、その整流回路の出力にフラ
イホイル用自己消弧型制御素子35を設けたものであ
り、制御素子を少なくすることができる。この装置の動
作は図1の第1の実施例の電源装置と同様である。
FIG. 4 shows a third embodiment, in which a bridge type rectifying circuit of diodes 25 to 28 is provided in the power source line of the AC power source, and the main self-extinguishing type control element 2 is provided at the output of the rectifying circuit.
9 and flywheel diodes 31 to 3 in parallel with the load.
The bridge type rectifier circuit of No. 4 and the self-extinguishing control element 35 for flywheels are provided at the output of the rectifier circuit, and the number of control elements can be reduced. The operation of this device is similar to that of the power supply device of the first embodiment shown in FIG.

【0016】上記第1ないし第3の実施例では、フライ
ホイル用制御素子を主制御素子のオフ時にはオンとし、
また主制御素子4,5のオン時にはオフさせ、商用電源
周波数より高い高周波チョッピングさせていたが、フラ
イホイル用制御素子9,10にはソフトダウンされる時
刻Tnまで連続してオンさせてもよい。この場合、主制
御素子4,5がオン時にフライホイル用制御素子9,1
0に駆動信号が入力しても、主制御素子4,5側の出力
の電位がフライホイル部の電位より高く、フライホイル
ダイオード11,12に逆バイアスが印加されてフライ
ホイル部には電流は流れない。また、主制御素子4,5
のオフ時のソフトダウンを速く行う場合には、フライホ
イル用制御素子9,10のオンする期間を長くし、緩や
かなソフトダウンを行う場合には時刻T2以後の主制御
素子がオンする期間を長くすればよい。
In the first to third embodiments, the flywheel control element is turned on when the main control element is off,
Further, although the main control elements 4 and 5 are turned off when the main control elements 4 and 5 are turned on and high-frequency chopping higher than the commercial power supply frequency is performed, the flywheel control elements 9 and 10 may be continuously turned on until the soft down time Tn. . In this case, when the main control elements 4, 5 are on, the flywheel control elements 9, 1
Even if the drive signal is input to 0, the potential of the output on the main control elements 4, 5 side is higher than the potential of the flywheel part, the reverse bias is applied to the flywheel diodes 11 and 12, and the current flows to the flywheel part. Not flowing. In addition, the main control elements 4, 5
When the soft-down at the time of turning off is rapidly performed, the period during which the flywheel control elements 9 and 10 are turned on is lengthened, and when the soft-down is performed gently, the period during which the main control element is turned on after time T2 is increased. It should be long.

【0017】[0017]

【発明の効果】以上のこの発明の電源装置では、主消弧
型制御素子の位相制御のオフ時、フライホイル用自己消
弧型制御素子をオンさせることにより、負荷のインダク
タンス分に蓄積されたエネルギーがフライホイル用自己
消弧型制御素子を介して放出されて、過大な振動電圧が
発生することもなく自己消弧型制御素子を破損すること
もない。又、抵抗負荷の場合、小さなリアクトルを設
け、主自己消弧型制御素子のオフ時、フライホイル用自
己消弧型制御素子をオンさせ、リアクトルに蓄積された
エネルギーをフライホイル型制御素子を介して放出させ
て、ソフトダウンさせることができ、負荷又は配線の振
動によるうなりを防止することができる。
In the power supply device of the present invention described above, when the phase control of the main arc-extinguishing control element is turned off, the self-arc-extinguishing control element for the flywheel is turned on, whereby the inductance of the load is accumulated. Energy is not released through the self-extinguishing control element for the flywheel, so that an excessive oscillating voltage is not generated and the self-extinguishing control element is not damaged. In the case of resistive load, a small reactor is provided, and when the main self-extinguishing control element is off, the self-extinguishing control element for the flywheel is turned on, and the energy stored in the reactor is passed through the flywheel control element. It can be discharged by softening and can be prevented from beating due to load or vibration of wiring.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の電源装置の第1の実施例のブロック
図である。
FIG. 1 is a block diagram of a first embodiment of a power supply device of the present invention.

