JPH07159388A - Mixer for supercritical fluid chromatography - Google Patents

Mixer for supercritical fluid chromatography

Info

Publication number
JPH07159388A
JPH07159388A JP5302596A JP30259693A JPH07159388A JP H07159388 A JPH07159388 A JP H07159388A JP 5302596 A JP5302596 A JP 5302596A JP 30259693 A JP30259693 A JP 30259693A JP H07159388 A JPH07159388 A JP H07159388A
Authority
JP
Japan
Prior art keywords
mixer
fluid
flow path
mixed
mixed fluid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP5302596A
Other languages
Japanese (ja)
Inventor
Makoto Takeuchi
内 誠 竹
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Jeol Ltd
Original Assignee
Jeol Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Jeol Ltd filed Critical Jeol Ltd
Priority to JP5302596A priority Critical patent/JPH07159388A/en
Publication of JPH07159388A publication Critical patent/JPH07159388A/en
Withdrawn legal-status Critical Current

Links

Abstract

PURPOSE:To provide a mixer for supercritical fluid chromatography, wherein ineffective time is greatly shortened and homogenization is improved. CONSTITUTION:The mixer has a mixing part 4, wherein two flow paths are combined into one flow path, and a coil-shaped homogenizing flow path 5, wherein the fluid is diffused and homogenized and the change of the composition of the flowing direction is smoothed. The entire mixer is contained in a heating block having a heater and heated to a specified temperature, where the mixed fluid becomes the supercritical state. The mixed fluid flowing out of the mixer is sent into a column 8 and a flow path on the downstream side from the column.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、超臨界流体クロマトグ
ラフィ(SFC)で用いられる混合器に関するものであ
る。
TECHNICAL FIELD The present invention relates to a mixer used in supercritical fluid chromatography (SFC).

【0002】[0002]

【従来の技術】二酸化炭素(CO2 )に、CH3 OHに
代表されるような各種極性有機溶媒を加えた混合流体を
用いて行うSFCは、CO2 のみで行う場合に比べ、極
性の上でも分子量範囲の上でも測定対象となる試料を著
しく拡大し、汎用性が高い。
2. Description of the Related Art SFC performed using a mixed fluid of carbon dioxide (CO 2 ) and various polar organic solvents represented by CH 3 OH is more polar than CO 2 alone. However, even in the molecular weight range, the sample to be measured is remarkably expanded, and the versatility is high.

【0003】しかし、その実現には、組成比や流量が任
意にかつ定量的に変えられる必要があり、そのためにC
2 や有機溶媒を個別に定量送液し、高圧下で混合させ
る混合器を必要とする。この混合器は、CO2 と有機溶
媒を定常的に混合すると共に、微少時間あたりの流量変
動(CO2 と有機溶媒を送液するそれぞれのポンプの繰
り返しストローク毎の)に基づく組成の微少変化を、平
滑化させ、混合器の出口では、均質に混合した流体が定
常的に流出するようにしなければならない。
However, in order to realize this, it is necessary to arbitrarily and quantitatively change the composition ratio and the flow rate, and therefore C
A mixer for quantitatively feeding O 2 and an organic solvent individually and mixing them under high pressure is required. The mixer is configured to mix the CO 2 and an organic solvent regularly, a minute change in the composition based on the flow rate variation per a minute time (for each repetition stroke of each pump feeding a CO 2 and an organic solvent) , Smoothing, and at the mixer outlet, a homogeneously mixed fluid must steadily flow out.

【0004】しかも、組成グラジェント法で溶出させる
場合、グラジェント動作開始から、実際に分離カラム中
の組成が変化を始めるまでの無効時間を極力短くする必
要がある。
Moreover, in the case of elution by the composition gradient method, it is necessary to shorten the ineffective time from the start of the gradient operation to the actual change of the composition in the separation column.

