JPH07158998A - Heat pump type cooling and heating device provided with hot water supply or addional boiling unit - Google Patents

Heat pump type cooling and heating device provided with hot water supply or addional boiling unit

Info

Publication number
JPH07158998A
JPH07158998A JP31061193A JP31061193A JPH07158998A JP H07158998 A JPH07158998 A JP H07158998A JP 31061193 A JP31061193 A JP 31061193A JP 31061193 A JP31061193 A JP 31061193A JP H07158998 A JPH07158998 A JP H07158998A
Authority
JP
Japan
Prior art keywords
hot water
water supply
compressor
heating
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP31061193A
Other languages
Japanese (ja)
Inventor
Takeshi Kuramochi
威 倉持
Tetsuji Nanatane
哲二 七種
Yoshiaki Tanimura
佳昭 谷村
Tetsuji Okada
哲治 岡田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP31061193A priority Critical patent/JPH07158998A/en
Publication of JPH07158998A publication Critical patent/JPH07158998A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To provide a high reliability heat pump type heating device which is capable of both heating and supplying hot water simultaneously without discomforting the user. CONSTITUTION:Letting the difference between a detected high pressure P by a high pressure detector 25 and a target high pressure Pdm be DELTAPd and the difference between a detected low pressure Ps by a low pressure detector 26 and a target low pressure Psm be DELTAPs for every operation mode, a capacity changing variable DELTAQcomp of a compressor 1 and an air capacity changing variable DELTAVout are computed from the following equation: DELTAQcomp=(d DELTAPd-b DELTAPs)/(a.d-b.c). DELTAVout=(-c.DELTAPd+a.DELTAPs/(a.d-b.c). This device controls a compressor 1 based on the computed capacity changing variable DELTAQcomp and an outdoor fan 12 based on the air capacity changing variable DELTAVout respectively. This construction makes it possible to control the compressor 1 highly efficiently and elaborately to comply with changes in operation mode.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】この発明は、圧縮機、アキュムレ
ータ、室内熱交換器、室外熱交換器及び減圧装置を冷媒
配管で接続した主冷媒回路と、この主冷媒回路の冷媒と
循環水とを熱交換する給湯或は追焚き熱交換器を有する
給湯或は追焚きユニットとを備えたヒートポンプ式冷暖
房装置に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a main refrigerant circuit in which a compressor, an accumulator, an indoor heat exchanger, an outdoor heat exchanger and a pressure reducing device are connected by a refrigerant pipe, and a refrigerant and circulating water in the main refrigerant circuit. The present invention relates to a heat pump type cooling / heating device provided with a hot water supply or a reheating unit having a hot water supply or a reheating heat exchanger for exchanging heat.

【0002】[0002]

【従来の技術】図18は、従来のこの種の給湯ユニット
を備えたヒートポンプ式冷暖房装置の一例を示す構成図
で、図において、(1)は圧縮機、(2)は四路切換弁、(3)
は室内熱交換器、(4a)(4b)は膨張弁、(5a)(5b)はバイパ
ス用逆止弁、(6)は受液器、(7)は室外熱交換器、(8)は
アキュムレータ、(9)は冷媒配管、(10)は、圧縮器(1)、
四路切換弁(2)、室内熱交換器(3)、受液器(6)、室外熱
交換器(7)、アキュムレータ(8)、及び膨張弁(4a)(4b)の
何れかで構成する減圧装置を冷媒配管(9)で接続した主
冷媒回路、(11)は室内熱交換器(3)を冷却する室内ファ
ン、(12)は室外熱交換器(7)を冷却する室外ファン、(1
3)は貯湯槽、(14)は主冷媒回路(10)の冷媒と貯湯槽(13)
への循環水とを熱交換する給湯熱交換器、(15)は給湯ポ
ンプ、(21)は給湯ユニット、(22)は給湯ユニット(21)へ
の冷媒配管、(23)は電磁制御弁、(24)は制御装置、(25)
は圧縮機(1)の吐出側冷媒圧力を検知する高圧圧力検知
器である。
2. Description of the Related Art FIG. 18 is a block diagram showing an example of a conventional heat pump type cooling and heating apparatus equipped with this kind of hot water supply unit. In the figure, (1) is a compressor, (2) is a four-way switching valve, (3)
Is an indoor heat exchanger, (4a) and (4b) are expansion valves, (5a) and (5b) are check valves for bypass, (6) is a receiver, (7) is an outdoor heat exchanger, and (8) is Accumulator, (9) refrigerant pipe, (10) compressor (1),
Four-way switching valve (2), indoor heat exchanger (3), liquid receiver (6), outdoor heat exchanger (7), accumulator (8), and expansion valve (4a) (4b) A main refrigerant circuit connecting a pressure reducing device to the refrigerant pipe (9), (11) an indoor fan for cooling the indoor heat exchanger (3), (12) an outdoor fan for cooling the outdoor heat exchanger (7), (1
3) is a hot water storage tank, (14) is the refrigerant and hot water storage tank (13) of the main refrigerant circuit (10)
Hot water supply heat exchanger for exchanging heat with circulating water to the water, (15) hot water supply pump, (21) hot water supply unit, (22) refrigerant pipe to hot water supply unit (21), (23) electromagnetic control valve, (24) is a control device, (25)
Is a high-pressure pressure detector that detects the pressure of the refrigerant on the discharge side of the compressor (1).

【0003】次に暖房給湯同時運転時の動作について説
明する。圧縮器(1)より吐出した高温高圧の冷媒ガスは
実線矢印のとおり冷媒配管(9)中を四路切換弁(2)を介し
て室内熱交換器(3)と、冷媒配管(22)中を電磁制御弁(2
3)を介して給湯熱交換器(14)を通る。室内熱交換器(3)
において、冷媒は空気と熱交換されて空気を加熱しなが
ら、高圧の液冷媒となり室内熱交換器(3)より流出す
る。また、給湯熱交換器(14)においては、貯湯槽(13)内
の水がそれの下部から給湯ポンプ(15)によって吸出され
て二重管構造となった給湯熱交換器(14)に流入し、主冷
媒回路(10)からの冷媒によって加熱されて貯湯槽(13)の
上部に戻る。
Next, the operation at the time of simultaneous heating and hot water supply operation will be described. The high-temperature high-pressure refrigerant gas discharged from the compressor (1) flows through the refrigerant pipe (9) through the four-way switching valve (2) in the indoor heat exchanger (3) and the refrigerant pipe (22) as indicated by the solid arrow. The solenoid control valve (2
Pass through the hot water heat exchanger (14) via 3). Indoor heat exchanger (3)
In, the refrigerant exchanges heat with the air to heat the air, and becomes a high-pressure liquid refrigerant to flow out from the indoor heat exchanger (3). Further, in the hot water supply heat exchanger (14), the water in the hot water storage tank (13) is sucked from the lower part by the hot water supply pump (15) and flows into the hot water supply heat exchanger (14) having a double pipe structure. Then, it is heated by the refrigerant from the main refrigerant circuit (10) and returns to the upper part of the hot water storage tank (13).

【0004】室内熱交換器(3)より流出した高圧の液冷
媒は、逆止弁(5a)をへて受液器(6)に流入し給湯熱交換
器(14)より流出した冷媒と合流し、膨張弁(4b)によって
低圧の二相冷媒となり室外熱交換器(7)に流入する。こ
こで、低圧の二相冷媒は外気と熱交換されて低圧の冷媒
ガスとなり室外熱交換器(7)より流出し、四路切換弁
(2)、アキュムレータ(8)を介して、圧縮器(1)の吸入側
に戻る。
The high-pressure liquid refrigerant flowing out of the indoor heat exchanger (3) flows through the check valve (5a) into the liquid receiver (6) and merges with the refrigerant flowing out of the hot water supply heat exchanger (14). Then, the expansion valve (4b) becomes a low-pressure two-phase refrigerant and flows into the outdoor heat exchanger (7). Here, the low-pressure two-phase refrigerant is heat-exchanged with the outside air to become a low-pressure refrigerant gas, which flows out from the outdoor heat exchanger (7), and then the four-way switching valve
(2) Return to the suction side of the compressor (1) via the accumulator (8).

【0005】そして、制御装置(24)によって、高圧圧力
検知器(25)の検知高圧圧力が所定範囲内となるよう、電
磁制御弁(23)の開度が制御され、給湯熱交換器(14)によ
る熱交換量が制御される。
The controller (24) controls the opening degree of the electromagnetic control valve (23) so that the high pressure detected by the high pressure detector (25) is within a predetermined range, and the hot water heat exchanger (14) ), The amount of heat exchange by is controlled.

【0006】[0006]

【発明が解決しようとする課題】従来の給湯ユニットを
備えたヒートポンプ式冷暖房装置は、以上のように構成
されているので、暖房給湯同時運転時に、貯湯槽内の水
温が低い場合などには一時的に暖房能力を著しく低下さ
れることとなり、暖房使用者に不快感を与え、また、高
圧圧力の制御が、電磁制御弁の開度制御で給湯熱交換器
(14)への冷媒量を変えることによって行なわれているの
で、その制御について高い信頼性が得られない等の問題
点をがあった。
Since the conventional heat pump type cooling / heating apparatus having the hot water supply unit is constructed as described above, it is possible to temporarily stop the operation when the temperature of the water in the hot water storage tank is low during the simultaneous heating and hot water supply operation. As a result, the heating capacity is significantly reduced, which makes the heating user uncomfortable, and the control of the high pressure is performed by controlling the opening of the electromagnetic control valve.
Since it is carried out by changing the amount of the refrigerant to (14), there is a problem in that the control cannot obtain high reliability.

【0007】この発明は上記のような問題点を解消する
ためになされたもので、暖房・給湯或は追焚き同時運転
時における高圧圧力の制御について高い信頼性を得るこ
とができ、かつ、この同時運転による一時的な暖房能力
の低下で暖房使用者に不快感を与えることのない給湯或
は追焚きユニットを備えたヒートポンプ式冷暖房装置を
得ることを目的とする。
The present invention has been made to solve the above problems, and it is possible to obtain high reliability in controlling high pressure during heating / hot water supply or simultaneous operation of additional heating, and An object of the present invention is to obtain a heat pump type cooling and heating device provided with a hot water supply or reheating unit that does not cause a heating user to feel uncomfortable due to a temporary decrease in heating capacity due to simultaneous operation.

【0008】[0008]

【課題を解決するための手段】請求項1記載の発明に係
るヒートポンプ式冷暖房装置は、圧縮機の吐出側冷媒圧
力を検知する高圧圧力検知器と、吸入側冷媒圧力を検知
する低圧圧力検知器と、上記高圧圧力検知器の検知高圧
圧力と目標高圧圧力との偏差及び上記低圧圧力検知器の
検知低圧圧力と目標低圧圧力との偏差から、所定関係式
により上記圧縮機の能力変更量及び上記室外熱交換器を
冷却する室外ファンの風量変更量を算出する演算手段、
この演算手段により算出された上記圧縮機の能力変更量
に応じ上記圧縮機を制御する圧縮機制御手段、及び上記
演算手段により算出された上記室外ファンの風量変更量
に応じ上記室外ファンを制御する室外ファン制御手段を
有する制御器とを設けたものである。
According to a first aspect of the present invention, there is provided a heat pump type cooling and heating apparatus, which comprises a high pressure detector for detecting a refrigerant pressure on a discharge side of a compressor and a low pressure detector for detecting a refrigerant pressure on a suction side. From the deviation between the high pressure detected by the high pressure detector and the target high pressure and the deviation between the low pressure detected by the low pressure detector and the target low pressure, the capacity change amount of the compressor and the above by a predetermined relational expression. A calculation means for calculating the air flow rate change amount of the outdoor fan that cools the outdoor heat exchanger,
Compressor control means for controlling the compressor according to the capacity change amount of the compressor calculated by the calculating means, and the outdoor fan according to the air flow rate change amount of the outdoor fan calculated by the calculating means. And a controller having an outdoor fan control means.

【0009】請求項2記載の発明に係るヒートポンプ式
冷暖房装置は、請求項1記載の発明において、演算手段
の所定関係式を、検知高圧圧力をPd、目標高圧圧力を
dm、検知低圧圧力をPs、目標低圧圧力をPsm、それ
らの偏差をΔPd=Pdm−Pd、ΔPs=Psm−Psとした
時、圧縮機の能力変更量ΔQcomp及び室外ファンの風量
変更量ΔVoutを次の行列式
According to a second aspect of the present invention, in the heat pump type heating and cooling apparatus according to the first aspect of the invention, the predetermined relational expression of the calculating means is: detected high pressure Pd , target high pressure Pdm , detected low pressure Is P s , the target low pressure is P sm , and their deviations are ΔP d = P dm −P d , ΔP s = P sm −P s , the compressor capacity change amount ΔQ comp and the outdoor fan air flow rate change. The quantity ΔV out is defined by the following determinant

【数2】 を解くことにより、次式 ΔQcomp=(d・ΔPd−b・ΔPs)/(a・d−b・
c) ΔVout=(−c・ΔPd+a・ΔPs)/(a・d−b
・c) で求める式としたものである。
[Equation 2] By solving the following equation ΔQ comp = (d · ΔP d −b · ΔP s ) / (a · d−b ·
c) ΔV out = (− c · ΔP d + a · ΔP s ) / (a · d−b
・ This is the formula obtained in c).

【0010】請求項3記載の発明に係るヒートポンプ式
冷暖房装置は、給湯熱交換器の入口側冷媒圧力を検知す
る高圧圧力検知器と、この給湯熱交換器の出口側冷媒温
度を検知する出口側冷媒温度検知器と、貯湯槽の湯温検
知器と、この湯温検知器の検知温度に応じた給湯熱交換
器出口の設定過冷却度を決定する設定過冷却度決定手
段、上記高圧圧力検知器の検知高圧圧力と上記出口側冷
媒温度検知器の検知温度から給湯熱交換器出口の現過冷
却度を算出する現過冷却度算出手段、及びこの現過冷却
度算出手段により算出される給湯熱交換器出口の現過冷
却度が上記設定過冷却度決定手段により決定された設定
過冷却度となるよう主冷媒回路から給湯熱交換器への冷
媒量制御弁を制御する給湯熱交換器冷媒量制御手段を有
する制御器とを設けたものである。
A heat pump type cooling and heating apparatus according to a third aspect of the present invention includes a high pressure detector for detecting the refrigerant pressure on the inlet side of the hot water heat exchanger and an outlet side for detecting the refrigerant temperature on the outlet side of the hot water heat exchanger. Refrigerant temperature detector, hot water temperature detector for hot water tank, and set supercooling degree determining means for determining the set subcooling degree at the outlet of the hot water heat exchanger according to the detected temperature of the hot water temperature detector, the high pressure detection Current supercooling degree calculating means for calculating the current supercooling degree at the outlet of the hot water supply heat exchanger from the detected high pressure of the air conditioner and the temperature detected by the outlet side refrigerant temperature detector, and hot water supply calculated by the current supercooling degree calculating means Hot water supply heat exchanger refrigerant that controls the refrigerant amount control valve from the main refrigerant circuit to the hot water heat exchanger so that the current supercooling degree at the outlet of the heat exchanger becomes the set supercooling degree determined by the set supercooling degree determining means. With a controller having a quantity control means It is intended.

【0011】請求項4記載の発明に係るヒートポンプ式
冷暖房装置は、給湯熱交換器の循環水流量を制御する給
湯水流量制御弁と、上記給湯熱交換器出口側の給湯水配
管温度を検知する給湯水配管出口温度検知器と、この給
湯水配管出口温度検知器の検知温度が所定の一定値とな
るよう上記給湯水流量制御弁を制御する給湯水流量制御
弁制御手段を有する制御器とを設けたものである。
A heat pump type cooling and heating apparatus according to a fourth aspect of the present invention detects a hot water supply flow rate control valve for controlling the circulating water flow rate of the hot water supply heat exchanger and a hot water supply water pipe temperature at the outlet side of the hot water supply heat exchanger. A hot water supply water pipe outlet temperature detector, and a controller having a hot water supply water flow rate control valve control means for controlling the hot water supply water flow rate control valve so that the temperature detected by the hot water supply water pipe outlet temperature detector becomes a predetermined constant value. It is provided.

【0012】請求項5記載の発明に係るヒートポンプ式
冷暖房装置は、請求項1または2記載の発明において、
貯湯槽に湯温検知器を設け、圧縮機の運転周波数を可変
とし、この運転周波数を変えることにより圧縮機の能力
を制御するよう構成し、制御器に、主冷媒回路の暖房運
転時における給湯ユニットの運転要求に応じ、上記圧縮
機の最高運転周波数と実運転周波数の差を算出する差周
波数演算手段、及びこの手段により算出された差周波数
が上記湯温検知器の検知温度に応じた所定値以上の時の
み上記給湯ユニットの運転を開始させる給湯ユニットの
運転開始制御手段を備えたものである。
According to a fifth aspect of the present invention, there is provided a heat pump type cooling and heating apparatus according to the first or second aspect,
A hot water temperature detector is installed in the hot water storage tank, the operating frequency of the compressor is made variable, and the capacity of the compressor is controlled by changing this operating frequency.The controller is used to supply hot water during heating operation of the main refrigerant circuit. A difference frequency calculation means for calculating the difference between the maximum operation frequency and the actual operation frequency of the compressor according to the operation request of the unit, and the difference frequency calculated by this means is predetermined according to the temperature detected by the hot water temperature detector. A hot water supply unit operation start control means for starting the operation of the hot water supply unit only when the value is equal to or more than the value is provided.

【0013】請求項6記載の発明に係るヒートポンプ式
冷暖房装置は、請求項1または2記載の発明において、
貯湯槽に湯温検知器を設け、圧縮機の運転周波数を可変
とし、この運転周波数を変えることにより圧縮機の能力
を制御するよう構成し、制御器に、給湯ユニットの運転
時における主冷媒回路の暖房運転要求に応じ、上記給湯
ユニットの運転を休止し暖房運転を開始する給湯・暖房
切換え手段、この手段による切換え後の暖房運転時にお
ける上記圧縮機の最高運転周波数と実運転周波数の差を
算出する差周波数演算手段、及びこの手段により算出さ
れた差周波数が上記湯温検知器の検知温度に応じた所定
値以上の時のみ上記給湯ユニットの運転を再開させる給
湯ユニットの運転再開制御手段を備えたものである。
According to a sixth aspect of the present invention, there is provided the heat pump type cooling and heating apparatus according to the first or second aspect,
A hot water temperature detector is installed in the hot water storage tank, the operating frequency of the compressor is made variable, and the capacity of the compressor is controlled by changing this operating frequency.The controller is equipped with a main refrigerant circuit during operation of the hot water supply unit. In response to the heating operation request, the hot water supply / heating switching means that suspends the operation of the hot water supply unit and starts the heating operation, and the difference between the maximum operating frequency and the actual operating frequency of the compressor during the heating operation after switching by this means A difference frequency calculating means for calculating, and a restart control means of the hot water supply unit for restarting the operation of the hot water supply unit only when the difference frequency calculated by this means is equal to or higher than a predetermined value according to the detected temperature of the hot water temperature detector. Be prepared.