【図2】図1の電源装置の各部の出力電圧波形図であ
る。
FIG. 2 is an output voltage waveform diagram of each part of the power supply device of FIG.

【図3】この発明の電源装置の第2の実施例のブロック
図である。
FIG. 3 is a block diagram of a second embodiment of the power supply device of the present invention.

【図4】この発明の電源装置の第3の実施例のブロック
図である。
FIG. 4 is a block diagram of a third embodiment of the power supply device of the present invention.

【図5】従来の電源装置のブロック図である。FIG. 5 is a block diagram of a conventional power supply device.

【図6】図5の出力電圧波形図である。FIG. 6 is an output voltage waveform diagram of FIG.

【符号の説明】[Explanation of symbols]

1 交流電源 2 負荷 2a インダクタンス分 2b 抵抗分 3 電源装置 4,5,29 主自己消弧型制御素子 6,7,25,26,27,28 ダイオード 8 フライホイル部 9,10 フライホイル用自己消弧型制御素子 11,12 フライホイルダイオード 14 主制御素子用駆動装置 15 フライホイル用制御素子駆動装置 21 リアクトル 1 AC power source 2 Load 2a Inductance component 2b Resistance component 3 Power supply device 4, 5, 29 Main self-extinguishing control element 6, 7, 25, 26, 27, 28 Diode 8 Flywheel part 9, 10 Self-extinguishing for flywheel Arc type control element 11, 12 Flywheel diode 14 Drive device for main control element 15 Control device drive device for flywheel 21 Reactor

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 ダイオードが直列に接続された主自己消
弧型制御素子が、交流電源電圧の零電位から通電され、
位相制御された電圧をインダクタンス分を有する負荷に
供給する電源装置において、出力負荷と並列に上記自己
消弧型制御素子のオフ時にオンするフライホイル用自己
消弧型制御素子とフライホイルダイオードとの直列回路
を設けたことを特徴とする電源装置。
1. A main self-extinguishing type control element having diodes connected in series is energized from a zero potential of an AC power supply voltage,
In a power supply device that supplies a phase-controlled voltage to a load having an inductance component, a self-extinguishing control element for a flywheel and a flywheel diode that are turned on in parallel with an output load when the self-extinguishing control element is off. A power supply device comprising a series circuit.
【請求項2】 上記自己消弧型制御素子が、位相制御オ
フ後に高周波チョッピングする自己消弧型制御素子であ
る請求項1の電源装置。
2. The power supply device according to claim 1, wherein the self-extinguishing control element is a self-extinguishing control element that performs high frequency chopping after phase control is turned off.
JP5185642A 1993-06-28 1993-06-28 Power supply Expired - Fee Related JP3030527B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5185642A JP3030527B2 (en) 1993-06-28 1993-06-28 Power supply

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5185642A JP3030527B2 (en) 1993-06-28 1993-06-28 Power supply

Publications (2)

Publication Number Publication Date
JPH0715960A true JPH0715960A (en) 1995-01-17
JP3030527B2 JP3030527B2 (en) 2000-04-10

Family

ID=16174348

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5185642A Expired - Fee Related JP3030527B2 (en) 1993-06-28 1993-06-28 Power supply

Country Status (1)