【0005】図1は、混合器を備えた従来の超臨界流体
クロマトグラフを示している。図1において,1はCO
2 を供給するポンプで、2はCH3 OHを供給するポン
プである。ポンプ1,2により送られるCO2 及びCH
3 OHは、流路P1 ,P2 を介して混合器3へ送られ
る。混合器3は、2つの流路1 ,P2 を一つの流路に合
わせる混合部4と、その後混合した流体が拡散して均質
になり、かつ流れ方向の組成変化を平滑するためのコイ
ル状の均質化流路5を備えている。混合器で混合された
混合流体は、サンプルインジェクタ6を介して恒温槽7
内のカラム8へ送られる。カラム8を流出した混合流体
は、カラム8に隣接して配置されたUV検出器などの検
出器9へ送られる。検出器9を通過した流体は、圧力制
御器10を介してドレン11へ排出される。
FIG. 1 shows a conventional supercritical fluid chromatograph equipped with a mixer. In FIG. 1, 1 is CO
A pump for supplying 2 and a pump for supplying CH 3 OH. CO 2 and CH sent by pumps 1 and 2
3 OH is sent to the mixer 3 via the flow paths P 1 and P 2 . The mixer 3 includes a mixing section 4 for combining the two flow paths 1 and P 2 into one flow path, and a coil shape for smoothing the composition change in the flow direction after the mixed fluid diffuses and becomes homogeneous. The homogenizing flow path 5 is provided. The mixed fluid mixed in the mixer passes through the sample injector 6 and the thermostatic chamber 7
It is sent to the inner column 8. The mixed fluid flowing out of the column 8 is sent to a detector 9 such as a UV detector arranged adjacent to the column 8. The fluid passing through the detector 9 is discharged to the drain 11 via the pressure controller 10.

【0006】[0006]

【発明が解決しようとする課題】この様な構成で、混合
器3において十分良好な均質性を達成するためには、混
合部の容量をある程度以上にとる必要がある。しかし、
混合部の容量を大きく取ると、図2に示すように、CO
2 とCH3 OHの流量を時間と共に変化させるグラジェ
ント法を行うと、図2においてCで示すようにグラジェ
ント動作開始から、実際に分離カラム中の組成が変化を
始めるまでに無効時間tが発生する。
In order to achieve sufficiently good homogeneity in the mixer 3 with such a configuration, it is necessary to set the capacity of the mixing section to a certain level or more. But,
As shown in FIG. 2, when the capacity of the mixing section is large, CO
When the gradient method in which the flow rates of 2 and CH 3 OH are changed with time is performed, the dead time t i from the start of the gradient operation to the actual change in the composition in the separation column as shown by C in FIG. Occurs.

【0007】このtは、混合流体の流速をU( μl/
分)とすると、混合器の容量V(μl)との間にt
V/Uの関係が成立することが知られている。この式か
ら分かるように、均質性を向上させるためにVを大きく
すると無効時間tが大きくなり、無効時間tを小さ
くするためにはVを小さくして均質性を犠牲にしなけれ
ばならなかった。
This t i is the flow velocity of the mixed fluid U (μl /
Min) and the capacity V (μl) of the mixer is t i =
It is known that the V / U relationship is established. As can be seen from this equation, if V is increased in order to improve the homogeneity, the ineffective time t i is increased, and in order to reduce the ineffective time t i , V must be decreased to sacrifice the homogeneity. It was

【0008】本発明は、上述した点に鑑みてなされたも
のであり、良好な均質性を持ちしかも無効時間を小さく
できる混合器を提供することを目的としている。
The present invention has been made in view of the above-mentioned points, and an object of the present invention is to provide a mixer having good homogeneity and capable of reducing the dead time.

【0009】[0009]

【課題を解決するための手段】この目的を達成するた
め、本発明は、複数種の流体を混合した混合流体を用い
る超臨界流体クロマトグラフィ用混合器であって、各流
体を個別に導入する導管と、各導管を1流路に混合する
混合部と、混合された流体を平滑化するための平滑化流
路とを備え、少なくとも該混合部を混合流体が超臨界状
態になる温度に加熱する加熱手段を設けたことを特徴と
している。
In order to achieve this object, the present invention is a mixer for supercritical fluid chromatography using a mixed fluid in which plural kinds of fluids are mixed, and a conduit for introducing each fluid individually. A mixing section for mixing each conduit into one flow path and a smoothing flow path for smoothing the mixed fluid, and heating at least the mixing section to a temperature at which the mixed fluid becomes a supercritical state. It is characterized in that a heating means is provided.

【0010】[0010]

【作用】本発明では、各流体を混合する混合部を加熱
し、混合流体が超臨界状態で混合されるようにしたた
め、高い均質性を維持した上で無効時間を小さくでき
る。以下、図面に基づいて本発明の一実施例を詳説す
る。
In the present invention, the mixing portion for mixing the respective fluids is heated so that the mixed fluids are mixed in a supercritical state, so that the ineffective time can be shortened while maintaining high homogeneity. An embodiment of the present invention will be described below in detail with reference to the drawings.

【0011】[0011]

【実施例】図3は、本発明の一実施例を示す構成図であ
る。図3の実施例が図1の従来例と異なるのは、混合部
4及び均質化流路5を含む混合器3全体を加熱ブロック
12内に収容し、所定の温度に加熱するようにした点で
ある。この加熱ブロック12は、その内部を例えば25
0℃程度の一定温度に加熱するヒーター13を備えてい
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS FIG. 3 is a block diagram showing an embodiment of the present invention. The embodiment of FIG. 3 is different from the conventional example of FIG. 1 in that the entire mixer 3 including the mixing portion 4 and the homogenizing flow path 5 is housed in a heating block 12 and heated to a predetermined temperature. Is. The heating block 12 has, for example, 25
A heater 13 for heating to a constant temperature of about 0 ° C. is provided.

【0012】上記構成において、混合部4を含む混合器
全体が250℃程度の一定温度に保たれるが、この温度
では、圧力を適当に設定することにより混合流体は超臨
界状態となる。図4はCO2 とCH3 OHの混合流体の
組成Xと密度(保持時間)の関係を、温度をパラメータ
として示したグラフである。図4から、250℃では、
混合流体の流体密度が著しく低下することがわかる。例
えば、200kg/cm2の圧力下で、CO2 :CH3 OH
=1:1の組成の混合流体は、温度250℃での密度
は、温度50℃での密度の約1/3である。この密度の
低下により混合部での流体速度は、超臨界状態にしてい
ない従来に比べ3倍程度大きくなる。このことは、流速
Uが3倍大きくなるため、前述した式に基づいて無効時
間を1/3に短縮することが可能である。
In the above structure, the entire mixer including the mixing section 4 is maintained at a constant temperature of about 250 ° C. At this temperature, the mixed fluid becomes supercritical by appropriately setting the pressure. FIG. 4 is a graph showing the relationship between the composition X and the density (holding time) of the mixed fluid of CO 2 and CH 3 OH, using the temperature as a parameter. From Figure 4, at 250 ° C,
It can be seen that the fluid density of the mixed fluid is significantly reduced. For example, under a pressure of 200 kg / cm 2 , CO 2 : CH 3 OH
The mixed fluid having a composition of = 1: 1 has a density at a temperature of 250 ° C. of about 1/3 of a density at a temperature of 50 ° C. Due to this decrease in density, the fluid velocity in the mixing section becomes about three times higher than in the conventional case where the supercritical state is not set. This means that the flow velocity U becomes three times larger, so that the ineffective time can be shortened to 1/3 based on the above-mentioned formula.

【0013】また、この様な混合流体流速の向上は、流
路内で渦流が大きくなることに繋がり、均質化の向上を
もたらす。しかも、250℃程度の温度では、熱拡散係
数は常温の場合の約2倍大きくなることもわかってい
る。したがって、熱拡散の面からも均質化のための所要
時間が短縮され、混合及び均質化に要する時間が1/2
となる。
Further, such an improvement in the flow velocity of the mixed fluid leads to an increase in the vortex flow in the flow path, resulting in an improvement in homogenization. Moreover, it has been known that at a temperature of about 250 ° C., the thermal diffusion coefficient is about twice as large as at room temperature. Therefore, the time required for homogenization is shortened from the viewpoint of heat diffusion, and the time required for mixing and homogenization is 1/2.
Becomes

【0014】さらに、上記の様に、超臨界状態で混合す
ると密度が低下するため、混合部4におけるCO2 及び
CH3 OHを運んで来た導管の放出口の径を従来より細
くしても圧力損失はほとんど生じないので、放出口の径
の細径化が可能である。この細径化による流速の向上
に、前述の密度の低下による3倍の流速向上を加える
と、合計で従来よりも10倍ないしそれ以上の流速向上
が実現でき、流速Uの向上による無効時間の短縮をさら
に進めることが可能である。
Further, as described above, since the density decreases when mixed in the supercritical state, even if the diameter of the discharge port of the conduit that has carried CO 2 and CH 3 OH in the mixing section 4 is made thinner than before. Since the pressure loss hardly occurs, the diameter of the discharge port can be reduced. If the flow velocity improvement due to the diameter reduction is added to the flow velocity improvement by 3 times due to the decrease in the density described above, a flow velocity improvement of 10 times or more than the conventional one can be realized in total, and the dead time due to the improvement of the flow velocity U Further shortening is possible.

【0015】なお、上述した実施例では2流体を混合す
る場合について説明したが、3種類以上の流体を混合す
る場合にも全く同様に適用できることはいうまでもな
い。
In the above embodiment, the case where two fluids are mixed has been described, but it goes without saying that the same can be applied to the case where three or more kinds of fluids are mixed.

【0016】[0016]

【発明の効果】以上詳述したごとく、本発明によれば、
流体を超臨界状態で混合するようにしたため、無効時間
が大幅に短縮され、しかも均質化の面でも向上した超臨
界流体クロマトグラフ用混合器が実現される。
As described in detail above, according to the present invention,
Since the fluids are mixed in a supercritical state, a dead time is significantly shortened, and a supercritical fluid chromatograph mixer having improved homogenization is realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】従来の混合器の構成を示す図である。FIG. 1 is a diagram showing a configuration of a conventional mixer.

【図2】グラジェント法を行う場合の無効時間を説明す
るための図である。
FIG. 2 is a diagram for explaining an invalid time when performing a gradient method.

【図3】本発明の一実施例の構成図である。FIG. 3 is a configuration diagram of an embodiment of the present invention.

【図4】CO2 とCH3 OHの混合流体の組成Xと密度
(保持時間)の関係を、温度をパラメータとして示した
グラフである。
FIG. 4 is a graph showing the relationship between the composition X and the density (holding time) of a mixed fluid of CO 2 and CH 3 OH, using temperature as a parameter.

【符号の説明】[Explanation of symbols]

3 混合器 4 混合部 5 均質化流路 12 加熱ブロック 13 ヒーター 3 Mixer 4 Mixing part 5 Homogenization channel 12 Heating block 13 Heater

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 複数種の流体を混合した混合流体を用い
る超臨界流体クロマトグラフィ用混合器であって、各流
体を個別に導入する導管と、各導管を1流路に混合する
混合部と、混合された流体を平滑化するための平滑化流
路とを備え、少なくとも該混合部を混合流体が超臨界状
態になる温度に加熱する加熱手段を設けたことを特徴と
する混合器。
1. A mixer for supercritical fluid chromatography that uses a mixed fluid in which a plurality of types of fluids are mixed, and a conduit for individually introducing each fluid, and a mixing section for mixing each conduit into one flow path. A smoothing flow path for smoothing the mixed fluid, and a heating means for heating at least the mixing portion to a temperature at which the mixed fluid becomes a supercritical state.
JP5302596A 1993-12-02 1993-12-02 Mixer for supercritical fluid chromatography Withdrawn JPH07159388A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5302596A JPH07159388A (en) 1993-12-02 1993-12-02 Mixer for supercritical fluid chromatography

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5302596A JPH07159388A (en) 1993-12-02 1993-12-02 Mixer for supercritical fluid chromatography

Publications (1)

Publication Number Publication Date
JPH07159388A true JPH07159388A (en) 1995-06-23

Family

ID=17910886

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5302596A Withdrawn JPH07159388A (en) 1993-12-02 1993-12-02 Mixer for supercritical fluid chromatography

Country Status (1)

Country Link
JP (1) JPH07159388A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310789A2 (en) * 1998-04-03 2003-05-14 Symyx Technologies, Inc. Rapid characterization of polymers with temperature control in a mixing zone
JP2005313026A (en) * 2004-04-27 2005-11-10 Canon Inc Fluid element
US20150219603A1 (en) * 2014-02-06 2015-08-06 Waters Technologies Corporation Method for high pressure gradient chromatography using pump stroke control
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer
US11898999B2 (en) 2020-07-07 2024-02-13 Waters Technologies Corporation Mixer for liquid chromatography

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1310789A2 (en) * 1998-04-03 2003-05-14 Symyx Technologies, Inc. Rapid characterization of polymers with temperature control in a mixing zone
JP2005313026A (en) * 2004-04-27 2005-11-10 Canon Inc Fluid element
US20150219603A1 (en) * 2014-02-06 2015-08-06 Waters Technologies Corporation Method for high pressure gradient chromatography using pump stroke control
US10060886B2 (en) * 2014-02-06 2018-08-28 Waters Technologies Corporation Method for high pressure gradient chromatography using pump stroke control
US11185830B2 (en) 2017-09-06 2021-11-30 Waters Technologies Corporation Fluid mixer
US11555805B2 (en) 2019-08-12 2023-01-17 Waters Technologies Corporation Mixer for chromatography system
US11898999B2 (en) 2020-07-07 2024-02-13 Waters Technologies Corporation Mixer for liquid chromatography
US11821882B2 (en) 2020-09-22 2023-11-21 Waters Technologies Corporation Continuous flow mixer

Similar Documents

Publication Publication Date Title
EP2225556B1 (en) Variable ratio flow splitter for flowstream
WO2007091323A1 (en) Method and apparatus for analysis by liquid chromatography
US4383839A (en) Method and device for vaporization injection of a liquid sample for gas chromatographic analysis
US20150177743A1 (en) Gradient solution sending apparatus
JP4453589B2 (en) Mobile phase supply device and liquid chromatograph using the mobile phase supply device
US8182236B2 (en) Process and device for the high-pressure delivery of a fluid mixture and use of same
JPH07159388A (en) Mixer for supercritical fluid chromatography
DK1634640T3 (en) Apparatus and method for homogenizing two or more fluids of different density
IN189920B (en)
JP2004271409A (en) Separation and analysis device
JP2000260763A (en) Method and device for treating semiconductor wafer
WO2023241646A1 (en) Sample preparation system and method for extracting analyte from sample by means of sample preparation system
JP5154494B2 (en) Supercritical fluid chromatography apparatus and density adjustment method thereof
JP2006227029A (en) Separation analyzer
TWI813786B (en) mixing device
US6884867B2 (en) Precondition for inverting, mixing, and activating polymers
Ashraf-Khorassani et al. Addition of modifier in supercritical fluid chromatography using a microbore reciprocating pump
JP2001208737A (en) Gas chromatograph device
JPS5844347A (en) Method and apparatus for liquid chromatography
JP4348026B2 (en) Method and apparatus for adjusting wetness of saturated steam
JP2017194461A (en) Chromatography sampler and method of operating the same
JPH06229995A (en) Equipment and method for extraction
JPH10144617A (en) Thermal treatment furnace
JP2596149Y2 (en) Internal pressure explosion-proof thermostat
JP2023046388A (en) Liquid transfer unit, and liquid chromatography analysis system and control method for the same

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20010206