【0014】請求項7記載の発明に係るヒートポンプ式
冷暖房装置は、請求項1または2記載の発明において、
貯湯槽に湯温検知器を設け、圧縮機の運転周波数を可変
とし、この運転周波数を変えることにより圧縮機の能力
を制御するよう構成し、制御器に、主冷媒回路の暖房運
転と給湯ユニットの運転との同時運転時に暖房負荷の増
大により、圧縮機の最高能力でも吐出側冷媒圧力を目標
高圧圧力に制御できなくなったことに応じ、上記給湯ユ
ニットの運転を休止させる給湯ユニット運転休止制御手
段、この手段による給湯ユニットの運転休止後の暖房運
転時における圧縮機の最高運転周波数と実運転周波数の
差を算出する差周波数演算手段、及びこの手段により算
出された差周波数が上記湯温検知器の検知温度に応じた
所定値以上の時のみ上記給湯ユニットの運転を再開させ
る給湯ユニットの運転再開制御手段を備えたものであ
る。
A heat pump type cooling and heating apparatus according to the invention of claim 7 is the same as the invention of claim 1 or 2,
A hot water temperature detector is provided in the hot water storage tank, the operating frequency of the compressor is made variable, and the capacity of the compressor is controlled by changing this operating frequency.The controller is equipped with a heating operation for the main refrigerant circuit and a hot water supply unit. Hot water supply unit suspension control means for suspending the operation of the hot water supply unit in response to the fact that the discharge side refrigerant pressure cannot be controlled to the target high pressure even with the maximum capacity of the compressor due to an increase in heating load during simultaneous operation with A difference frequency calculating means for calculating the difference between the maximum operating frequency and the actual operating frequency of the compressor during the heating operation after the operation of the hot water supply unit is stopped by this means, and the difference frequency calculated by this means is the hot water temperature detector. The hot water supply unit operation restart control means for restarting the operation of the hot water supply unit only when the temperature is equal to or higher than a predetermined value according to the detected temperature.

【0015】請求項8記載の発明に係るヒートポンプ式
冷暖房装置は、請求項1または2記載の発明において、
制御器に、主冷媒回路の暖房運転と給湯ユニットの運転
との同時運転時で、圧縮機の最高能力でも吐出側冷媒圧
力を目標高圧圧力に制御できない時、この目標高圧圧力
を所定値に低下させる目標高圧圧力低下手段、及びこの
手段によって低下した目標高圧圧力にも上記吐出側冷媒
圧力を制御できない時、上記給湯ユニットの運転を休止
させる給湯ユニットの運転休止制御手段を備えたもので
ある。
The heat pump type cooling and heating apparatus according to the invention of claim 8 is the same as the invention of claim 1 or 2,
If the discharge side refrigerant pressure cannot be controlled to the target high pressure even with the maximum capacity of the compressor during the simultaneous operation of the main refrigerant circuit heating operation and the hot water supply unit operation, the controller lowers this target high pressure to a specified value. The target high pressure reducing means is provided, and the hot water supply unit operation suspension control means for suspending the operation of the hot water supply unit when the discharge side refrigerant pressure cannot be controlled even by the target high pressure reduced by this means.

【0016】請求項9記載の発明に係るヒートポンプ式
冷暖房装置は、請求項1〜8の何れかに記載の発明にお
いて、給湯ユニットに代え或はこれに加え追焚きユニッ
トを備え、給湯熱交換器を追焚き熱交換器、貯湯槽を浴
槽としたものである。
A heat pump type air conditioner according to a ninth aspect of the present invention is the heat pump type air conditioner according to any one of the first to eighth aspects, further comprising a reheating unit instead of or in addition to the hot water supply unit. Is a reheating heat exchanger and a hot water storage tank as a bath.

【0017】[0017]

【作用】請求項1記載の発明においては、各運転モード
毎に、検知高圧圧力と目標高圧圧力との偏差及び検知低
圧圧力と目標低圧圧力との偏差から所定関係式により、
圧縮機の能力変更量と室外ファンの風量変更量とが算出
され、これら算出された能力変更量により圧縮機が、風
量変更量により室外ファンがそれぞれ制御され、高効率
に運転される。
According to the first aspect of the present invention, a predetermined relational expression is used for each operation mode from the deviation between the detected high pressure and the target high pressure and the deviation between the detected low pressure and the target low pressure.
The capacity change amount of the compressor and the air flow rate change amount of the outdoor fan are calculated, and the compressor is controlled by the calculated capacity change amount, and the outdoor fan is controlled by the air volume change amount, respectively, to operate with high efficiency.

【0018】請求項2記載の発明においては、各運転モ
ード毎に、検知高圧圧力Pdと目標高圧圧力Pdmとの偏
差ΔPd及び検知低圧圧力Psと目標低圧圧力Psmとの偏
差ΔPsから次の行列式
According to the second aspect of the present invention, the deviation ΔP d between the detected high pressure P d and the target high pressure P dm and the deviation ΔP between the detected low pressure P s and the target low pressure P sm for each operation mode. from s to the determinant

【数3】 を解くことにより、次式 ΔQcomp=(d・ΔPd−b・ΔPs)/(a・d−b・
c) ΔVout=(−c・ΔPd+a・ΔPs)/(a・d−b
・c) から、圧縮機の能力変更量ΔQcompと室外ファンの風量
変更量ΔVoutとが算出され、これら算出された能力変
更量ΔQcompにより圧縮機が、風量変更量ΔVou tによ
り室外ファンがそれぞれ制御され、高効率に運転され
る。
[Equation 3] By solving the following equation ΔQ comp = (d · ΔP d −b · ΔP s ) / (a · d−b ·
c) ΔV out = (− c · ΔP d + a · ΔP s ) / (a · d−b
From · c), the air volume change amount [Delta] V out of capacity change amount Delta] Q comp an outdoor fan of the compressor is calculated, these calculated capacity change amount Delta] Q comp the compressor, outdoor fan by airflow change amount [Delta] V ou t Are controlled respectively and operated with high efficiency.

【0019】請求項3記載の発明においては、給湯熱交
換器の入口側の冷媒圧力である高圧圧力と給湯熱交換器
の出口側冷媒温度から算出された給湯熱交換器出口の現
過冷却度が、貯湯槽の湯温に応じた給湯熱交換器出口の
設定過冷却度となるよう、主冷媒回路から給湯熱交換器
への冷媒量が制御される。
According to the third aspect of the invention, the current degree of subcooling at the outlet of the hot water heat exchanger calculated from the high pressure which is the refrigerant pressure at the inlet of the hot water heat exchanger and the refrigerant temperature at the outlet of the hot water heat exchanger. However, the amount of refrigerant from the main refrigerant circuit to the hot water supply heat exchanger is controlled so that the set subcooling degree at the hot water supply heat exchanger outlet is set according to the hot water temperature of the hot water storage tank.

【0020】請求項4記載の発明においては、給湯熱交
換器出口側の給湯水配管温度が所定の一定値となるよ
う、給湯熱交換器の循環水流量が制御される。
According to the fourth aspect of the present invention, the circulating water flow rate of the hot water supply heat exchanger is controlled so that the temperature of the hot water supply water piping on the outlet side of the hot water supply heat exchanger has a predetermined constant value.

【0021】請求項5記載の発明においては、暖房運転
時に給湯ユニットの運転要求があると、圧縮機の最高運
転周波数と実運転周波数の差が算出され、その差周波数
が貯湯槽の湯温に応じて予め定められた周波数以上の時
のみ給湯ユニットの運転が開始される。
In the fifth aspect of the invention, when there is an operation request for the hot water supply unit during the heating operation, the difference between the maximum operating frequency of the compressor and the actual operating frequency is calculated, and the difference frequency is the hot water temperature of the hot water storage tank. Accordingly, operation of the hot water supply unit is started only when the frequency is equal to or higher than a predetermined frequency.

【0022】請求項6記載の発明においては、給湯ユニ
ット運転時に暖房運転要求があると、一旦給湯ユニット
の運転が休止され、暖房運転が開始される。それから、
圧縮機の最高運転周波数と実運転周波数の差が算出さ
れ、その差周波数が貯湯槽の湯温に応じて予め定められ
た周波数以上の時のみ給湯ユニットの運転が再開され
る。
According to the sixth aspect of the present invention, when a heating operation request is issued during operation of the hot water supply unit, the operation of the hot water supply unit is once suspended and the heating operation is started. then,
The difference between the maximum operating frequency of the compressor and the actual operating frequency is calculated, and the operation of the hot water supply unit is restarted only when the difference frequency is equal to or higher than a frequency predetermined according to the hot water in the hot water storage tank.

【0023】請求項7記載の発明においては、暖房給湯
同時運転時に暖房負荷が増大し、吐出側冷媒圧力が目標
高圧圧力に制御できなくなったら、一旦給湯ユニットの
運転が休止され暖房運転に入る。それから、圧縮機の最
高運転周波数と実運転周波数の差が算出され、その差周
波数が貯湯槽の湯温に応じて予め定められた周波数以上
の時のみ給湯ユニットの運転が再開される。
According to the seventh aspect of the present invention, when the heating load increases during the simultaneous heating and hot water supply operation and the discharge side refrigerant pressure cannot be controlled to the target high pressure, the hot water supply unit is temporarily stopped and the heating operation is started. Then, the difference between the maximum operating frequency and the actual operating frequency of the compressor is calculated, and the operation of the hot water supply unit is restarted only when the difference frequency is equal to or higher than the frequency predetermined according to the hot water temperature of the hot water storage tank.

【0024】請求項8記載の発明においては、暖房運転
から暖房給湯同時運転に切り換わり、或は暖房給湯同時
運転中に暖房負荷が急に増加して、吐出側冷媒圧力が目
標高圧圧力に制御できなくなったら、一旦目標高圧圧力
を所定値に低下させ、それでもその目標高圧圧力に制御
できない時、給湯ユニットの運転が休止される。
In the eighth aspect of the invention, the heating operation is switched from the heating operation to the heating hot water supply simultaneous operation, or the heating load suddenly increases during the heating hot water supply simultaneous operation, and the discharge side refrigerant pressure is controlled to the target high pressure. If it becomes impossible, the target high pressure is once lowered to a predetermined value, and when the target high pressure cannot be controlled even still, the operation of the hot water supply unit is suspended.

【0025】請求項9記載の発明においては、以上の各
請求項記載の発明において、給湯ユニットの代りに、或
は給湯ユニットの他に追焚きユニットが備えられ、給湯
ユニットと同じ制御が追焚きユニットに対して行なわれ
る。
In the invention described in claim 9, in the invention described in each of the above claims, a reheating unit is provided instead of the hot water supply unit or in addition to the hot water supply unit, and the same control as the hot water supply unit is added. Performed on units.

【0026】[0026]

【実施例】【Example】

実施例1.以下この発明の実施例を説明する。図1〜図
4はこの発明の実施例1を示し、図1は構成図、図2は
冷房運転を説明する構成図、図3は暖房給湯同時運転を
説明する構成図、図4は制御ブロック線図である。
Example 1. Examples of the present invention will be described below. 1 to 4 show Embodiment 1 of the present invention, FIG. 1 is a configuration diagram, FIG. 2 is a configuration diagram illustrating a cooling operation, FIG. 3 is a configuration diagram illustrating a heating and hot water supply simultaneous operation, and FIG. 4 is a control block. It is a diagram.

【0027】図において、(1)は圧縮機、(3)は室内熱交
換器、(7)は室外熱交換器、(8)はアキュムレータ、(9a)
は高圧ガスの冷媒配管、(9b)は低圧ガスの冷媒配管、(9
c)は液冷媒の冷媒配管、(10)は主冷媒回路、(11)は室内
熱交換器(3)を冷却する室内ファン、(12)は室外熱交換
器(7)を冷却する室外ファン、(13)は貯湯槽、(14)は給
湯熱交換器、(15)は給湯ポンプ、(16)は加熱用ヒータ、
(17)は給湯熱交換器(14)の出口側給湯水配管、(18)は出
湯配管、(19)は給水配管、(20)は給湯水流量制御弁、(2
1)は給湯ユニット、(25)は圧縮機(1)の吐出側冷媒圧力
を検知する高圧圧力検知器、(26)は圧縮機(1)の吸入側
冷媒圧力を検知する低圧圧力検知器、(27)は追焚きユニ
ット、(28)は追焚き熱交換器、(29)は追焚きポンプ、(3
0)は浴槽である。
In the figure, (1) is a compressor, (3) is an indoor heat exchanger, (7) is an outdoor heat exchanger, (8) is an accumulator, and (9a).
Is a refrigerant pipe for high-pressure gas, (9b) is a refrigerant pipe for low-pressure gas,
c) is a refrigerant pipe for liquid refrigerant, (10) is a main refrigerant circuit, (11) is an indoor fan for cooling the indoor heat exchanger (3), and (12) is an outdoor fan for cooling the outdoor heat exchanger (7). , (13) is a hot water storage tank, (14) is a hot water supply heat exchanger, (15) is a hot water supply pump, (16) is a heater for heating,
(17) is the outlet side hot water supply water pipe of the hot water heat exchanger (14), (18) is the hot water supply pipe, (19) is the water supply pipe, (20) is the hot water supply flow control valve, (2)
1) is a hot water supply unit, (25) is a high pressure pressure detector that detects the discharge side refrigerant pressure of the compressor (1), (26) is a low pressure pressure detector that detects the suction side refrigerant pressure of the compressor (1), (27) is a reheating unit, (28) is a reheating heat exchanger, (29) is a reheating pump, (3)
0) is a bathtub.

【0028】(31a)(31b)(31c)(31d)(31e)(31f)(31g)(31
h)は二方弁、(32a)は冷暖房用の冷媒量制御弁で主冷媒
回路(10)の減圧装置を構成する。(32b)は給湯ユニット
用の冷媒量制御弁、(32c)は追焚きユニット用の冷媒量
制御弁、(40)はマイクロコンピュータ等からなる制御
器、(41)はこの制御器(40)によって実行される演算手段
で、高圧圧力検知器(25)の検知高圧圧力と目標高圧圧力
との偏差及び低圧圧力検知器(26)の検知低圧圧力と目標
低圧圧力との偏差から圧縮機(1)の能力変更量を算出す
る圧縮機能力変更量算出手段(42)と室外ファン(12)の風
量変更量を算出する室外ファン風量変更量算出手段(43)
とからなる。(44)は算出された上記能力変更量に応じ圧
縮機(1)を制御する圧縮機制御手段、(45)は算出された
上記風量変更量に応じ室外ファン(12)を制御する室外フ
ァン制御手段である。
(31a) (31b) (31c) (31d) (31e) (31f) (31g) (31
h) is a two-way valve, and (32a) is a cooling / heating refrigerant amount control valve, which constitutes the pressure reducing device of the main refrigerant circuit (10). (32b) is a refrigerant amount control valve for the hot water supply unit, (32c) is a refrigerant amount control valve for the reheating unit, (40) is a controller including a microcomputer, (41) is this controller (40) The compressor (1) is calculated from the deviation between the high pressure detected by the high pressure detector (25) and the target high pressure and the deviation between the low pressure detected by the low pressure detector (26) and the target low pressure. Compression function force change amount calculation means (42) for calculating the capacity change amount and the outdoor fan air flow change amount calculation means (43) for calculating the air flow change amount of the outdoor fan (12)
Consists of. (44) is a compressor control means for controlling the compressor (1) according to the calculated capacity change amount, and (45) is an outdoor fan control for controlling the outdoor fan (12) according to the calculated air flow change amount. It is a means.

【0029】次に、図2において、室外熱交換器(7)が
凝縮器になる冷房運転についての動作を説明する。冷房
運転時には、二方弁(31a)(31d)(31e)(31f)(31g)(31h)及
び冷媒量制御弁(32b)(32c)が閉じ、二方弁(31b)(31c)及
び冷媒量制御弁(32a)が開かれる。
Next, referring to FIG. 2, the operation of the cooling operation in which the outdoor heat exchanger (7) becomes a condenser will be described. During cooling operation, the two-way valve (31a) (31d) (31e) (31f) (31g) (31h) and the refrigerant amount control valve (32b) (32c) is closed, the two-way valve (31b) (31c) and the refrigerant The quantity control valve (32a) is opened.

【0030】圧縮器(1)より吐出した高温高圧の冷媒ガ
スは冷媒配管(9a)より二方弁(31c)を介して室外熱交換
器(7)を通る。室外交換器(7)において、冷媒は、外気と
熱交換を行うことにより、高圧の液冷媒となり、室外熱
交換器(7)より流出する。流出した液冷媒は冷媒配管(9
c)を通り、冷媒量制御弁(32a)にて減圧して低圧の二相
冷媒となり、室内熱交換器(3)に流入する。ここで、低
圧の二相冷媒は空気と熱交換を行うことにより空気を冷
却し、冷媒の方は蒸発して低圧の冷媒ガスとなり、室内
熱交換器(3)より流出する。流出した低圧の冷媒ガスは
二方弁(31b)、冷媒配管(9b)、アキュムレータ(8)を介し
て、圧縮器(1)の吸入側に戻る。
The high-temperature high-pressure refrigerant gas discharged from the compressor (1) passes through the outdoor heat exchanger (7) from the refrigerant pipe (9a) via the two-way valve (31c). In the outdoor exchanger (7), the refrigerant becomes a high-pressure liquid refrigerant by exchanging heat with the outside air, and flows out from the outdoor heat exchanger (7). The liquid refrigerant flowing out is
After passing through c), the refrigerant amount control valve (32a) reduces the pressure to a low-pressure two-phase refrigerant, which flows into the indoor heat exchanger (3). Here, the low-pressure two-phase refrigerant cools the air by exchanging heat with the air, and the refrigerant evaporates into a low-pressure refrigerant gas, which flows out from the indoor heat exchanger (3). The low-pressure refrigerant gas that has flowed out returns to the suction side of the compressor (1) via the two-way valve (31b), the refrigerant pipe (9b), and the accumulator (8).

【0031】以上の主冷媒回路(10)において、圧縮器
(1)の吐出口から冷媒配管(9a)にかけての高圧ガス部に
設けられた高圧圧力検知器(25)と、アキュムレータ(8)
から圧縮器(1)の吸入口にかけての低圧ガス部に設けら
れた低圧圧力検知器(26)からの信号を受けて、制御器(4
0)において圧縮器(1)の能力と室外ファン(12)の風量が
制御される。
In the above main refrigerant circuit (10), the compressor
High pressure detector (25) provided in the high pressure gas section from the discharge port of (1) to the refrigerant pipe (9a), and the accumulator (8)
From the low pressure detector (26) installed in the low pressure gas section from the compressor to the suction port of the compressor (1), the controller (4
In (0), the capacity of the compressor (1) and the air volume of the outdoor fan (12) are controlled.

【0032】即ち、高圧圧力検知器(25)で検知した高圧
圧力Pd及び低圧圧力検知器(26)で検知した低圧圧力Ps
が、制御器(40)の演算手段(41)に取込まれ、圧縮機能力
変更量算出手段(42)及び室外ファン風量変更量算出手段
(43)において、目標高圧圧力Pdm及び目標低圧圧力Psm
との偏差ΔPd=Pdm−Pd、ΔPs=Psm−Psが求めら
れ、これら偏差ΔPd及びΔPsから、次の行列式
That is, the high pressure P d detected by the high pressure detector (25) and the low pressure P s detected by the low pressure detector (26)
Are taken into the calculation means (41) of the controller (40), and the compression function force change amount calculation means (42) and the outdoor fan air flow change amount calculation means
In (43), the target high pressure P dm and the target low pressure P sm
And the deviations ΔP d = P dm −P d and ΔP s = P sm −P s are obtained. From these deviations ΔP d and ΔP s , the following determinant is obtained.

【0033】[0033]

【数4】 [Equation 4]

【0034】が解かれ、次式 ΔQcomp=(d・ΔPd−b・ΔPs)/(a・d−b・c) (1) ΔVout =(−c・ΔPd+a・ΔPs)/(a・d−b・c) (2) から圧縮機能力変更量ΔQcomp及び室外ファン風量変更
量ΔVoutが算出される。これら圧縮機能力変更量ΔQ
comp及び室外ファン風量変更量ΔVoutに応じ圧縮機制
御手段(44)及び室外ファン制御手段(45)によって圧縮機
(1)及び室外ファン(12)が制御される。
The following equation ΔQ comp = (d · ΔP d −b · ΔP s ) / (a · d−b · c) (1) ΔV out = (− c · ΔP d + a · ΔP s ) The compression function force change amount ΔQ comp and the outdoor fan air flow change amount ΔV out are calculated from / (a · d−b · c) (2). These compression function force change amount ΔQ
The compressor is controlled by the compressor control means (44) and the outdoor fan control means (45) according to comp and the amount of change ΔV out of the outdoor fan air volume.
(1) and the outdoor fan (12) are controlled.

【0035】上記(1)(2)式の係数a、b、c、dは実験
により求められ、室外熱交換器(7)が凝縮器となる冷房
運転の場合は、a1,b1,c1,d1>0として、a=a
1,b=−b1,c=−c1,d=−d1となる。この係数
にて(1)(2)式を書き換えると ΔQcomp=(d1・ΔPd−b1・ΔPs)/(a1・d1+b1・c1) (3) ΔVout =−(c1・ΔPd+a1・ΔPs)/(a1・d1+b1・c1) (4) となる。
The coefficients a, b, c and d in the above equations (1) and (2) are obtained by experiments. In the cooling operation in which the outdoor heat exchanger (7) is a condenser, a 1 , b 1 , When c 1 and d 1 > 0, a = a
1 , b = −b 1 , c = −c 1 , d = −d 1 . Rewriting equations (1) and (2) with this coefficient, ΔQ comp = (d 1 · ΔP d −b 1 · ΔP s ) / (a 1 · d 1 + b 1 · c 1 ) (3) ΔV out = − (C 1 · ΔP d + a 1 · ΔP s ) / (a 1 · d 1 + b 1 · c 1 ) (4)

【0036】例えば、ここで、高圧圧力検知器(25)で検
知した圧力Pdが目標高圧圧力Pdmより低く、低圧圧力
検知器(26)で検知した圧力Psが目標低圧圧力Psmより
高い場合、つまり△Pd>0、△Ps<0の場合は、上式
において圧縮器(1)の能力変更量△Qcompについては高
圧圧力、低圧圧力からの圧縮器(1)の能力変更量の要因
がどちらとも正となり、圧縮器(1)の能力変更量△Q
comp>0となる。
For example, here, the pressure P d detected by the high pressure detector (25) is lower than the target high pressure P dm , and the pressure P s detected by the low pressure detector (26) is lower than the target low pressure P sm . When it is high, that is, when ΔP d > 0 and ΔP s <0, the capacity change amount ΔQ comp of the compressor (1) in the above equation is the capacity of the compressor (1) from high pressure and low pressure. Both of the factors of the amount of change become positive, and the amount of change in capacity of the compressor (1) ΔQ
comp > 0.

【0037】また室外ファン(12)の風量変更量△Vout
については高圧圧力からの要因では高圧圧力検知器(25)
で検知した圧力Pdが目標高圧圧力Pdmまであがるよう
に、室外ファン(12)の風量をおとして凝縮器側の熱交換
量をへらして高圧圧力を上げるように働くが、低圧圧力
については、高圧圧力をさげることにより低圧圧力を下
げようとするため、室外ファン(12)の風量を上げて凝縮
器側の熱交換量をふやし高圧圧力を下げるように働くた
め、室外ファン(12)の風量変更量△Voutは、係数a1
1の重み付けによって正になるか負になるかが変わっ
てくる。
Further, the amount of air flow change of the outdoor fan (12) ΔV out
For factors from high pressure, see High Pressure Detectors (25)
In order that the pressure P d detected in step up to the target high pressure P dm rises, the air flow rate of the outdoor fan (12) is reduced to reduce the heat exchange amount on the condenser side to raise the high pressure, but for the low pressure, In order to lower the low pressure by lowering the high pressure, the air volume of the outdoor fan (12) is increased to increase the heat exchange amount on the condenser side and to lower the high pressure. The air flow rate change amount ΔV out is determined by the coefficient a 1 ,
Depending on the weighting of c 1 , it becomes positive or negative.

【0038】但し、基本的には室外熱交換器(7)が凝縮
器の場合には高圧側の制御の主体は室外ファン(12)の風
量変更量△Voutによるものと考え、高圧側の偏差△Pd
に対する係数c1の重み付けを低圧側の偏差△Psに対す
るものa1より大きくし、低圧側の制御の主体は圧縮器
(1)の能力変更量△Qcompによるものとして、低圧側の
偏差△Psに対する係数b1の重み付けを高圧側の偏差△
dに対するものd1より大きくするようにする。
However, basically, when the outdoor heat exchanger (7) is a condenser, it is considered that the main body of control on the high pressure side is the air flow rate change amount ΔV out of the outdoor fan (12), and Deviation ΔP d
The coefficient c 1 is weighted more than a 1 for the deviation ΔP s on the low pressure side, and the main component of the control on the low pressure side is the compressor.
Assuming that the capacity change amount ΔQ comp in (1) is used, the weighting of the coefficient b 1 to the deviation ΔP s on the low voltage side is applied to the deviation ΔP on the high voltage side.
It should be larger than d 1 for P d .

【0039】次に、図3によって、室外熱交換器(7)が
蒸発器になる暖房給湯同時運転についての動作を説明す
る。暖房給湯同時運転時には、二方弁(31b)(31c)(31f)
(31g)(31h)及び冷媒量制御弁(32c)が閉じ、二方弁(31a)
(31d)(31e)及び冷媒量制御弁(32a)(32b)が開かれる。
Next, referring to FIG. 3, the operation of the heating and hot water supply simultaneous operation in which the outdoor heat exchanger (7) becomes an evaporator will be described. Two-way valve (31b) (31c) (31f) when heating and hot water are operating simultaneously
(31g) (31h) and refrigerant amount control valve (32c) are closed, two-way valve (31a)
(31d) (31e) and the refrigerant amount control valves (32a) (32b) are opened.

【0040】圧縮器(1)より吐出した高温高圧の冷媒ガ
スは冷媒配管(9a)より、二方弁(31a)を介して室内熱交
換器(3)と、二方弁(31e)を介して給湯熱交換器(14)に流
入する。室内熱交換器(3)において、冷媒は、空気と熱
交換されて空気を加熱しながら高圧の液冷媒となり、室
内熱交換器(3)より流出する。また、給湯熱交換器(14)
においては、貯湯槽(13)内の水が給湯ポンプ(15)によっ
て貯湯槽(13)の下部より吸引され、二重管構造となった
給湯熱交換器(14)に流入し、冷媒は循環水と熱交換を行
うことにより循環水を加熱しながら、高圧の液冷媒とな
り、給湯熱交換器(14)より流出し、一方、加熱された循
環水は給湯熱交換器(14)の出口側水配管(17)より貯湯槽
(13)の上部に戻る。
The high-temperature and high-pressure refrigerant gas discharged from the compressor (1) is introduced from the refrigerant pipe (9a) through the two-way valve (31a), the indoor heat exchanger (3) and the two-way valve (31e). And flows into the hot water heat exchanger (14). In the indoor heat exchanger (3), the refrigerant heat-exchanges with air to heat the air to become a high-pressure liquid refrigerant, and flows out from the indoor heat exchanger (3). Also, hot water heat exchanger (14)
In, the water in the hot water storage tank (13) is sucked from the lower part of the hot water storage tank (13) by the hot water supply pump (15), flows into the hot water heat exchanger (14) having a double pipe structure, and the refrigerant circulates. While circulating water is heated by exchanging heat with water, it becomes a high-pressure liquid refrigerant and flows out from the hot water supply heat exchanger (14), while the heated circulating water exits the hot water supply heat exchanger (14). Hot water storage tank from the water pipe (17)
Return to the upper part of (13).

【0041】室内熱交換器(3)より流出した液冷媒は冷
媒量制御弁(32a)を通って低圧の二相冷媒となり、また
給湯熱交換器(14)より流出し高圧の液冷媒は、冷媒量制
御弁(32b)を通って低圧の二相冷媒となり、冷媒配管(9
c)において、室内熱交換器(3)を通ってきた冷媒と合流
し、室外熱交換器(7)に流入する。ここで、低圧の二相
冷媒は外気と熱交換を行うことにより、低圧の冷媒ガス
となり、室外熱交換器(7)より流出する。流出した低圧
の冷媒ガスは二方弁(31d)、冷媒配管(9b)、アキュムレ
ータ(8)を介して、圧縮器(1)の吸入側に戻る。
The liquid refrigerant flowing out of the indoor heat exchanger (3) passes through the refrigerant amount control valve (32a) to become a low-pressure two-phase refrigerant, and the high-temperature liquid refrigerant flowing out of the hot water heat exchanger (14) is The low-pressure two-phase refrigerant passes through the refrigerant amount control valve (32b), and the refrigerant pipe (9
In c), it merges with the refrigerant having passed through the indoor heat exchanger (3) and flows into the outdoor heat exchanger (7). Here, the low-pressure two-phase refrigerant exchanges heat with the outside air to become a low-pressure refrigerant gas, which flows out from the outdoor heat exchanger (7). The low-pressure refrigerant gas that has flowed out returns to the suction side of the compressor (1) via the two-way valve (31d), the refrigerant pipe (9b), and the accumulator (8).

【0042】この暖房給湯同時運転においても、高圧圧
力検知器(25)と低圧圧力検知器(26)からの信号を受け
て、制御器(40)において圧縮器(1)の能力と室外ファン
(12)の風量が制御されるが、上記(1)(2)式における係数
a、b、c、dは室外熱交換器(7)が蒸発器となる場合
においては、a2,b2,c2,d2>0として、a=
2,b=b2,c=−c2,d=d2となる。この係数に
て(1)(2)式を書き換えると ΔQcomp=(d2・ΔPd−b2・ΔPs)/(a2・d2+b2・c2) (5) ΔVout =(c2・ΔPd+a2・ΔPs)/(a2・d2+b2・c2) (6) となる。
Even in the heating and hot water supply simultaneous operation, the controller (40) receives the signals from the high pressure pressure detector (25) and the low pressure pressure detector (26), and the capacity of the compressor (1) and the outdoor fan.
Although the air volume in (12) is controlled, the coefficients a, b, c and d in the above equations (1) and (2) are a 2 , b 2 when the outdoor heat exchanger (7) is an evaporator. , C 2 , d 2 > 0, a =
a 2, b = b 2, c = -c 2, the d = d 2. Rewriting equations (1) and (2) with this coefficient, ΔQ comp = (d 2 · ΔP d −b 2 · ΔP s ) / (a 2 · d 2 + b 2 · c 2 ) (5) ΔV out = ( c 2 · ΔP d + a 2 · ΔP s ) / (a 2 · d 2 + b 2 · c 2 ) (6)

【0043】例えば、ここで、高圧圧力検知器(25)で検
知した圧力Pdが目標高圧圧力Pdmより低く、低圧圧力
検知器(26)で検知した圧力Psが目標低圧圧力Psmより
高い場合、つまり△Pd>0、△Ps<0の場合、(5)式
において圧縮器(1)の能力変更量△Qcompについては高
圧圧力、低圧圧力からの圧縮器(1)の能力変更量の要因
がどちらとも正となり、圧縮器(1)の能力変更量△Q
comp>0となる。
For example, here, the pressure P d detected by the high pressure detector (25) is lower than the target high pressure P dm , and the pressure P s detected by the low pressure detector (26) is lower than the target low pressure P sm . When it is high, that is, when ΔP d > 0 and ΔP s <0, in the equation (5), the capacity change amount ΔQ comp of the compressor (1) is calculated from the high pressure and low pressure of the compressor (1). Both factors of the capacity change amount become positive, and the capacity change amount of the compressor (1) ΔQ
comp > 0.

【0044】また室外ファン(12)の風量変更量△Vout
については、低圧圧力からの要因では低圧圧力検知器(2
6)で検知した圧力Pdが目標低圧圧力Pdmまで下がるよ
うに、室外ファン(12)の風量をおとして蒸発器側の熱交
換量をへらして低圧圧力を下げるように働くが、高圧圧
力については、低圧圧力を上げることにより高圧圧力を
上げようとするため、室外ファン(12)の風量を上げて蒸
発器側の熱交換量をふやし低圧圧力を上げるように働く
ため、室外ファン(12)の風量変更量△Voutは、係数
2、c2の重み付けによって正になるか負になるかが変
わってくる。
Further, the amount of air flow change of the outdoor fan (12) ΔV out
For the factors from low pressure, the low pressure detector (2
As the pressure P d detected in 6) falls to the target low pressure P dm, it works to reduce the heat exchange amount on the evaporator side by lowering the air volume of the outdoor fan (12), but lower the low pressure. In order to increase the high pressure by increasing the low pressure, the outdoor fan (12) works by increasing the air volume of the outdoor fan (12) to increase the heat exchange amount on the evaporator side and increase the low pressure. The air flow rate change amount ΔV out of) is positive or negative depending on the weighting of the coefficients a 2 and c 2 .

【0045】但し、基本的には室外熱交換器(7)が蒸発
器の場合には、低圧側の制御の主体は室外ファン(12)の
風量変更量△Voutによるものと考え、低圧側の偏差△
sに対する係数a2の重み付けを高圧側の偏差△Pd
対するものc2より大きくし、高圧側の制御の主体は圧
縮器(1)の能力変更量△Qcompによるものとして、高圧
側の偏差△Pdに対する係数d2の重み付けを低圧側の偏
差△Psに対するものb2より大きくするようにする。
However, basically, when the outdoor heat exchanger (7) is an evaporator, it is considered that the main body of control on the low pressure side is due to the air flow rate change amount ΔV out of the outdoor fan (12) and the low pressure side. Deviation of
Weighting coefficient a 2 for P s was greater than things c 2 for the deviation △ P d of the high-pressure side, the subject of control of the high pressure side as on the ability change amount △ Q comp compressor (1), the high-pressure side the weighting coefficient d 2 for the deviation △ P d to be greater than the ones b 2 for the low-pressure side of the deviation △ P s.

【0046】なお、以上暖房給湯同時運転についてのみ
説明したが、暖房単独運転、給湯単独運転、暖房追焚き
同時運転、暖房給湯追焚き同時運転、給湯追焚き同時運
転、追焚き単独運転をも可能であるが、これらの何れの
場合も室外熱交換器(7)が蒸発器の運転であるため、圧
縮器(1)の能力変更量△Qcomp及び室外ファン(12)の風
量変更量△Voutの演算は暖房給湯同時運転と同様であ
るので特に説明を省略する。
Although only the heating and hot water supply simultaneous operation has been described above, heating alone operation, hot water supply independent operation, heating heating simultaneous operation, heating hot water heating and heating simultaneous operation, hot water heating and simultaneous heating operation, additional heating alone operation are also possible. However, in any of these cases, since the outdoor heat exchanger (7) operates the evaporator, the capacity change amount ΔQ comp of the compressor (1) and the air flow change amount ΔV of the outdoor fan (12) are increased. The calculation of out is the same as that for the simultaneous heating and hot water supply operation, and thus its description is omitted.

【0047】以上の高圧圧力検知器(25)と低圧圧力検知
器(26)との検知圧力Pd,Psによる、圧縮器(1)の能力
制御と室外ファン(12)の風量制御の制御系は、図4のよ
うな制御ブロック線図で示すことができる。
Control of the capacity control of the compressor (1) and the air volume control of the outdoor fan (12) by the detection pressures P d and P s of the high pressure pressure detector (25) and the low pressure pressure detector (26). The system can be shown in a control block diagram as in FIG.

【0048】実施例2.次にこの発明の実施例2につい
て説明する。図5〜図7はこの発明の実施例2を示し、
図5は構成図、図6はその動作を説明するフローチャー
ト、図7は動作説明用タイムチャートである。
Example 2. Next, a second embodiment of the present invention will be described. 5 to 7 show Embodiment 2 of the present invention,
5 is a configuration diagram, FIG. 6 is a flow chart for explaining the operation, and FIG. 7 is a time chart for explaining the operation.

【0049】図において、(25)は給湯熱交換器(14)の入
口側冷媒圧力を検知する高圧圧力検知器、(32b)は主冷
媒回路(10)から給湯熱交換器(14)へ供給される冷媒量を
制御する冷媒量制御弁、(33)は貯湯槽(13)の湯温検知
器、(34)は給湯熱交換器(14)の出口側冷媒温度を検知す
る出口側冷媒温度検知器、(50)は給湯熱交換器冷媒量制
御用の制御器、(51)は湯温検知器(33)の検知温度に応じ
た給湯熱交換器出口の設定過冷却度を決定する設定過冷
却度決定手段、(52)は、高圧圧力検知器(25)の検知高圧
圧力と出口側冷媒温度検知器(34)の検知温度から、給湯
熱交換器出口の現過冷却度を算出する現過冷却度算出手
段、(53)は、この現過冷却度算出手段(52)により算出さ
れる給湯熱交換器出口の現過冷却度が、設定過冷却度決
定手段(51)により決定された設定過冷却度となるよう冷
媒量制御弁(32b)を制御する給湯熱交換器冷媒量制御手
段である。なお、他の図1と同一部分は同一符号で示し
ている。
In the figure, (25) is a high pressure detector for detecting the inlet side refrigerant pressure of the hot water supply heat exchanger (14), and (32b) is supplied from the main refrigerant circuit (10) to the hot water supply heat exchanger (14). Refrigerant amount control valve for controlling the amount of refrigerant to be stored, (33) is a hot water temperature detector for the hot water storage tank (13), (34) is an outlet side refrigerant temperature for detecting the outlet side refrigerant temperature of the hot water heat exchanger (14) A detector, (50) a controller for controlling the amount of refrigerant in the hot water heat exchanger, (51) a setting that determines the degree of supercooling at the outlet of the hot water heat exchanger according to the temperature detected by the hot water temperature detector (33) The subcooling degree determining means, (52), calculates the current subcooling degree at the outlet of the hot water heat exchanger from the high pressure detected by the high pressure detector (25) and the temperature detected by the outlet side refrigerant temperature detector (34). The current supercooling degree calculating means, (53), the current supercooling degree of the hot water supply heat exchanger outlet calculated by the current supercooling degree calculating means (52) is determined by the set supercooling degree determining means (51). It becomes the set supercooling degree Hot water supply heat exchanger refrigerant amount control means for controlling the refrigerant amount control valve (32b). The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0050】次にこの実施例の暖房給湯同時運転時の動
作を説明する。主冷媒回路(10)及び給湯ユニット(21)の
冷媒によるヒートポンプ動作については実施例1と同様
なので説明は省略し、給湯ユニット(21)の給湯熱交換器
(14)の冷媒量制御について図5のフローチャートによっ
て説明する。
Next, the operation of this embodiment during the simultaneous heating and hot water supply operation will be described. The heat pump operation by the refrigerant of the main refrigerant circuit (10) and the hot water supply unit (21) is the same as that of the first embodiment, so the description thereof is omitted and the hot water heat exchanger of the hot water supply unit (21) is omitted.
The refrigerant amount control of (14) will be described with reference to the flowchart of FIG.

【0051】暖房給湯同時運転中に、ステップ(S1)で湯
温検知器(33)により貯湯槽(13)の湯温が検知され、ステ
ップ(S2)で、その検知した湯温に対応して予め定められ
た値(湯温が低い程大きい値)に給湯熱交換器(14)の出
口の設定過冷却度が決定され(設定過冷却度決定手段(5
1))、ステップ(S3)でその設定過冷却度となるよう冷媒
量制御弁(32b)が制御される(給湯熱交換器冷媒量制御
手段(53))。即ち、設定過冷却度が大であれば、冷媒量
制御弁(32b)を絞る方向に制御される。
During the heating and hot water supply simultaneous operation, the hot water temperature of the hot water storage tank (13) is detected by the hot water temperature detector (33) in step (S1), and the hot water temperature is detected in step (S2). The set subcooling degree at the outlet of the hot water supply heat exchanger (14) is determined to a predetermined value (the higher the hot water temperature, the higher the value) (the set subcooling degree determining means (5
1)), in step (S3), the refrigerant amount control valve (32b) is controlled so as to achieve the set supercooling degree (hot water supply heat exchanger refrigerant amount control means (53)). That is, when the set degree of supercooling is large, the refrigerant amount control valve (32b) is controlled to be narrowed.

【0052】次にステップ(S4)で、高圧圧力検知器(25)
により検知される給湯熱交換器(14)の入口側冷媒圧力
が、出口側冷媒温度検知器(34)により給湯熱交換器(14)
の出口側冷媒温度がそれぞれ検知され、ステップ(S5)
で、これら検知圧力と温度とにより給湯熱交換器(14)の
出口の現過冷却度が算出される(現過冷却度算出手段(5
2))。即ち、給湯熱交換器(14)の出口の設定過冷却度は
入口側冷媒圧力の飽和温度に換算したものと出口側冷媒
温度との差である。
Next, in step (S4), the high pressure detector (25)
The refrigerant pressure on the inlet side of the hot water heat exchanger (14) detected by the hot water heat exchanger (14) is detected by the refrigerant temperature detector (34) on the outlet side.
At the outlet side refrigerant temperature of each is detected, step (S5)
Then, the current supercooling degree at the outlet of the hot water heat exchanger (14) is calculated from the detected pressure and temperature (current supercooling degree calculating means (5
2)). That is, the set degree of supercooling at the outlet of the hot water supply heat exchanger (14) is the difference between the saturated refrigerant temperature of the inlet side refrigerant temperature and the outlet side refrigerant temperature.

【0053】次にステップ(S6)で給湯熱交換器(14)の出
口側の現過冷却度と設定過冷却度が比較され、現過冷却
度が設定過冷却度に達していなければステップ(S3)に戻
り設定過冷却度となる迄冷媒量制御弁(32b)の制御が続
けられ、設定過冷却度になればステップ(S7)にすすむ。
次にステップ(S7)で、室温と設定室温の差等により暖房
能力が低下したかが判定され、低下していればステップ
(S8)で設定過冷却度をさらに大としてステップ(S3)に戻
り、低下しなければステップ(S1)に戻り、湯温の変化に
応じて設定過冷却度が変えられ、冷媒量制御弁(32b)の
開度を変えるよう制御される。
Next, in step (S6), the current supercooling degree at the outlet side of the hot water heat exchanger (14) is compared with the set subcooling degree. If the current subcooling degree does not reach the set subcooling degree, step ( Returning to S3), the control of the refrigerant amount control valve (32b) is continued until the set supercooling degree is reached, and when the set supercooling degree is reached, the process proceeds to step (S7).
Next, in step (S7), it is determined whether the heating capacity has decreased due to the difference between the room temperature and the set room temperature.
In (S8), the set subcooling degree is further increased and the process returns to step (S3). If it does not decrease, the process returns to step (S1), the set subcooling degree is changed according to the change in the hot water temperature, and the refrigerant amount control valve It is controlled to change the opening of 32b).

【0054】例えば、貯湯槽(13)の湯温が室内空気温度
よりもかなり低い場合、冷媒は、室内熱交換器(3)より
も給湯熱交換器(14)に流れやすくなる。そうすると暖房
能力は一時的に急激に低下し、暖房使用者に不快感をあ
たえる結果となる。そこで、貯湯槽(13)の湯温が室内空
気温度よりもかなり低い場合には、給湯熱交換器(14)の
出口の設定過冷却度を大きなものにしておき、冷媒量制
御弁(32b)の開度を極力絞る方向にして、給湯熱交換器
(14)に流れる冷媒量を制限する。それにより、暖房能力
の急激な低下を防止し、暖房使用者に対して不快感を軽
減することが可能になる。
For example, when the hot water temperature in the hot water storage tank (13) is considerably lower than the indoor air temperature, the refrigerant flows more easily into the hot water supply heat exchanger (14) than the indoor heat exchanger (3). If so, the heating capacity is temporarily and sharply reduced, resulting in discomfort to the heating user. Therefore, when the hot water temperature in the hot water storage tank (13) is considerably lower than the indoor air temperature, the set subcooling degree at the outlet of the hot water heat exchanger (14) is set to a large value, and the refrigerant amount control valve (32b) is set. The hot water supply heat exchanger
Limit the amount of refrigerant flowing to (14). This makes it possible to prevent a rapid decrease in heating capacity and reduce discomfort to the heating user.

【0055】給湯運転の続行により貯湯槽湯温検知器(3
3)の温度が段々と上昇してきたら、上記設定過冷却度決
定手段(51)により、給湯熱交換器(14)の出口の設定過冷
却度が段階的に小さい値に決められていく。これによ
り、冷媒量制御弁(32b)の開度は段階的に開く方向に動
き、冷媒は給湯熱交換器(14)に流れやすくなり、給湯の
沸き上げは速くなる。ただし、この時には湯温はある程
度上がってきているので、室内熱交換器(3)よりも給湯
熱交換器(14)に流れやすくなるというようなことはな
く、暖房能力を低下させるようなことはない。図7はこ
の時の様子を示している。
When the hot water supply operation is continued, the hot water storage tank hot water temperature detector (3
When the temperature in 3) gradually rises, the set subcooling degree determining means (51) determines the set subcooling degree at the outlet of the hot water heat exchanger (14) to be a small value stepwise. As a result, the opening of the refrigerant amount control valve (32b) moves stepwise in the opening direction, the refrigerant easily flows into the hot water supply heat exchanger (14), and the boiling of the hot water is accelerated. However, since the temperature of the hot water has risen to some extent at this time, there is no such thing that the hot water supply heat exchanger (14) flows more easily than the indoor heat exchanger (3), and the heating capacity is not reduced. Absent. FIG. 7 shows the situation at this time.

【0056】このように、貯湯槽湯温検知器(33)の検知
温度に応じて給湯熱交換器(14)の出口の設定過冷却度を
決定し、その設定過冷却度となるよう給湯熱交換器(14)
に流れる冷媒量を制御することにより、暖房能力を低下
させず、暖房使用者に不快感を与えることなく、給湯の
沸き上げ時間をもそれ程遅らせずに暖房給湯同時運転を
行うことが可能となる。
In this way, the set subcooling degree at the outlet of the hot water supply heat exchanger (14) is determined according to the detected temperature of the hot water tank hot water temperature detector (33), and the hot water supply heat is set to the set subcooling degree. Exchanger (14)
By controlling the amount of refrigerant flowing through, it is possible to perform simultaneous heating and hot water supply operation without lowering the heating capacity, without causing discomfort to the heating user, and without significantly delaying the boiling time of hot water supply. .

【0057】実施例3.次にこの発明の実施例3につい
て説明する。図8、図9はこの発明の実施例3を示し、
図8は構成図、図9はその動作を説明するフローチャー
トである。図において、(20)は給湯熱交換器(14)の循環
水流量を制御する給湯水流量制御弁、(35)は給湯熱交換
器出口側給湯水配管(17)の配管温度を検知する給湯水配
管出口温度検知器、(60)は給湯水流量制御用の制御器、
(61)は、給湯水配管出口温度検知器(35)の検知温度が所
定の一定値となるよう給湯水流量制御弁(20)を制御する
給湯水流量制御弁制御手段である。なお、他の図1と同
一部分は同一符号で示している。
Example 3. Next, a third embodiment of the present invention will be described. 8 and 9 show Embodiment 3 of the present invention,
FIG. 8 is a block diagram and FIG. 9 is a flow chart for explaining the operation. In the figure, (20) is a hot water supply flow rate control valve for controlling the circulating water flow rate of the hot water supply heat exchanger (14), and (35) is hot water supply for detecting the pipe temperature of the hot water supply heat exchanger outlet side hot water supply water pipe (17). Water pipe outlet temperature detector, (60) is a controller for hot water supply flow rate control,
(61) is a hot water supply flow rate control valve control means for controlling the hot water supply flow rate control valve (20) so that the temperature detected by the hot water supply water outlet temperature detector (35) becomes a predetermined constant value. The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0058】次にこの実施例の暖房給湯同時運転時の動
作を説明する。主冷媒回路(10)及び給湯ユニット(21)の
冷媒によるヒートポンプ動作については実施例1と同様
なので説明は省略し、給湯ユニット(21)の給湯熱交換器
(14)の給湯水流量制御について図9のフローチャートに
よって説明する。
Next, the operation of this embodiment at the time of simultaneous heating and hot water supply operation will be described. The heat pump operation by the refrigerant of the main refrigerant circuit (10) and the hot water supply unit (21) is the same as that of the first embodiment, so the description thereof is omitted and the hot water heat exchanger of the hot water supply unit (21) is omitted.
The hot water supply flow rate control of (14) will be described with reference to the flowchart of FIG.

【0059】暖房給湯同時運転中に、ステップ(S9)で給
湯水配管出口温度検知器(35)により給湯水配管(17)の出
口温度が検知され、ステップ(S10)でこの検知温度と所
定の一定値である設定温度(例えば45℃)が比較さ
れ、検知温度が設定温度に達していなければステップ(S
11)に進み、検知温度が設定温度となるよう給湯水流量
制御弁(20)が制御される(給湯水流量制御弁制御手段(6
1))。即ち、給湯水配管(17)内の温度が設定温度より低
ければ給湯水流量制御弁(20)を絞る方向に制御される。
During the heating and hot water supply simultaneous operation, the outlet temperature of the hot water supply water pipe (17) is detected by the hot water supply water pipe outlet temperature detector (35) in step (S9), and this detected temperature and a predetermined temperature are detected in step (S10). A set temperature (for example, 45 ° C) that is a constant value is compared, and if the detected temperature does not reach the set temperature, step (S
11), the hot water supply flow rate control valve (20) is controlled so that the detected temperature becomes the set temperature (the hot water supply flow rate control valve control means (6
1)). That is, if the temperature in the hot water supply pipe (17) is lower than the set temperature, the hot water supply flow rate control valve (20) is controlled to be narrowed.

【0060】検知温度が設定温度に達するとステップ(S
10)からステップ(S9)に戻り、検知温度が設定温度に保
たれている間、ステップ(S9)→ステップ(S10)(YES)→ス
テップ(S9)のループが繰返され、貯湯槽(13)内の湯温の
上昇を待つ。湯温が上昇するとステップ(S9)で温度検知
器(35)により検知される給湯水配管出口温度も設定温度
以上に上昇し、それがステップ(S10)で検出されてステ
ップ(S11)に進み、給湯水流量制御弁(20)が開く方向に
検知温度が設定温度に下る迄制御される。
When the detected temperature reaches the set temperature, step (S
From (10) to step (S9), while the detected temperature is maintained at the set temperature, the loop of step (S9) → step (S10) (YES) → step (S9) is repeated and the hot water tank (13) Wait for the hot water temperature to rise. When the hot water temperature rises, the hot water supply pipe outlet temperature detected by the temperature detector (35) in step (S9) also rises above the set temperature, which is detected in step (S10) and proceeds to step (S11). The hot water supply flow rate control valve (20) is controlled to open until the detected temperature falls to the set temperature.

【0061】例えば、貯湯槽(13)の湯温が室内空気温度
よりもかなり低い場合、冷媒は室内熱交換器(3)よりも
給湯熱交換器(14)に流れやすくなる。そうすると暖房能
力は一時的に急激に低下し、暖房使用者に不快感をあた
える結果となる。そこで、貯湯槽(13)の湯温が室内空気
温度よりもかなり低く、給湯熱交換器(14)に流れ込む水
の温度が室内空気温度よりもかなり低い場合、給湯水配
管出口温度検知器(35)の温度を例えば45℃一定に制御
しようとすると、給湯水流量制御弁(20)の開度は絞られ
給湯熱交換器(14)に流れ込む水の流量は少なくなり、給
湯熱交換器(14)による熱交換量は全体として減少するよ
うになる。それにより、その分の能力が暖房側にまわ
り、暖房能力の急激な低下は防止され、暖房使用者に対
して不快感を軽減することが可能になる。
For example, when the hot water temperature in the hot water storage tank (13) is considerably lower than the indoor air temperature, the refrigerant flows more easily into the hot water supply heat exchanger (14) than the indoor heat exchanger (3). If so, the heating capacity is temporarily and sharply reduced, resulting in discomfort to the heating user. Therefore, when the hot water temperature in the hot water storage tank (13) is considerably lower than the room air temperature and the temperature of the water flowing into the hot water supply heat exchanger (14) is considerably lower than the indoor air temperature, the hot water supply pipe outlet temperature detector (35 ) Is kept at a constant temperature of, for example, 45 ° C., the opening of the hot water supply water flow control valve (20) is narrowed and the flow rate of water flowing into the hot water supply heat exchanger (14) is reduced. The heat exchange amount due to) will decrease as a whole. As a result, the capacity thereof is moved to the heating side, the rapid decrease of the heating capacity is prevented, and the discomfort to the heating user can be reduced.

【0062】給湯運転の続行により貯湯槽(13)内の湯温
が段々と上昇してきたら、給湯熱交換器(14)に流れ込む
水の温度も上昇してくるので、給湯水配管出口温度検知
器(35)の温度を45℃一定に制御しようとすると、給湯
水流量制御弁(20)の開度は段々と開く方向に動き、給湯
熱交換器(14)に流れ込む水の流量も段々と増加してい
く。これにより給湯の沸き上げの速度は、給湯水流量制
御弁(20)の開度を絞っている時よりも速くなるが、給湯
熱交換器(14)に流れ込む水の温度が上昇しているので、
給湯熱交換器(14)の熱交換量が急激に増加することはな
く、暖房能力を低下させることはない。
When the hot water temperature in the hot water storage tank (13) gradually rises as the hot water supply operation continues, the temperature of the water flowing into the hot water supply heat exchanger (14) also rises. When the temperature of (35) is controlled to be constant at 45 ° C, the opening degree of the hot water supply water flow control valve (20) gradually moves in the opening direction, and the flow rate of water flowing into the hot water supply heat exchanger (14) also gradually increases. I will do it. As a result, the boiling speed of the hot water supply is faster than when the opening of the hot water supply water flow control valve (20) is narrowed, but the temperature of the water flowing into the hot water supply heat exchanger (14) is rising. ,
The heat exchange amount of the hot water supply heat exchanger (14) does not suddenly increase and the heating capacity is not reduced.

【0063】このように、給湯水配管出口温度検知器(3
5)の検知温度をある設定温度一定になるように、給湯水
流量制御弁(20)を制御することにより、暖房能力を低下
させず、暖房使用者に不快感を与えることなく、給湯の
沸き上げ時間をもそれ程遅らせずに暖房給湯同時運転を
行うことが可能となる。
In this way, the hot water supply pipe outlet temperature detector (3
By controlling the hot water supply flow rate control valve (20) so that the detection temperature of 5) becomes a certain set temperature, the heating capacity is not reduced and the heating water is heated without causing discomfort to the heating user. The heating and hot water supply simultaneous operation can be performed without delaying the raising time so much.

【0064】実施例4.次にこの発明の実施例4につい
て説明する。図10、図11はこの発明の実施例4を示
し、図10は構成図、図11はその動作を説明するフロ
ーチャートである。図において、(25)は圧縮機(1)の吐
出側冷媒圧力を検知する高圧圧力検知器、(26)は圧縮機
(1)の吸入側冷媒圧力を検知する低圧圧力検知器、(33)
は貯湯槽(13)の湯温検知器、(36)は二方弁(31e)(31f)及
び冷媒量制御弁(32b)からなる給湯ユニット入切り手段
である。
Example 4. Next, a fourth embodiment of the present invention will be described. 10 and 11 show Embodiment 4 of the present invention, FIG. 10 is a configuration diagram, and FIG. 11 is a flow chart for explaining the operation. In the figure, (25) is a high-pressure pressure detector that detects the discharge side refrigerant pressure of the compressor (1), and (26) is the compressor.
Low pressure detector to detect the suction side refrigerant pressure of (1), (33)
Is a hot water temperature detector of the hot water storage tank (13), and (36) is hot water supply unit opening / closing means including two-way valves (31e) (31f) and a refrigerant amount control valve (32b).

【0065】(70)は圧縮機の能力制御及び給湯運転開始
制御用の制御器、(42)は圧縮機(1)の能力変更量を算出
する圧縮機能力変更量算出手段、(71)は圧縮機の運転周
波数を変えることによりそれの能力を制御する圧縮機運
転周波数制御手段、(72)は、主冷媒回路(10)の暖房運転
時における給湯ユニット(21)の運転要求に応じ、圧縮機
(1)の最高運転周波数と実運転周波数の差を算出する差
周波数演算手段、(73)は、この手段(72)により算出され
た差周波数が湯温検知器(33)の検知温度に応じた所定値
以上の時のみ給湯ユニット(21)の運転を開始させる給湯
ユニットの運転開始制御手段である。なお、他の図1と
同一部分は同一符号で示している。
(70) is a controller for compressor capacity control and hot water supply operation start control, (42) is a compression function force change amount calculation means for calculating the capacity change amount of the compressor (1), and (71) is Compressor operating frequency control means for controlling the capacity of the compressor by changing the operating frequency of the compressor, (72), in response to the operation request of the hot water supply unit (21) during the heating operation of the main refrigerant circuit (10), the compression is performed. Machine
The difference frequency calculation means for calculating the difference between the maximum operation frequency and the actual operation frequency in (1), (73), the difference frequency calculated by this means (72) depends on the temperature detected by the hot water temperature detector (33). The hot water supply unit operation start control means starts the operation of the hot water supply unit (21) only when the value is equal to or more than a predetermined value. The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0066】次にこの実施例において暖房運転から暖房
給湯同時運転に移行する時の動作を説明する。主冷媒回
路(10)及び給湯ユニット(21)の冷媒によるヒートポンプ
動作及び高圧圧力及び低圧圧力からの圧縮機の能力制御
動作については実施例1と同様なので説明は省略し、給
湯ユニット(21)の運転切換え制御について図11のフロ
ーチャートによって説明する。
Next, the operation when shifting from the heating operation to the heating and hot water supply simultaneous operation in this embodiment will be described. Since the heat pump operation by the refrigerant of the main refrigerant circuit (10) and the hot water supply unit (21) and the capacity control operation of the compressor from the high pressure and the low pressure are the same as those in the first embodiment, the description thereof is omitted, and the operation of the hot water supply unit (21) is omitted. The operation switching control will be described with reference to the flowchart of FIG.

【0067】ステップ(S12)の暖房運転中に、ステップ
(S13)で給湯ユニット(21)より運転要求があると、ステ
ップ(S14)で、圧縮機(1)から検知された実運転周波数F
eと予め制御器(70)中に記憶されている圧縮機(1)の最高
運転周波数Fmとの差ΔFが算出される(差周波数演算
手段(72))。次に、ステップ(S15)で湯温検知器(33)に
より貯湯槽(13)の湯温θが検知され、ステップ(S16)で
ΔFが10Hz以上かが判定される。ΔFが10Hz以上
でなければ、圧縮機運転周波数制御手段(71)により高圧
圧力が目標圧力となるよう制御されている圧縮機(1)の
運転周波数Feが、最高運転周波数Fmと10Hzにも達し
ない違いしかないこれに近い周波数で運転されておるこ
とになり、給湯運転する余剰能力は全くないものとし
て、ステップ(S17)に進み、給湯ユニット(21)に対する
運転待機信号が送出される。
During the heating operation in step (S12), step
When there is an operation request from the hot water supply unit (21) in (S13), the actual operation frequency F detected from the compressor (1) in step (S14).
A difference ΔF between e and the maximum operating frequency Fm of the compressor (1) stored in advance in the controller (70) is calculated (difference frequency calculating means (72)). Next, in step (S15), the hot water temperature detector (33) detects the hot water temperature θ of the hot water storage tank (13), and in step (S16), it is determined whether ΔF is 10 Hz or more. If ΔF is not 10 Hz or more, the operating frequency Fe of the compressor (1), which is controlled by the compressor operating frequency control means (71) so that the high pressure becomes the target pressure, reaches the maximum operating frequency Fm and 10 Hz. Since it is operated at a frequency close to this, there is no difference, and there is no surplus capacity for hot water supply operation, the process proceeds to step (S17), and an operation standby signal is sent to the hot water supply unit (21).

【0068】圧縮機(1)の最高運転周波数Fmと実運転周
波数Feとの差ΔFが10Hz以上で15Hzより低けれ
ば、ステップ(S16)からステップ(S18)、ステップ(S19)
へと進み、ステップ(S19)で、湯温θが差周波数10Hz
〜15Hzに対して予め定められた値、20℃以上かが
判定される。20℃より低ければ、この湯温では給湯運
転する余剰能力はないものとして、ステップ(S17)に進
み、給湯ユニット(21)に対する運転待機信号が送出され
る。20℃以上であれば、給湯運転も行える余剰能力が
あるものとして、ステップ(S20)に進み、給湯ユニット
入切り手段(36)の二方弁(31e)及び冷媒量制御弁(32b)が
開かれて給湯ユニット(21)の運転が開始される(運転開
始制御手段(73))。
If the difference ΔF between the maximum operating frequency Fm and the actual operating frequency Fe of the compressor (1) is 10 Hz or more and lower than 15 Hz, steps (S16) to (S18), (S19)
Then, in step (S19), the hot water temperature θ is 10 Hz
It is determined whether the value is 20 ° C. or higher, which is a predetermined value for 15 Hz. If the temperature is lower than 20 ° C., it is determined that there is no surplus capacity for hot water supply operation at this hot water temperature, the process proceeds to step (S17), and an operation standby signal is sent to the hot water supply unit (21). If the temperature is 20 ° C. or higher, it is determined that there is an excess capacity for hot water supply operation, and the process proceeds to step (S20) to open the two-way valve (31e) and the refrigerant amount control valve (32b) of the hot water supply unit on / off means (36). Then, the operation of the hot water supply unit (21) is started (operation start control means (73)).

【0069】同様に、差周波数ΔFが15Hz〜20Hz
であれば、ステップ(S18)からステップ(S21)、ステップ
(S22)へと進み、湯温θが15℃以上かが判定され、1
5℃より低ければステップ(S17)に進み、給湯ユニット
(21)に対する運転待機信号が送出され、15℃以上であ
ればステップ(S20)に進み給湯ユニット(21)の運転が開
始される。ΔFが20Hz〜25Hzであれば、ステップ
(S21)からステップ(S23)、ステップ(S24)へと進み、湯
温θが10℃以上かが判定され、10℃より低ければス
テップ(S17)に進み、給湯ユニット(21)に対する運転待
機信号が送出され、15℃以上であればステップ(S20)
に進み給湯ユニット(21)の運転が開始される。ΔFが2
5Hz以上であればステップ(S20)に進み、無条件で給湯
ユニット(21)の運転が開始されステップ(S25)で暖房給
湯同時運転に入る。
Similarly, the difference frequency ΔF is 15 Hz to 20 Hz.
If so, step (S18) to step (S21), step
Proceed to (S22), and it is judged whether the hot water temperature θ is 15 ° C or higher, 1
If it is lower than 5 ° C, proceed to step (S17), and the hot water supply unit
An operation standby signal is sent to (21), and if it is 15 ° C. or higher, the operation proceeds to step (S20) to start the operation of the hot water supply unit (21). If ΔF is 20 to 25 Hz, step
From (S21) to step (S23) and step (S24), it is determined whether the hot water temperature θ is 10 ° C or higher, and if it is lower than 10 ° C, the process proceeds to step (S17) and the operation standby signal to the hot water supply unit (21). Is sent out, and if it is 15 ° C or higher, step (S20)
Then, the operation of the hot water supply unit (21) is started. ΔF is 2
If it is 5 Hz or more, the process proceeds to step (S20), the operation of the hot water supply unit (21) is unconditionally started, and the heating and hot water supply simultaneous operation is started at step (S25).

【0070】以上のように、圧縮機(1)が最高運転周波
数に近い周波数で運転されている時は、無条件で給湯運
転は一時見合わせられ、最高運転周波数より所定値以上
低い周波数で運転されている時は、無条件で暖房給湯同
時運転に入り、その間の周波数で運転されている時は、
貯湯槽(13)の湯温が、最高運転周波数との差周波数に応
じた値より高いか低いかによって、給湯運転は見合わせ
られるか暖房給湯同時運転に入るかが決定される。
As described above, when the compressor (1) is operated at a frequency close to the maximum operating frequency, the hot water supply operation is temporarily suspended unconditionally and is operated at a frequency lower than the maximum operating frequency by a predetermined value or more. While operating, the heating and hot water supply operation is unconditionally started, and when operating at the frequency between them,
Depending on whether the hot water temperature of the hot water storage tank (13) is higher or lower than the value corresponding to the difference frequency from the maximum operation frequency, it is determined whether the hot water supply operation is suspended or the simultaneous heating and hot water supply operation is started.

【0071】即ち、貯湯槽(13)の湯温が圧縮機(1)の最
高運転周波数と実運転周波数との差分より推定される余
剰能力に対して、給湯運転を行っても暖房能力を低下さ
せることはないと判断される場合のみ暖房給湯同時運転
に入る。例えば、3馬力相当の圧縮機を使用したとし
て、最高運転周波数との差周波数が10〜15Hzの時
は約1000kcal/h程度の給湯能力があるものと考え
湯温が20℃以上、15〜20Hzの時は約2000kca
l/h程度の給湯能力があるものと考え湯温が15℃以
上、20〜25Hzの時は約3000kcal/h程度の給
湯能力があるものと考え湯温が10℃以上あった場合
に、5〜10℃/h湯温の上昇が可能として給湯ユニッ
ト(21)の運転が開始される。
That is, with respect to the surplus capacity estimated from the difference between the maximum operating frequency of the compressor (1) and the actual operating frequency of the hot water in the hot water storage tank (13), the heating capacity is lowered even when hot water supply operation is performed. Only when it is judged not to do so, the heating and hot water supply simultaneous operation is started. For example, if a compressor equivalent to 3 hp is used and the difference frequency from the maximum operating frequency is 10 to 15 Hz, it is considered that there is a hot water supply capacity of about 1000 kcal / h and the hot water temperature is 20 ° C or higher, 15 to 20 Hz. About 2000kca
It is considered that there is a l / h capacity for hot water supply, and when the hot water temperature is 15 ° C or higher and 20 to 25 Hz, it is considered that there is a hot water supply capacity of approximately 3000 kcal / h. The operation of the hot water supply unit (21) is started as it is possible to raise the hot water temperature by -10 ° C / h.

【0072】実施例5.次にこの発明の実施例5につい
て説明する。図12、図13はこの発明の実施例5を示
し、図12は構成図、図13はその動作を説明するフロ
ーチャートである。図において、(25)は高圧圧力検知
器、(26)は低圧圧力検知器、(33)は貯湯槽(13)の湯温検
知器、(36)は給湯ユニット入切り手段、(37)は二方弁(3
1a)(31b)及び冷媒量制御弁(32a)からなる暖房入切り手
段である。
Example 5. Next, a fifth embodiment of the present invention will be described. 12 and 13 show Embodiment 5 of the present invention, FIG. 12 is a configuration diagram, and FIG. 13 is a flow chart for explaining the operation. In the figure, (25) is a high pressure detector, (26) is a low pressure detector, (33) is a hot water temperature detector for the hot water tank (13), (36) is a hot water supply unit opening / closing means, and (37) is Two-way valve (3
The heating on / off means includes 1a) and (31b) and a refrigerant amount control valve (32a).

【0073】(70)は制御器、(42)は圧縮機能力変更量算
出手段、(71)は圧縮機運転周波数制御手段、(72)は、暖
房運転時における圧縮機(1)の最高運転周波数と実運転
周波数の差を算出する差周波数演算手段、(74)は、給湯
運転中の暖房運転要求に応じ、給湯ユニット(21)の運転
を休止し暖房運転を開始するよう、給湯ユニット入切り
手段(36)及び暖房入切り手段(37)を制御する給湯・暖房
切換え手段、(75)は、差周波数演算手段(72)により算出
された差周波数が貯湯槽(13)の湯温に応じた所定値以上
の時のみ給湯ユニット(21)の運転を再開させるよう、給
湯ユニット入切り手段(36)を制御する給湯ユニットの運
転再開制御手段である。なお、他の図1と同一部分は同
一符号で示している。
Reference numeral (70) is a controller, (42) is a compression function force change amount calculation means, (71) is a compressor operating frequency control means, and (72) is a maximum operation of the compressor (1) during heating operation. The difference frequency calculation means for calculating the difference between the frequency and the actual operating frequency, (74), in response to the heating operation request during the hot water supply operation, suspends the operation of the hot water supply unit (21) and starts the heating operation. In the hot water supply / heating switching means for controlling the cutting means (36) and the heating on / off means (37), the difference frequency calculated by the difference frequency calculation means (72) is the hot water temperature of the hot water storage tank (13). The hot water supply unit operation restart control means controls the hot water supply unit on / off means (36) so as to restart the operation of the hot water supply unit (21) only when the value is equal to or more than a predetermined value. The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0074】次にこの実施例において給湯単独運転から
暖房給湯同時運転に移行する時の動作を説明する。主冷
媒回路(10)及び給湯ユニット(21)の冷媒によるヒートポ
ンプ動作及び高圧圧力及び低圧圧力からの圧縮機の能力
制御動作については実施例1と同様なので説明は省略
し、暖房及び給湯の運転切換え制御について図13のフ
ローチャートによって説明する。
Next, the operation of shifting from the hot water supply single operation to the heating hot water supply simultaneous operation in this embodiment will be described. Since the heat pump operation by the refrigerant of the main refrigerant circuit (10) and the hot water supply unit (21) and the capacity control operation of the compressor from the high pressure and the low pressure are the same as those in the first embodiment, the description thereof will be omitted and the operation switching between heating and hot water supply will be omitted. The control will be described with reference to the flowchart of FIG.

【0075】ステップ(S26)の給湯運転中は、暖房入切
り手段(37)の二方弁(31a)(31b)及び冷媒量制御弁(32a)
は共に閉じられ、給湯ユニット入切り手段(36)の二方弁
(31e)及び冷媒量制御弁(32b)は開かれている。この時、
ステップ(S27)で室内ユニットより暖房運転要求がある
と、ステップ(S28)で、給湯ユニット入切り手段(36)の
二方弁(31e)及び冷媒量制御弁(32b)が閉じられて、給湯
ユニット(21)の運転が停止され、運転待機信号が送出さ
れ、ステップ(S29)で、暖房入切り手段(37)の二方弁(31
a)及び冷媒量制御弁(32b)が開かれて暖房運転が開始さ
れ、ステップ(S30)での暖房単独運転に入る(給湯・暖
房切換え手段(74))。
During the hot water supply operation of step (S26), the two-way valves (31a) (31b) and the refrigerant amount control valve (32a) of the heating on / off means (37).
Are closed together, the two-way valve of the hot water supply unit opening / closing means (36)
(31e) and the refrigerant amount control valve (32b) are open. This time,
When there is a heating operation request from the indoor unit in step (S27), the two-way valve (31e) and the refrigerant amount control valve (32b) of the hot water supply unit on / off means (36) are closed in step (S28) to supply hot water. The operation of the unit (21) is stopped, an operation standby signal is sent, and in step (S29), the two-way valve (31) of the heating on / off means (37) is
a) and the refrigerant amount control valve (32b) are opened to start the heating operation, and the heating independent operation is started in step (S30) (hot water supply / heating switching means (74)).

【0076】次に、ステップ(S31)で圧縮機(1)の実運転
周波数Feと最高運転周波数Fmとの差ΔFが算出され
(差周波数演算手段(72))、ステップ(S32)で湯温検知
器(33)により貯湯槽(13)の湯温θが検知され、ステップ
(S33)でΔFが10Hz以上かが判定される。ΔFが10
Hz以上でなければステップ(S30)に戻り、給湯ユニット
(21)の再開は見合わされ、暖房単独運転が続けられる。
Next, in step (S31), the difference ΔF between the actual operating frequency Fe of the compressor (1) and the maximum operating frequency Fm is calculated (difference frequency calculating means (72)), and in step (S32) the hot water temperature is calculated. The detector (33) detects the hot water temperature θ of the hot water storage tank (13),
At (S33), it is determined whether ΔF is 10 Hz or more. ΔF is 10
If it is not higher than Hz, return to step (S30), hot water supply unit
The resumption of (21) is abandoned and heating independent operation is continued.

【0077】ΔFが10Hz以上で15Hzより低けれ
ば、ステップ(S33)からステップ(S34)、ステップ(S35)
へと進み、ステップ(S35)で、湯温θが20℃以上かが
判定される。20℃より低ければステップ(S30)に戻り
暖房単独運転が続けられ、20℃以上であれば、ステッ
プ(S36)に進み、給湯ユニット入切り手段(36)の二方弁
(31e)及び冷媒量制御弁(32b)が再開かれて給湯ユニット
(21)の運転が再開される(運転再開制御手段(75))。
If ΔF is 10 Hz or higher and lower than 15 Hz, steps (S33) to (S34) and (S35)
Then, in step (S35), it is determined whether the hot water temperature θ is 20 ° C. or higher. If the temperature is lower than 20 ° C, the operation returns to step (S30) and the heating independent operation is continued.
(31e) and refrigerant quantity control valve (32b) are reopened and hot water supply unit
The operation of (21) is restarted (operation restart control means (75)).

【0078】同様に、差周波数ΔFが15Hz〜20Hz
であれば、ステップ(S34)からステップ(S37)、ステップ
(S38)へと進み、湯温θが15℃以上かが判定され、1
5℃より低ければステップ(S17)に戻り暖房単独運転が
続けられ、15℃以上であればステップ(S36)に進み給
湯ユニット(21)の運転が再開される。ΔFが20Hz〜
25Hzであれば、ステップ(S37)からステップ(S39)、
ステップ(S40)へと進み、湯温θが10℃以上かが判定
され、10℃より低ければステップ(S17)に戻り暖房単
独運転が続けられ、15℃以上であればステップ(S36)
に進み給湯ユニット(21)の運転が再開される。ΔFが2
5Hz以上であればステップ(S36)に進み、無条件で給湯
ユニット(21)の運転が再開されステップ(S41)で暖房給
湯同時運転に入る。
Similarly, the difference frequency ΔF is 15 Hz to 20 Hz.
If so, step (S34) to step (S37), step
Proceed to (S38), it is judged whether the hot water temperature θ is 15 ° C or higher, and 1
If it is lower than 5 ° C, the operation returns to step (S17) and the heating independent operation is continued, and if it is 15 ° C or more, the operation proceeds to step (S36) and the operation of the hot water supply unit (21) is restarted. ΔF is 20Hz
If it is 25 Hz, step (S37) to step (S39),
It proceeds to step (S40), and it is determined whether the hot water temperature θ is 10 ° C or higher. If it is lower than 10 ° C, the process returns to step (S17) to continue the heating independent operation, and if it is 15 ° C or higher, step (S36).
Then, the operation of the hot water supply unit (21) is restarted. ΔF is 2
If it is 5 Hz or more, the process proceeds to step (S36), the operation of the hot water supply unit (21) is unconditionally restarted, and the heating and hot water supply simultaneous operation is started at step (S41).

【0079】実施例6.次にこの発明の実施例6につい
て説明する。図14、図15はこの発明の実施例6を示
し、図14は構成図、図15はその動作を説明するフロ
ーチャートである。図において、(25)は高圧圧力検知
器、(26)は低圧圧力検知器、(33)は貯湯槽(13)の湯温検
知器、(36)は給湯ユニット入切り手段、(70)は制御器、
(42)は圧縮機能力変更量算出手段、(71)は圧縮機運転周
波数制御手段、(72)は差周波数演算手段、(75)は給湯ユ
ニットの運転再開制御手段、(76)は、暖房給湯同時運転
時に暖房負荷の増大により、圧縮機の最高能力でも吐出
側冷媒圧力を目標高圧圧力に制御できなくなったことに
応じ、給湯ユニット(21)の運転を休止させるよう給湯ユ
ニット入切り手段(36)を制御する給湯ユニット運転休止
制御手段である。なお、他の図1と同一部分は同一符号
で示している。
Example 6. Next, a sixth embodiment of the present invention will be described. 14 and 15 show Embodiment 6 of the present invention, FIG. 14 is a configuration diagram, and FIG. 15 is a flow chart for explaining the operation thereof. In the figure, (25) is a high pressure pressure detector, (26) is a low pressure pressure detector, (33) is a hot water temperature detector for the hot water tank (13), (36) is a hot water supply unit opening / closing means, and (70) is Controller,
(42) is a compression function force change amount calculation means, (71) is a compressor operation frequency control means, (72) is a difference frequency calculation means, (75) is a hot water supply unit operation restart control means, and (76) is a heating Due to an increase in heating load during simultaneous hot water supply operation, even if the compressor's maximum capacity cannot control the discharge side refrigerant pressure to the target high pressure, the hot water supply unit on / off means (stops the operation of the hot water supply unit (21). It is a hot water supply unit operation suspension control means for controlling 36). The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0080】次にこの実施例において暖房給湯同時運転
時の動作を説明する。主冷媒回路(10)及び給湯ユニット
(21)の冷媒によるヒートポンプ動作及び高圧圧力及び低
圧圧力からの圧縮機の能力制御動作については実施例1
と同様なので説明は省略し、暖房及び給湯の運転切換え
制御について図15のフローチャートによって説明す
る。
Next, the operation of the present embodiment during the simultaneous operation of heating and hot water supply will be described. Main refrigerant circuit (10) and hot water supply unit
The heat pump operation by the refrigerant of (21) and the capacity control operation of the compressor from the high pressure and the low pressure are described in Example 1.
Since it is the same as the above, the description will be omitted, and the operation switching control for heating and hot water supply will be described with reference to the flowchart in FIG.

【0081】ステップ(S42)の暖房給湯同時運転中に、
ステップ(S43)で高圧圧力検知器(25)により圧縮機(1)の
吐出側高圧圧力が検出され、ステップ(S44)でそれが目
標高圧圧力に制御されているかが判定され、目標高圧圧
力に制御されていればステップ(S42)に戻り、そのまま
暖房給湯同時運転が続けられる。この時暖房負荷が増大
し、圧縮機(1)が目標高圧圧力となるよう最高運転周波
数で運転されても、検知高圧圧力が目標高圧圧力より低
下すれば、ステップ(S44)からステップ(S45)に進み、給
湯ユニット入切り手段(36)の二方弁(31e)及び冷媒量制
御弁(32b)が閉じられて、給湯ユニット(21)の運転が停
止され、運転待機信号が送出され(給湯ユニット運転休
止制御手段)、ステップ(S46)での暖房単独運転に入
る。
During the heating / hot water supply simultaneous operation in step (S42),
In step (S43), the high-pressure pressure detector (25) detects the discharge-side high-pressure pressure of the compressor (1), and in step (S44) it is determined whether it is controlled to the target high-pressure pressure. If it is controlled, the process returns to step (S42) and the simultaneous heating and hot water supply operation is continued. At this time, the heating load increases, and even if the compressor (1) is operated at the maximum operating frequency to reach the target high pressure, if the detected high pressure falls below the target high pressure, steps (S44) to (S45) Then, the two-way valve (31e) and the refrigerant amount control valve (32b) of the hot water supply unit opening / closing means (36) are closed, the operation of the hot water supply unit (21) is stopped, and an operation standby signal is sent (hot water supply). Unit operation suspension control means), and heating independent operation starts in step (S46).

【0082】次に、ステップ(S47)で圧縮機(1)の実運転
周波数Feと最高運転周波数Fmとの差ΔFが算出され
(差周波数演算手段(72))、ステップ(S48)で湯温検知
器(33)により貯湯槽(13)の湯温θが検知され、ステップ
(S49)でΔFが10Hz以上かが判定される。ΔFが10
Hz以上でなければステップ(S46)に戻り、給湯ユニット
(21)の再開は見合わされ、暖房単独運転が続けられる。
Next, in step (S47), the difference ΔF between the actual operating frequency Fe of the compressor (1) and the maximum operating frequency Fm is calculated (difference frequency calculating means (72)), and the hot water temperature is calculated in step (S48). The detector (33) detects the hot water temperature θ of the hot water storage tank (13),
At (S49), it is determined whether ΔF is 10 Hz or more. ΔF is 10
If it is not higher than Hz, return to step (S46), hot water supply unit
The resumption of (21) is abandoned and heating independent operation is continued.

【0083】ΔFが10Hz以上で15Hzより低けれ
ば、ステップ(S49)からステップ(S50)、ステップ(S51)
へと進み、ステップ(S51)で、湯温θが20℃以上かが
判定される。20℃より低ければステップ(S46)に戻り
暖房単独運転が続けられ、20℃以上であれば、ステッ
プ(S52)に進み、給湯ユニット入切り手段(36)の二方弁
(31e)及び冷媒量制御弁(32b)が再開されて給湯ユニット
(21)の運転が再開される(運転再開制御手段(75))。
If ΔF is 10 Hz or more and lower than 15 Hz, steps (S49) to (S50) and (S51)
Then, in step (S51), it is determined whether the hot water temperature θ is 20 ° C. or higher. If the temperature is lower than 20 ° C, the operation returns to step (S46) to continue the independent heating operation, and if the temperature is 20 ° C or more, the operation proceeds to step (S52) and the two-way valve of the hot water supply unit on / off means (36).
(31e) and refrigerant quantity control valve (32b) are restarted
The operation of (21) is restarted (operation restart control means (75)).

【0084】同様に、差周波数ΔFが15Hz〜20Hz
であれば、ステップ(S50)からステップ(S53)、ステップ
(S54)へと進み、湯温θが15℃以上かが判定され、1
5℃より低ければステップ(S46)に戻り暖房単独運転が
続けられ、15℃以上であればステップ(S52)に進み給
湯ユニット(21)の運転が再開される。ΔFが20Hz〜
25Hzであれば、ステップ(S53)からステップ(S55)、
ステップ(S56)へと進み、湯温θが10℃以上かが判定
され、10℃より低ければステップ(S46)に戻り暖房単
独運転が続けられ、15℃以上であればステップ(S52)
に進み給湯ユニット(21)の運転が再開される。ΔFが2
5Hz以上であればステップ(S52)に進み、無条件で給湯
ユニット(21)の運転が再開されステップ(S42)で暖房給
湯同時運転に入る。
Similarly, the difference frequency ΔF is 15 Hz to 20 Hz.
If so, step (S50) to step (S53), step
Proceed to (S54), it is judged whether the hot water temperature θ is 15 ° C or higher, and 1
If it is lower than 5 ° C, the operation returns to step (S46) and the heating independent operation is continued, and if it is 15 ° C or more, the operation proceeds to step (S52) and the operation of the hot water supply unit (21) is restarted. ΔF is 20Hz
If it is 25 Hz, from step (S53) to step (S55),
It proceeds to step (S56), it is determined whether the hot water temperature θ is 10 ° C or higher, and if it is lower than 10 ° C, the process returns to step (S46) to continue the independent heating operation, and if it is 15 ° C or higher, step (S52)
Then, the operation of the hot water supply unit (21) is restarted. ΔF is 2
If it is 5 Hz or more, the process proceeds to step (S52), the operation of the hot water supply unit (21) is unconditionally restarted, and the heating and hot water supply simultaneous operation is started at step (S42).

【0085】実施例7.次にこの発明の実施例7につい
て説明する。図16、図17はこの発明の実施例7を示
し、図16は構成図、図17はその動作を説明するフロ
ーチャートである。図において、(25)は高圧圧力検知
器、(26)は低圧圧力検知器、(36)は給湯ユニット入切り
手段、(80)は制御器、(42)は圧縮機能力変更量算出手
段、(44)は圧縮機制御手段、(81)は、圧縮機(1)が最高
能力で運転されても、吐出側冷媒圧力を目標高圧圧力に
制御できない時、この目標高圧圧力を所定値に低下させ
るよう、圧縮機能力変更量算出手段(42)に信号を出力す
る目標高圧圧力低下手段、(82)は、この手段(81)によっ
て低下した目標高圧圧力にも吐出側冷媒圧力を制御でき
ない時、給湯ユニット(21)の運転を休止させるよう給湯
ユニット入切り手段(36)を制御する給湯ユニット運転休
止制御手段である。なお、他の図1と同一部分は同一符
号で示している。
Example 7. Next, a seventh embodiment of the present invention will be described. 16 and 17 show Embodiment 7 of the present invention, FIG. 16 is a configuration diagram, and FIG. 17 is a flow chart for explaining the operation. In the figure, (25) is a high pressure pressure detector, (26) is a low pressure pressure detector, (36) is a hot water supply unit opening / closing means, (80) is a controller, (42) is a compression functional force change amount calculation means, (44) is a compressor control means, (81) reduces the target high pressure to a predetermined value when the discharge side refrigerant pressure cannot be controlled to the target high pressure even if the compressor (1) is operated at the maximum capacity. The target high pressure reducing means for outputting a signal to the compression force change amount calculating means (42) so that the discharge side refrigerant pressure cannot be controlled even with the target high pressure reduced by this means (81). The hot water supply unit operation suspension control means controls the hot water supply unit on / off means (36) so as to suspend the operation of the hot water supply unit (21). The same parts as those in FIG. 1 are denoted by the same reference numerals.

【0086】次にこの実施例において暖房運転から暖房
給湯同時運転に移行する時の動作を説明する。主冷媒回
路(10)及び給湯ユニット(21)の冷媒によるヒートポンプ
動作及び高圧圧力及び低圧圧力からの圧縮機の能力制御
動作については実施例1と同様なので説明は省略し、給
湯ユニット(21)の運転切換え制御について図17のフロ
ーチャートによって説明する。
Next, the operation at the time of shifting from the heating operation to the heating and hot water supply simultaneous operation in this embodiment will be described. Since the heat pump operation by the refrigerant of the main refrigerant circuit (10) and the hot water supply unit (21) and the capacity control operation of the compressor from the high pressure and the low pressure are the same as those in the first embodiment, the description thereof is omitted, and the operation of the hot water supply unit (21) is omitted. The operation switching control will be described with reference to the flowchart of FIG.

【0087】ステップ(S57)の暖房運転中に、ステップ
(S58)で給湯ユニット(21)より運転要求があると、ステ
ップ(S59)で給湯ユニット入切り手段(36)の二方弁(31e)
及び冷媒量制御弁(32b)が開かれて給湯ユニット(21)の
運転が開始されて、ステップ(S60)で暖房給湯同時運転
に入る。暖房給湯同時運転中にステップ(S61)で高圧圧
力検知器(25)により圧縮機(1)の吐出側高圧圧力が検出
され、ステップ(S62)でそれが目標高圧圧力、例えば2
0kgf/cm2に制御されているかが判定され、目標高圧圧
力に制御されていればステップ(S60)に戻り、そのまま
暖房給湯同時運転が続けられる。
During the heating operation of step (S57), step
When there is an operation request from the hot water supply unit (21) in (S58), the two-way valve (31e) of the hot water supply unit on / off means (36) is step (S59).
Further, the refrigerant amount control valve (32b) is opened to start the operation of the hot water supply unit (21), and the heating and hot water supply simultaneous operation is started in step (S60). During the heating and hot water supply simultaneous operation, the high-pressure pressure detector (25) detects the high-pressure on the discharge side of the compressor (1) at step (S61), and at step (S62) it is the target high-pressure pressure, for example, 2
It is determined whether the temperature is controlled to 0 kgf / cm 2 , and if the target high pressure is controlled, the process returns to step (S60), and the heating and hot water supply simultaneous operation is continued.

【0088】目標高圧圧力に制御されず検知高圧圧力が
目標高圧圧力より低ければステップ(S63)に進み、圧縮
機能力変更量算出手段(42)の演算に使用される目標高圧
圧力、例えば20kgf/cm2を所定値、例えば18kgf/c
m2に低下させ(目標高圧圧力低下手段)、再びステップ
(S64)で高圧圧力が検知され、その検知高圧圧力が変更
した目標高圧圧力、例えば18kgf/cm2に制御されてい
るかが判定され、その目標高圧圧力になっていればステ
ップ(S60)に戻り、そのまま暖房給湯同時運転が続けら
れる。その低い目標高圧圧力、例えば18kgf/cm2にも
制御されない時はステップ(S66)に進み、給湯ユニット
入切り手段(36)の二方弁(31e)及び冷媒量制御弁(32b)が
閉じられて、給湯ユニット(21)の運転が停止され、運転
待機信号が送出され(給湯ユニット運転休止制御手
段)、ステップ(S57)に戻り暖房単独運転に入る。
If the detected high pressure is not controlled to the target high pressure and the detected high pressure is lower than the target high pressure, the process proceeds to step (S63), and the target high pressure used for the calculation of the compression function force change amount calculating means (42), for example, 20 kgf / cm 2 is a predetermined value, for example 18 kgf / c
Reduce to m 2 (target high pressure reduction means) and step again
The high pressure is detected in (S64), and it is determined whether the detected high pressure is controlled to the changed target high pressure, for example, 18 kgf / cm 2 , and if the target high pressure is reached, the process returns to step (S60). , The heating and hot water simultaneous operation can be continued. When the target low high pressure, for example, 18 kgf / cm 2 is not controlled, the process proceeds to step (S66), and the two-way valve (31e) and the refrigerant amount control valve (32b) of the hot water supply unit on / off means (36) are closed. Then, the operation of the hot water supply unit (21) is stopped, an operation standby signal is sent (hot water supply unit operation suspension control means), and the process returns to step (S57) to start the independent heating operation.

【0089】この実施例では、実施例1で説明したよう
に、高圧圧力が目標高圧圧力となるよう圧縮機(1)の能
力が制御される。それで、給湯運転の開始により、或は
暖房給湯同時運転中に暖房負荷が増加して負荷が増える
と、吐出冷媒圧力が下がる方向に動き圧縮機(1)の能力
が増加していく。しかし、そのために圧縮機(1)が最高
能力で運転されても、高圧圧力が目標高圧圧力に達しな
い場合が生じ、その時は目標高圧圧力が、例えば20kg
f/cm2から18kgf/cm2に切換えられる。それで、高圧
圧力が20kgf/cm2の時に、室内ユニットの吹き出し温
度が45℃前後あったものが、18kgf/cm2となると4
0℃前後に下がる。しかし、40℃の吹き出し温度が確
保できれば、暖房使用者に対してそれ程大きな不快感は
与えることはない。
In this embodiment, as described in the first embodiment, the capacity of the compressor (1) is controlled so that the high pressure becomes the target high pressure. Therefore, when the heating load increases due to the start of the hot water supply operation or during the heating and hot water supply simultaneous operation, the discharge refrigerant pressure moves in the direction of decreasing and the capacity of the compressor (1) increases. However, even if the compressor (1) is operated at the maximum capacity, the high pressure may not reach the target high pressure. At that time, the target high pressure is, for example, 20 kg.
Switchable from f / cm 2 to 18 kgf / cm 2 . Therefore, when the high temperature pressure was 20 kgf / cm 2 and the blowing temperature of the indoor unit was around 45 ° C, it became 4 kg when it became 18 kgf / cm 2.
It goes down to around 0 ° C. However, if the blowing temperature of 40 ° C. can be secured, the heating user is not so discomforted.

【0090】このように、暖房運転から暖房給湯同時運
転に切り換わり、或は暖房給湯同時運転中に暖房負荷が
急に増加して、暖房運転時の目標高圧圧力での運転がで
きなくなった場合、暖房運転時の目標高圧圧力を、暖房
給湯同時運転においては、暖房使用者にとって大きな不
快感を感じることがない暖房能力を確保できる最低の高
圧圧力に設定を変えて運転するようにしたので、暖房能
力の余剰能力を有効に利用して、暖房運転と給湯運転の
同時運転が可能な限り行うことができる。
In this way, when the heating operation is switched to the simultaneous heating and hot water supply operation, or when the heating load suddenly increases during the simultaneous heating and hot water supply operation, it becomes impossible to operate at the target high pressure during heating operation. Since the target high pressure during heating operation is changed to the minimum high pressure at which the heating capacity can be ensured without causing a large discomfort to the heating user in the simultaneous heating and hot water supply operation, the operation is performed. By effectively utilizing the surplus capacity of the heating capacity, the simultaneous heating operation and hot water supply operation can be performed as much as possible.

【0091】実施例8.以上の各実施例では、主冷媒回
路と、この主冷媒回路の冷媒と貯湯槽への循環水とを熱
交換する給湯熱交換器を有する給湯ユニットとを備えた
ヒートポンプ式冷暖房装置について説明したが、図1に
示すように、上記給湯ユニットの外に主冷媒回路の冷媒
と浴槽への循環水とを熱交換する追焚き熱交換器を有す
る追焚きユニットを備え、この追焚きユニットを上述の
給湯ユニットと全く同様に制御することにより同様の効
果を得ることができる。これにより、暖房追焚き同時運
転或は暖房給湯追焚き同時運転が可能となる。
Example 8. In each of the above embodiments, the heat pump type cooling and heating apparatus including the main refrigerant circuit and the hot water supply unit having the hot water supply heat exchanger for exchanging heat between the refrigerant of the main refrigerant circuit and the circulating water to the hot water tank has been described. As shown in FIG. 1, a reheating unit having a reheating heat exchanger for exchanging heat between the refrigerant of the main refrigerant circuit and the circulating water to the bath is provided outside the hot water supply unit, and the reheating unit is the above-mentioned heating unit. The same effect can be obtained by controlling in exactly the same way as the hot water supply unit. As a result, it is possible to perform a simultaneous heating and hot-water heating simultaneous operation.

【0092】実施例9.また、給湯ユニットに代え追焚
きユニットを、即ち、主冷媒回路と追焚きユニットのみ
を備えたヒートポンプ式冷暖房装置であっても、上記追
焚きユニットを上述の給湯ユニットと全く同様に制御す
ることにより同様の効果を得ることができる。
Example 9. Further, instead of the hot water supply unit, a reheating unit, that is, even in a heat pump type cooling and heating device provided only with a main refrigerant circuit and a reheating unit, by controlling the reheating unit in exactly the same manner as the hot water supply unit described above. The same effect can be obtained.

【0093】[0093]

【発明の効果】以上のように、請求項1記載の発明によ
れば、各運転モード毎に、検知高圧圧力と目標高圧圧力
との偏差及び検知低圧圧力と目標低圧圧力との偏差から
所定関係式により、圧縮機の能力変更量と室外ファンの
風量変更量とを算出し、これら算出された能力変更量に
より圧縮機を、風量変更量により室外ファンをそれぞれ
制御するよう構成したので、最適な冷凍サイクルが実現
し、負荷や運転モードの変更に応じ圧縮機を常に高効率
に運転できるヒートポンプ式冷暖房装置が得られる効果
がある。
As described above, according to the first aspect of the present invention, the predetermined relationship is obtained from the deviation between the detected high pressure and the target high pressure and the deviation between the detected low pressure and the target low pressure for each operation mode. The formula is used to calculate the capacity change amount of the compressor and the air flow change amount of the outdoor fan, and the compressor is controlled by the calculated capacity change amount, and the outdoor fan is controlled by the air flow change amount. A refrigeration cycle is realized, and there is an effect that a heat pump type cooling and heating device can be obtained that can constantly operate the compressor with high efficiency according to changes in load and operation mode.

【0094】請求項2記載の発明によれば、各運転モー
ド毎に、検知高圧圧力Pdと目標高圧圧力Pdmとの偏差
をΔPd、検知低圧圧力Psと目標低圧圧力Psmとの偏差
をΔPsとして、次式 ΔQcomp=(d・ΔPd−b・ΔPs)/(a・d−b・
c) ΔVout=(−c・ΔPd+a・ΔPs)/(a・d−b
・c) から、圧縮機の能力変更量ΔQcompと室外ファンの風量
変更量ΔVoutとを算出し、これら算出された能力変更
量ΔQcompにより圧縮機を、風量変更量ΔVoutにより
室外ファンをそれぞれ制御するよう構成したので、係数
a,b,c,dの最適値を実験等により予め求めておく
ことにより、負荷や運転モードの変更に応じ、さらにき
め細かく圧縮機を高効率に運転できるヒートポンプ式冷
暖房装置が得られる効果がある。
According to the second aspect of the invention, the deviation between the detected high pressure P d and the target high pressure P dm is ΔP d , and the detected low pressure P s and the target low pressure P sm are different for each operation mode. Assuming that the deviation is ΔP s , the following equation ΔQ comp = (d · ΔP d −b · ΔP s ) / (a · d−b ·
c) ΔV out = (− c · ΔP d + a · ΔP s ) / (a · d−b
From · c), to calculate the air volume change amount [Delta] V out of capacity change amount Delta] Q comp an outdoor fan of the compressor, the compressor These calculated capacity change amount Delta] Q comp, an outdoor fan by airflow change amount [Delta] V out Since the heat pumps are configured to control each other, the optimum values of the coefficients a, b, c, and d are obtained in advance by experiments, etc., so that the heat pump can operate the compressor more finely and highly efficiently according to changes in load and operation mode. There is an effect that the type air conditioner is obtained.

【0095】請求項3記載の発明によれば、給湯熱交換
器の入口側の冷媒圧力である高圧圧力と給湯熱交換器の
出口側冷媒温度から算出された給湯熱交換器出口の現過
冷却度が、貯湯槽の湯温に応じた給湯熱交換器出口の設
定過冷却度となるよう、主冷媒回路から給湯熱交換器へ
の冷媒量を制御する構成とし、請求項4記載の発明によ
れば、給湯熱交換器出口側の給湯水配管温度を所定の一
定値とするよう、給湯熱交換器の循環水流量を制御する
構成としたので、貯湯槽内の湯温に関係なく暖房能力が
確保され、暖房使用者には不快感を与えることなく暖房
給湯同時運転が可能なヒートポンプ式冷暖房装置が得ら
れる効果がある。
According to the third aspect of the invention, the current subcooling at the outlet of the hot water heat exchanger calculated from the high pressure which is the refrigerant pressure at the inlet of the hot water heat exchanger and the refrigerant temperature at the outlet of the hot water heat exchanger. The refrigerant amount from the main refrigerant circuit to the hot water supply heat exchanger is controlled so that the degree becomes a set degree of supercooling at the outlet of the hot water supply heat exchanger according to the hot water temperature of the hot water storage tank. According to this configuration, the circulating water flow rate of the hot water supply heat exchanger is controlled so that the temperature of the hot water supply water piping on the outlet side of the hot water supply heat exchanger is maintained at a predetermined constant value, so the heating capacity is independent of the hot water temperature in the hot water storage tank. Therefore, there is an effect that a heat pump type cooling and heating device capable of simultaneously performing heating and hot water supply can be obtained without giving discomfort to a heating user.

【0096】請求項5記載の発明によれば、暖房運転時
に給湯ユニットの運転要求があると、圧縮機の最高運転
周波数と実運転周波数の差が算出され、その差周波数が
貯湯槽の湯温に応じて予め定められた周波数以上の時の
み給湯ユニットの運転を開始するよう構成したので、暖
房運転時の余剰能力によって給湯運転が行なわれ、暖房
使用者には不快感を与えることなく暖房給湯同時運転が
可能なヒートポンプ式冷暖房装置が得られる効果があ
る。
According to the fifth aspect of the present invention, when there is an operation request for the hot water supply unit during the heating operation, the difference between the maximum operating frequency of the compressor and the actual operating frequency is calculated, and the difference frequency is the hot water temperature of the hot water storage tank. Since the hot water supply unit is configured to start operation only when the frequency is higher than a predetermined frequency, the hot water supply operation is performed by the surplus capacity during the heating operation, and the heating and hot water supply does not cause discomfort to the heating user. There is an effect that a heat pump type air conditioner capable of simultaneous operation can be obtained.

【0097】請求項6記載の発明によれば、給湯ユニッ
ト運転時に暖房運転要求があると、一旦給湯ユニットの
運転を休止させて暖房運転を開始し、それから、圧縮機
の最高運転周波数と実運転周波数の差を算出して、その
差周波数が貯湯槽の湯温に応じて予め定められた周波数
以上の時のみ給湯ユニットの運転を再開するようよう構
成したので、暖房運転を優先し湯温に応じた最適の給湯
運転を、暖房使用者には不快感を与えることなく可能と
したヒートポンプ式冷暖房装置が得られる効果がある。
According to the sixth aspect of the present invention, when a heating operation request is issued during operation of the hot water supply unit, the operation of the hot water supply unit is temporarily stopped to start the heating operation, and then the maximum operating frequency of the compressor and the actual operation are performed. The difference in frequency is calculated and the operation of the hot water supply unit is restarted only when the difference frequency is equal to or higher than the predetermined frequency according to the hot water temperature of the hot water storage tank. Therefore, there is an effect that the heat pump type cooling and heating device that can perform the optimum hot water supply operation without causing discomfort to the heating user can be obtained.

【0098】請求項7記載の発明によれば、暖房給湯同
時運転時に暖房負荷が増大し、吐出側冷媒圧力が目標高
圧圧力に制御できなくなったら、一旦給湯ユニットの運
転を休止し、それから、圧縮機の最高運転周波数と実運
転周波数の差を算出して、その差周波数が貯湯槽の湯温
に応じて予め定められた周波数以上の時のみ給湯ユニッ
トの運転を再開するよう構成したので、暖房運転を優先
し湯温に応じた最適の給湯運転を、暖房使用者には不快
感を与えることなく可能としたヒートポンプ式冷暖房装
置が得られる効果がある。
According to the seventh aspect of the present invention, when the heating load increases during the simultaneous heating and hot water supply operation and the discharge side refrigerant pressure cannot be controlled to the target high pressure, the hot water supply unit is temporarily stopped and then the compression is performed. The difference between the maximum operating frequency of the machine and the actual operating frequency is calculated, and the operation of the hot water supply unit is restarted only when the difference frequency is equal to or higher than the predetermined frequency according to the hot water temperature of the hot water storage tank. There is an effect that a heat pump type cooling and heating device can be obtained which gives priority to the operation and can perform the optimum hot water supply operation according to the hot water temperature without causing a discomfort to the heating user.

【0099】請求項8記載の発明によれば、暖房運転か
ら暖房給湯同時運転に切り換わり、或は暖房給湯同時運
転中に暖房負荷が急に増加して、吐出側冷媒圧力が目標
高圧圧力に制御できなくなったら、一旦目標高圧圧力を
所定値に低下させ、それでもその目標高圧圧力に制御で
きない時、給湯ユニットの運転を休止するよう構成した
ので、暖房使用者にとって大きな不快感を感じることが
ない暖房能力を確保しながら、暖房能力の余剰能力が有
効に利用され、暖房給湯同時運転が可能な限り行うこと
ができるヒートポンプ式冷暖房装置が得られる効果があ
る。
According to the eighth aspect of the present invention, the heating operation is switched to the simultaneous heating and hot water supply simultaneous operation, or the heating load suddenly increases during the simultaneous heating and hot water supply simultaneous operation, and the discharge side refrigerant pressure becomes the target high pressure. When it becomes impossible to control, the target high pressure is once lowered to a predetermined value, and when it cannot be controlled to the target high pressure, the operation of the hot water supply unit is stopped so that the heating user does not feel a big discomfort. There is an effect that a surplus capacity of the heating capacity is effectively used while ensuring the heating capacity, and a heat pump type cooling / heating device capable of performing simultaneous heating and hot water supply operation as much as possible is obtained.

【0100】請求項9記載の発明によれば、以上の各請
求項記載の発明において、給湯ユニットの代りに、或は
給湯ユニットの他に追焚きユニットが備えられ、給湯ユ
ニットと同じ制御を追焚きユニットに対して行なうよう
にしたので、上述の暖房給湯同時運転と同様の効果を、
暖房追焚き同時運転或は暖房給湯追焚き同時運転でも得
られる効果がある。
According to the invention described in claim 9, in the invention described in each of the above claims, a reheating unit is provided instead of the hot water supply unit or in addition to the hot water supply unit, and the same control as the hot water supply unit is added. Since it is performed for the heating unit, the same effect as the above-mentioned simultaneous heating and hot water supply operation can be obtained.
There is an effect that can be obtained by simultaneous heating and hot water heating or hot water supply and hot water heating.

【図面の簡単な説明】[Brief description of drawings]

【図1】この発明の実施例1を示す構成図。FIG. 1 is a configuration diagram showing a first embodiment of the present invention.

【図2】実施例1の冷房運転を説明する構成図。FIG. 2 is a configuration diagram illustrating a cooling operation according to the first embodiment.

【図3】実施例1の暖房給湯同時運転を説明する構成
図。
FIG. 3 is a configuration diagram illustrating simultaneous heating and hot water supply operation according to the first embodiment.

【図4】実施例1の制御ブロック線図。FIG. 4 is a control block diagram according to the first embodiment.

【図5】この発明の実施例2を示す構成図。FIG. 5 is a configuration diagram showing a second embodiment of the present invention.

【図6】実施例2の動作を説明するフローチャート。FIG. 6 is a flowchart illustrating the operation of the second embodiment.

【図7】実施例2の動作説明用タイムチャート。FIG. 7 is a time chart for explaining the operation of the second embodiment.

【図8】この発明の実施例3を示す構成図。FIG. 8 is a configuration diagram showing a third embodiment of the present invention.

【図9】この発明の実施例3の動作を説明するフローチ
ャート。
FIG. 9 is a flowchart illustrating the operation of the third embodiment of the present invention.

【図10】この発明の実施例4を示す構成図。FIG. 10 is a configuration diagram showing a fourth embodiment of the present invention.

【図11】この発明の実施例4の動作を説明するフロー
チャート。
FIG. 11 is a flowchart illustrating the operation of the fourth embodiment of the present invention.

【図12】この発明の実施例5を示す構成図。FIG. 12 is a configuration diagram showing a fifth embodiment of the present invention.

【図13】この発明の実施例5の動作を説明するフロー
チャート。
FIG. 13 is a flowchart illustrating the operation of the fifth embodiment of the present invention.

【図14】この発明の実施例6を示す構成図。FIG. 14 is a configuration diagram showing a sixth embodiment of the present invention.

【図15】この発明の実施例6の動作を説明するフロー
チャート。
FIG. 15 is a flowchart illustrating the operation of the sixth embodiment of the present invention.

【図16】この発明の実施例7を示す構成図。FIG. 16 is a configuration diagram showing a seventh embodiment of the present invention.

【図17】この発明の実施例7の動作を説明するフロー
チャート。
FIG. 17 is a flowchart illustrating the operation of the seventh embodiment of the present invention.

【図18】従来の給湯ユニットを備えたヒートポンプ式
冷暖房装置の構成図。
FIG. 18 is a configuration diagram of a heat pump type cooling and heating apparatus including a conventional hot water supply unit.

【符号の説明】[Explanation of symbols]

1 圧縮機 3 室内熱交換器 7 室外熱交換器 8 アキュムレータ 9a 冷媒配管 9b 冷媒配管 9c 冷媒配管 10 主冷媒回路 12 室外ファン 13 貯湯槽 14 給湯熱交換器 20 給湯水流量制御弁 21 給湯ユニット 25 高圧圧力検知器 26 低圧圧力検知器 27 追焚きユニット 28 追焚き熱交換器 30 浴槽 32a 冷媒量制御弁(減圧装置) 33 湯温検知器 34 出口側冷媒温度検知器 35 給湯水配管出口温度検知器 36 給湯ユニット入切り手段 37 暖房入切り手段 40 制御器 41 演算手段 42 圧縮機能力変更量算出手段 44 圧縮機制御手段 45 室外ファン制御手段 50 制御器 51 設定過冷却度決定手段 52 現過冷却度算出手段 53 給湯熱交換器冷媒量制御手段 60 制御器 61 給湯水流量制御弁制御手段 70 制御器 71 圧縮機運転周波数制御手段 72 差周波数演算手段 73 給湯ユニット運転開始制御手段 74 給湯・暖房切換え手段 75 給湯ユニットの運転再開制御手段 76 給湯ユニット運転休止制御手段 80 制御器 81 目標高圧圧力低下手段 82 給湯ユニット運転休止制御手段 DESCRIPTION OF SYMBOLS 1 Compressor 3 Indoor heat exchanger 7 Outdoor heat exchanger 8 Accumulator 9a Refrigerant piping 9b Refrigerant piping 9c Refrigerant piping 10 Main refrigerant circuit 12 Outdoor fan 13 Hot water tank 14 Hot water heat exchanger 20 Hot water Water flow control valve 21 Hot water supply unit 25 High pressure Pressure detector 26 Low pressure pressure detector 27 Reheating unit 28 Reheating heat exchanger 30 Bathtub 32a Refrigerant amount control valve (pressure reducing device) 33 Hot water temperature detector 34 Outlet side refrigerant temperature detector 35 Hot water supply pipe outlet temperature detector 36 Hot water supply unit on / off means 37 Heating on / off means 40 Controller 41 Calculation means 42 Compressive function force change amount calculation means 44 Compressor control means 45 Outdoor fan control means 50 Controller 51 Set supercooling degree determining means 52 Current supercooling degree calculation Means 53 Hot water supply heat exchanger Refrigerant amount control means 60 Controller 61 Hot water supply water flow rate control valve control means 70 Control Unit 71 Compressor operation frequency control means 72 Difference frequency calculation means 73 Hot water supply unit operation start control means 74 Hot water supply / heating switching means 75 Hot water supply unit operation restart control means 76 Hot water supply unit operation suspension control means 80 Controller 81 Target high pressure reduction means 82 Hot water supply unit operation suspension control means

───────────────────────────────────────────────────── フロントページの続き (72)発明者 谷村 佳昭 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内 (72)発明者 岡田 哲治 静岡市小鹿三丁目18番1号 三菱電機株式 会社住環境エンジニアリング統括センター 内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Yoshiaki Tanimura 3-18-1, Ogashi, Shizuoka City Mitsubishi Electric Co., Ltd. Living Environment Engineering Center (72) Inventor Tetsuji Okada 3-18-1, Oka, Shizuoka Mitsubishi Electric Environment Co., Ltd. Living Environment Engineering Control Center

Claims (9)

【特許請求の範囲】[Claims] 【請求項1】 圧縮機、アキュムレータ、室内熱交換
器、室外熱交換器及び減圧装置を冷媒配管で接続した主
冷媒回路と、この主冷媒回路の冷媒と貯湯槽への循環水
とを熱交換する給湯熱交換器を有する給湯ユニットとを
備えたヒートポンプ式冷暖房装置において、上記圧縮機
の吐出側冷媒圧力を検知する高圧圧力検知器と、吸入側
冷媒圧力を検知する低圧圧力検知器と、上記高圧圧力検
知器の検知高圧圧力と目標高圧圧力との偏差及び上記低
圧圧力検知器の検知低圧圧力と目標低圧圧力との偏差か
ら、所定関係式により上記圧縮機の能力変更量及び上記
室外熱交換器を冷却する室外ファンの風量変更量を算出
する演算手段、この演算手段により算出された上記圧縮
機の能力変更量に応じ上記圧縮機を制御する圧縮機制御
手段、及び上記演算手段により算出された上記室外ファ
ンの風量変更量に応じ上記室外ファンを制御する室外フ
ァン制御手段を有する制御器とを設けたことを特徴とす
るヒートポンプ式冷暖房装置。
1. A main refrigerant circuit in which a compressor, an accumulator, an indoor heat exchanger, an outdoor heat exchanger, and a pressure reducing device are connected by a refrigerant pipe, and a refrigerant in the main refrigerant circuit and circulating water to a hot water tank are heat-exchanged. In a heat pump type cooling and heating apparatus having a hot water supply unit having a hot water supply heat exchanger, a high pressure pressure detector for detecting the discharge side refrigerant pressure of the compressor, a low pressure pressure detector for detecting the suction side refrigerant pressure, and Based on the deviation between the high pressure detected by the high pressure detector and the target high pressure and the deviation between the low pressure detected by the low pressure detector and the target low pressure, the capacity change amount of the compressor and the outdoor heat exchange are determined by a predetermined relational expression. Calculating means for calculating the air flow rate change amount of the outdoor fan for cooling the device, compressor control means for controlling the compressor according to the capacity change amount of the compressor calculated by the calculating means, and the computing hand And a controller having an outdoor fan control means for controlling the outdoor fan according to the amount of change in the air flow of the outdoor fan calculated by the step.
【請求項2】 演算手段の所定関係式は、検知高圧圧力
をPd、目標高圧圧力をPdm、検知低圧圧力をPs、目標
低圧圧力をPsm、それらの偏差をΔPd=Pdm−Pd、Δ
s=Psm−Psとした時、圧縮機の能力変更量ΔQcomp
及び室外ファンの風量変更量ΔVoutを次の行列式 【数1】 を解くことにより、次式 ΔQcomp=(d・ΔPd−b・ΔPs)/(a・d−b・
c) ΔVout=(−c・ΔPd+a・ΔPs)/(a・d−b
・c) で求める式であることを特徴とする請求項1記載のヒー
トポンプ式冷暖房装置。
2. The predetermined relational expression of the calculating means is as follows: the detected high pressure is P d , the target high pressure is P dm , the detected low pressure is P s , the target low pressure is P sm , and their deviation is ΔP d = P dm. -P d , Δ
When P s = P sm −P s , the compressor capacity change amount ΔQ comp
And the amount of air flow change ΔV out of the outdoor fan can be expressed by the following determinant By solving the following equation ΔQ comp = (d · ΔP d −b · ΔP s ) / (a · d−b ·
c) ΔV out = (− c · ΔP d + a · ΔP s ) / (a · d−b
The heat pump type cooling and heating apparatus according to claim 1, wherein the expression is obtained in (c).
【請求項3】 圧縮機、アキュムレータ、室内熱交換
器、室外熱交換器及び減圧装置を冷媒配管で接続した主
冷媒回路と、冷媒量制御弁及びこの冷媒量制御弁の開閉
度に応じた量の冷媒が上記主冷媒回路から供給され、こ
の冷媒と貯湯槽への循環水とを熱交換する給湯熱交換器
を有する給湯ユニットとを備えたヒートポンプ式冷暖房
装置において、上記給湯熱交換器の入口側冷媒圧力を検
知する高圧圧力検知器と、この給湯熱交換器の出口側冷
媒温度を検知する出口側冷媒温度検知器と、上記貯湯槽
の湯温検知器と、この湯温検知器の検知温度に応じた給
湯熱交換器出口の設定過冷却度を決定する設定過冷却度
決定手段、上記高圧圧力検知器の検知高圧圧力と上記出
口側冷媒温度検知器の検知温度から給湯熱交換器出口の
現過冷却度を算出する現過冷却度算出手段、及びこの現
過冷却度算出手段により算出される給湯熱交換器出口の
現過冷却度が上記設定過冷却度決定手段により決定され
た設定過冷却度となるよう上記冷媒量制御弁を制御する
給湯熱交換器冷媒量制御手段を有する制御器とを設けた
ことを特徴とするヒートポンプ式冷暖房装置。
3. A main refrigerant circuit in which a compressor, an accumulator, an indoor heat exchanger, an outdoor heat exchanger, and a pressure reducing device are connected by a refrigerant pipe, a refrigerant amount control valve, and an amount corresponding to the opening / closing degree of the refrigerant amount control valve. The refrigerant is supplied from the main refrigerant circuit, and a heat pump type heating and cooling device comprising a hot water supply unit having a hot water supply heat exchanger for exchanging heat between the refrigerant and the circulating water to the hot water storage tank, the inlet of the hot water supply heat exchanger High-pressure pressure detector for detecting the side refrigerant pressure, outlet-side refrigerant temperature detector for detecting the outlet-side refrigerant temperature of the hot water heat exchanger, hot-water temperature detector for the hot water tank, and detection of the hot-water temperature detector Set subcooling degree determining means for determining the set subcooling degree at the outlet of the hot water heat exchanger according to the temperature, from the detected high pressure of the high pressure detector and the detected temperature of the outlet side refrigerant temperature detector, the outlet of the hot water heat exchanger Calculate the current degree of supercooling of The current subcooling degree calculating means, and the refrigerant so that the current subcooling degree at the outlet of the hot water heat exchanger calculated by the current subcooling degree calculating means becomes the set subcooling degree determined by the set subcooling degree determining means. A heat pump type cooling and heating apparatus, comprising: a hot water supply heat exchanger for controlling a quantity control valve; and a controller having a refrigerant quantity control means.
【請求項4】 圧縮機、アキュムレータ、室内熱交換
器、室外熱交換器及び減圧装置を冷媒配管で接続した主
冷媒回路と、この主冷媒回路の冷媒と貯湯槽への循環水
とを熱交換する給湯熱交換器を有する給湯ユニットとを
備えたヒートポンプ式冷暖房装置において、上記給湯熱
交換器の循環水流量を制御する給湯水流量制御弁と、上
記給湯熱交換器出口側の給湯水配管温度を検知する給湯
水配管出口温度検知器と、この給湯水配管出口温度検知
器の検知温度が所定の一定値となるよう上記給湯水流量
制御弁を制御する給湯水流量制御弁制御手段を有する制
御器とを設けたことを特徴とするヒートポンプ式冷暖房
装置。
4. A main refrigerant circuit in which a compressor, an accumulator, an indoor heat exchanger, an outdoor heat exchanger, and a pressure reducing device are connected by a refrigerant pipe, and a refrigerant in the main refrigerant circuit and circulating water to a hot water tank are heat-exchanged. In a heat pump type cooling and heating device having a hot water supply unit having a hot water supply heat exchanger, a hot water supply water flow control valve for controlling the circulating water flow rate of the hot water supply heat exchanger and a hot water supply pipe temperature at the outlet side of the hot water heat exchanger Control having hot water supply water outlet temperature detector for detecting the temperature, and hot water supply water flow rate control valve control means for controlling the hot water supply water flow rate control valve so that the detected temperature of the hot water supply water outlet temperature detector becomes a predetermined constant value. A heat pump type cooling and heating device characterized by being provided with.
【請求項5】 貯湯槽に湯温検知器を設け、圧縮機の運
転周波数を可変とし、この運転周波数を変えることによ
り圧縮機の能力を制御するよう構成し、制御器に、主冷
媒回路の暖房運転時における給湯ユニットの運転要求に
応じ、上記圧縮機の最高運転周波数と実運転周波数の差
を算出する差周波数演算手段、及びこの手段により算出
された差周波数が上記湯温検知器の検知温度に応じた所
定値以上の時のみ上記給湯ユニットの運転を開始させる
給湯ユニットの運転開始制御手段を備えたことを特徴と
する請求項1または2記載のヒートポンプ式冷暖房装
置。
5. A hot water temperature detector is provided in the hot water storage tank, the operating frequency of the compressor is made variable, and the capacity of the compressor is controlled by changing this operating frequency. A difference frequency calculation means for calculating the difference between the maximum operation frequency and the actual operation frequency of the compressor according to the operation request of the hot water supply unit during heating operation, and the difference frequency calculated by this means is detected by the hot water temperature detector. The heat pump type cooling and heating apparatus according to claim 1 or 2, further comprising: an operation start control means for the hot water supply unit that starts the operation of the hot water supply unit only when the temperature is equal to or higher than a predetermined value according to the temperature.
【請求項6】 貯湯槽に湯温検知器を設け、圧縮機の運
転周波数を可変とし、この運転周波数を変えることによ
り圧縮機の能力を制御するよう構成し、制御器に、給湯
ユニットの運転時における主冷媒回路の暖房運転要求に
応じ、上記給湯ユニットの運転を休止し暖房運転を開始
する給湯・暖房切換え手段、この手段による切換え後の
暖房運転時における上記圧縮機の最高運転周波数と実運
転周波数の差を算出する差周波数演算手段、及びこの手
段により算出された差周波数が上記湯温検知器の検知温
度に応じた所定値以上の時のみ上記給湯ユニットの運転
を再開させる給湯ユニットの運転再開制御手段を備えた
ことを特徴とする請求項1または2記載のヒートポンプ
式冷暖房装置。
6. A hot water temperature detector is provided in the hot water storage tank, the operating frequency of the compressor is made variable, and the capacity of the compressor is controlled by changing this operating frequency, and the controller operates the hot water supply unit. Hot water supply / heating switching means that suspends the operation of the hot water supply unit and starts the heating operation in response to the heating operation request of the main refrigerant circuit at the time, and the maximum operating frequency of the compressor and the actual operation during the heating operation after switching by this means. A difference frequency calculation means for calculating a difference in operating frequency, and a hot water supply unit for restarting the operation of the hot water supply unit only when the difference frequency calculated by this means is equal to or higher than a predetermined value according to the detected temperature of the hot water temperature detector. The heat pump type cooling and heating apparatus according to claim 1 or 2, further comprising an operation restart control means.
【請求項7】 貯湯槽に湯温検知器を設け、圧縮機の運
転周波数を可変とし、この運転周波数を変えることによ
り圧縮機の能力を制御するよう構成し、制御器に、主冷
媒回路の暖房運転と給湯ユニットの運転との同時運転時
に暖房負荷の増大により、圧縮機の最高能力でも吐出側
冷媒圧力を目標高圧圧力に制御できなくなったことに応
じ、上記給湯ユニットの運転を休止させる給湯ユニット
運転休止制御手段、この手段による給湯ユニットの運転
休止後の暖房運転時における圧縮機の最高運転周波数と
実運転周波数の差を算出する差周波数演算手段、及びこ
の手段により算出された差周波数が上記湯温検知器の検
知温度に応じた所定値以上の時のみ上記給湯ユニットの
運転を再開させる給湯ユニットの運転再開制御手段を備
えたことを特徴とする請求項1または2記載のヒートポ
ンプ式冷暖房装置。
7. A hot water temperature detector is provided in the hot water storage tank, the operating frequency of the compressor is made variable, and the capacity of the compressor is controlled by changing this operating frequency. Hot water supply that suspends the operation of the hot water supply unit when the discharge side refrigerant pressure cannot be controlled to the target high pressure even with the maximum capacity of the compressor due to an increase in the heating load during the simultaneous operation of the heating operation and the hot water supply unit operation. The unit operation suspension control means, the difference frequency calculation means for calculating the difference between the maximum operation frequency and the actual operation frequency of the compressor during the heating operation after the operation of the hot water supply unit is stopped by this means, and the difference frequency calculated by this means A hot water supply unit restart control means for restarting the operation of the hot water supply unit only when the temperature is equal to or higher than a predetermined value according to the detected temperature of the hot water temperature detector is provided. The heat pump type cooling and heating device according to claim 1 or 2.
【請求項8】 制御器に、主冷媒回路の暖房運転と給湯
ユニットの運転との同時運転時で、圧縮機の最高能力で
も吐出側冷媒圧力を目標高圧圧力に制御できない時、こ
の目標高圧圧力を所定値に低下させる目標高圧圧力低下
手段、及びこの手段によって低下した目標高圧圧力にも
上記吐出側冷媒圧力を制御できない時、上記給湯ユニッ
トの運転を休止させる給湯ユニットの運転休止制御手段
を備えたことを特徴とする請求項1または2記載のヒー
トポンプ式冷暖房装置。
8. The target high pressure when the controller cannot control the discharge side refrigerant pressure to the target high pressure even at the maximum capacity of the compressor during the simultaneous operation of the heating operation of the main refrigerant circuit and the operation of the hot water supply unit. Is provided with a target high pressure reducing means for reducing the discharge pressure to a predetermined value, and a hot water supply unit suspension control means for suspending the operation of the hot water supply unit when the discharge side refrigerant pressure cannot be controlled even by the target high pressure reduced by this means. The heat pump type cooling and heating apparatus according to claim 1 or 2, characterized in that.
【請求項9】 給湯ユニットに代え或はこれに加え追焚
きユニットを備え、給湯熱交換器を追焚き熱交換器、貯
湯槽を浴槽としたことを特徴とする請求項1〜8の何れ
かに記載のヒートポンプ式冷暖房装置。
9. A hot water heating unit is provided in place of or in addition to the hot water supply unit, the hot water supply heat exchanger is a hot water heat exchanger, and the hot water storage tank is a bathtub. The heat pump type air conditioner described in.
JP31061193A 1993-12-10 1993-12-10 Heat pump type cooling and heating device provided with hot water supply or addional boiling unit Pending JPH07158998A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP31061193A JPH07158998A (en) 1993-12-10 1993-12-10 Heat pump type cooling and heating device provided with hot water supply or addional boiling unit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP31061193A JPH07158998A (en) 1993-12-10 1993-12-10 Heat pump type cooling and heating device provided with hot water supply or addional boiling unit

Publications (1)

Publication Number Publication Date
JPH07158998A true JPH07158998A (en) 1995-06-20

Family

ID=18007350

Family Applications (1)

Application Number Title Priority Date Filing Date
JP31061193A Pending JPH07158998A (en) 1993-12-10 1993-12-10 Heat pump type cooling and heating device provided with hot water supply or addional boiling unit

Country Status (1)

Country Link
JP (1) JPH07158998A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164608A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Combined air-conditioning/hot water supply system
WO2014106895A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Heat pump system
WO2017046853A1 (en) * 2015-09-14 2017-03-23 三菱電機株式会社 Air conditioning device and air conditioning control method
WO2017203655A1 (en) * 2016-05-26 2017-11-30 三菱電機株式会社 Heat pump type air conditioning and hot water supplying device

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012164608A1 (en) * 2011-05-31 2012-12-06 三菱電機株式会社 Combined air-conditioning/hot water supply system
JP5734424B2 (en) * 2011-05-31 2015-06-17 三菱電機株式会社 Air conditioning and hot water supply complex system
WO2014106895A1 (en) * 2013-01-07 2014-07-10 三菱電機株式会社 Heat pump system
GB2524673A (en) * 2013-01-07 2015-09-30 Mitsubishi Electric Corp Heat pump system
JPWO2014106895A1 (en) * 2013-01-07 2017-01-19 三菱電機株式会社 Heat pump system
US9797605B2 (en) 2013-01-07 2017-10-24 Mitsubishi Electric Corporation Heat pump system
GB2524673B (en) * 2013-01-07 2019-08-21 Mitsubishi Electric Corp Heat pump system
WO2017046853A1 (en) * 2015-09-14 2017-03-23 三菱電機株式会社 Air conditioning device and air conditioning control method
JPWO2017046853A1 (en) * 2015-09-14 2018-05-31 三菱電機株式会社 Air conditioning apparatus and air conditioning control method
WO2017203655A1 (en) * 2016-05-26 2017-11-30 三菱電機株式会社 Heat pump type air conditioning and hot water supplying device
JPWO2017203655A1 (en) * 2016-05-26 2018-12-13 三菱電機株式会社 Heat pump air-conditioning hot water supply system

Similar Documents

Publication Publication Date Title
US5263333A (en) Multi-type air conditioner system with optimum control for gaseous flow adjustment valve and liquid expansion valve
KR100579564B1 (en) LEV control method of cooling cycle apparatus
JP6545375B2 (en) Heat pump type air conditioner water heater
KR100457569B1 (en) a linear expansion valve&#39;s control method for a heat pump system
KR100484800B1 (en) Compressor&#39;s Operating Method in Air Conditioner
JP2003028515A (en) Constant-temperature liquid circulating device
EP3742071B1 (en) Air conditioning apparatus and control method thereof
JPH11142001A (en) Air conditioner
JPH07158998A (en) Heat pump type cooling and heating device provided with hot water supply or addional boiling unit
JPH06257828A (en) Multi-chamber type air conditioning system
JP2512986B2 (en) Heat pump device
JPH06341720A (en) Refrigerator
KR100788459B1 (en) Heat pump air-conditioner having function for controlling flux of refrigerant
KR102558826B1 (en) Air conditioner system and control method
AU2018411936B2 (en) Hot water supply apparatus
JPH02115585A (en) Capacity controller for compressor
JP3060980B2 (en) Heat pump water heater
JP2003065584A (en) Air-conditioning apparatus and its control method
JPH04222354A (en) Operation controller for refrigerating equipment
JPH02126058A (en) Operating control method for heat pump apparatus
JPH10170085A (en) Air conditioner
JP2004324952A (en) Air conditioner and its control method
KR100535676B1 (en) Control method of cooling cycling apparatus
JP2758805B2 (en) Heat pump control method
JP2845617B2 (en) Air conditioner