Country Link
JP (1) JP3030527B2 (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934564A (en) * 1995-07-18 1997-02-07 Chiyoda:Kk Input waveform follow-up type ac power unit
WO2002029962A3 (en) * 2000-10-02 2002-09-06 Bailey Patricia Anne Power saving circuitry
JP2006333588A (en) * 2005-05-25 2006-12-07 Nippon Inter Electronics Corp Ac power regulator
ES2268952A1 (en) * 2005-01-20 2007-03-16 Theslock, S.A. Mono-phase voltage regulator for controlling alternating current (AC), has variable transformers and autotransformers used to control identical AC signals and vary output voltage while maintaining perfect sinusoidal wave of varied signals
JP2013051843A (en) * 2011-08-31 2013-03-14 Denso Corp Half bridge circuit
WO2013134994A1 (en) * 2012-03-12 2013-09-19 Han Yalan Naturally freewheeling alternating current chopper main circuit structure
CN104935181A (en) * 2014-03-18 2015-09-23 常州天曼智能科技有限公司 AC chopper with double input ends
CN110057473A (en) * 2019-04-30 2019-07-26 南京信息职业技术学院 A kind of excitation chain and its measuring circuit of unicoil vibrating wire sensor

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6054641B2 (en) * 2012-06-04 2016-12-27 ヱスビー食品株式会社 Microwave cooking box and food

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0934564A (en) * 1995-07-18 1997-02-07 Chiyoda:Kk Input waveform follow-up type ac power unit
WO2002029962A3 (en) * 2000-10-02 2002-09-06 Bailey Patricia Anne Power saving circuitry
US6525490B1 (en) 2000-10-02 2003-02-25 Patricia Ann Bailey Power saving circuitry
ES2268952A1 (en) * 2005-01-20 2007-03-16 Theslock, S.A. Mono-phase voltage regulator for controlling alternating current (AC), has variable transformers and autotransformers used to control identical AC signals and vary output voltage while maintaining perfect sinusoidal wave of varied signals
JP2006333588A (en) * 2005-05-25 2006-12-07 Nippon Inter Electronics Corp Ac power regulator
JP2013051843A (en) * 2011-08-31 2013-03-14 Denso Corp Half bridge circuit
WO2013134994A1 (en) * 2012-03-12 2013-09-19 Han Yalan Naturally freewheeling alternating current chopper main circuit structure
CN104935181A (en) * 2014-03-18 2015-09-23 常州天曼智能科技有限公司 AC chopper with double input ends
CN104935181B (en) * 2014-03-18 2017-11-21 常州天曼智能科技有限公司 AC chopper with double input end
CN110057473A (en) * 2019-04-30 2019-07-26 南京信息职业技术学院 A kind of excitation chain and its measuring circuit of unicoil vibrating wire sensor
CN110057473B (en) * 2019-04-30 2021-03-26 南京信息职业技术学院 Excitation circuit of single-coil vibrating wire sensor and measuring circuit thereof

Also Published As

Publication number Publication date
JP3030527B2 (en) 2000-04-10

Similar Documents

Publication Publication Date Title
JP4783905B2 (en) Zero voltage switching high frequency inverter
JPH0715960A (en) Power supply
US4499533A (en) Power supply apparatus
RU2355531C2 (en) Arc-welding generator with high power coefficient
WO1991010280A1 (en) A power inverter snubber circuit
EP0602495B1 (en) Resonant-load power supply for arc welding
JP2982364B2 (en) Inverter for induction heating
EP1109426A2 (en) Halogen power converter with complementary switches
US4066916A (en) Transistor drive circuits
JP4514927B2 (en) DC / DC converter device
US4722040A (en) Self-resonant inverter circuit
US5986410A (en) Integrated circuit for use in a ballast circuit for a gas discharge lamp
JPS5812580A (en) Device for chopping dc voltage from rectified ac voltage to sinusoidal wave with control and application therefor
RU2339151C2 (en) Circuit for alternating voltage from constant voltage generation
JP3214679B2 (en) Series resonant converter
JP3096236B2 (en) Power supply
JP2711497B2 (en) Cycle control method
JPH11146645A (en) Power supply equipment
JPH0965656A (en) High-frequency inverter
JP4330288B2 (en) Rectifier circuit
JPH04337281A (en) Induction heating inverter
JPH06231876A (en) High frequency inverter
JPS5925580A (en) Switching regulator
JPH07226664A (en) Drive circuit for semiconductor switching element
JPS58142624A (en) Phase controlling circuit

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees