JPH07158994A - Air conditioning device using absorption type refrigerator - Google Patents

Air conditioning device using absorption type refrigerator

Info

Publication number
JPH07158994A
JPH07158994A JP33931193A JP33931193A JPH07158994A JP H07158994 A JPH07158994 A JP H07158994A JP 33931193 A JP33931193 A JP 33931193A JP 33931193 A JP33931193 A JP 33931193A JP H07158994 A JPH07158994 A JP H07158994A
Authority
JP
Japan
Prior art keywords
regenerator
dilute solution
air
refrigerant
solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP33931193A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
崇 田中
Hideki Furukawa
秀樹 古川
Kanako Nakayama
香奈子 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP33931193A priority Critical patent/JPH07158994A/en
Publication of JPH07158994A publication Critical patent/JPH07158994A/en
Pending legal-status Critical Current

Links

Landscapes

  • Sorption Type Refrigeration Machines (AREA)

Abstract

PURPOSE:To maintain a proper amount of solution in a reproducer and achieve an efficient and smooth operation of an air conditioning device. CONSTITUTION:A controller 30 is provided with an arithmetic operation means 7 and a control means 8. A sensor Tg is connected to a sensor Ti in the arithmetic operation means 7. The temperatures of a reproducer 12 and an absorber 20 are input from those sensors, thereby computing the in-flow of a diluted solution to the reproducer. The control means 7 is connected to a pump 23 which feeds the diluted solution from a diluted solution tank 21 to the reproducer. When the value of flow rate of the distributing solution is fed from the arithmetic operation means, the pump is driven based on a computed value. Therefore, the amount of diluted solution fed to the reproducer is computed based on the temperatures detected by the sensors so that an optimum amount of diluted solution may be fed constantly to the reproducer based on the values. This construction makes it possible to achieve a smooth and efficient operation of an air conditioning device.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般の住宅や小規模な建
物などを対象とした吸収式冷凍機を用いた空調装置に関
し、特に効率を良好に保つことのできる空調装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an absorption refrigerating machine for general houses and small buildings, and more particularly to an air conditioner capable of maintaining good efficiency.

【0002】[0002]

【従来の技術】吸収式冷凍機を用いた空調装置は、現
在、ビルあるいは大型店舗などのような産業用、業務用
の設備に主として用いられている。
2. Description of the Related Art At present, an air conditioner using an absorption chiller is mainly used for industrial or commercial facilities such as a building or a large store.

【0003】吸収式冷凍機を用いた空調装置の冷房方式
は、再生器で蒸発させた冷媒蒸気を水冷方式の凝縮器で
凝縮させ、この凝縮した冷媒を蒸発器に導いて蒸発させ
て、その際の蒸発潜熱で冷房すべき室内に設けられたフ
ァンコイルユニットと冷凍機との間を循環する冷熱媒
(通常は水)を冷却する。一方、蒸発した冷媒蒸気は水
冷方式の吸収器で濃溶液(吸収液)に吸収させ、再び再
生器に戻すというサイクルで運転される。
In the cooling system of an air conditioner using an absorption refrigerator, the refrigerant vapor evaporated in the regenerator is condensed in a water-cooled condenser, and the condensed refrigerant is guided to the evaporator to be evaporated. The cooling heat medium (usually water) that circulates between the fan coil unit provided in the room to be cooled and the refrigerator is cooled by the latent heat of vaporization at that time. On the other hand, the evaporated refrigerant vapor is operated in a cycle in which a water-cooled absorber absorbs the concentrated solution (absorption liquid) and returns it to the regenerator.

【0004】この種の吸収式冷凍機を用いた空調装置で
は、室内側ファンコイルユニット内に循環させる冷熱媒
の温度を蒸発器において7℃前後まで冷却し、この冷熱
媒を室内のファンコイル内に循環させて室内空気を冷却
して12℃前後で蒸発器に戻すようにしている。吸収液
としてリチウムブロマイド水溶液を使用する場合は、吸
収器内の吸収液の温度を40℃前後に保つことが必要と
なり、この温度を維持するためには冷却塔を屋上などに
設置して水冷回路で冷却する方法が取られている。
In an air conditioner using this type of absorption refrigerator, the temperature of the cold heat medium circulated in the indoor fan coil unit is cooled to around 7 ° C. in the evaporator, and the cold heat medium is circulated in the indoor fan coil. It is circulated to cool the indoor air and return it to the evaporator at around 12 ° C. When using an aqueous lithium bromide solution as the absorbing liquid, it is necessary to maintain the temperature of the absorbing liquid in the absorber at around 40 ° C. To maintain this temperature, a cooling tower is installed on the rooftop or the like, and the water cooling circuit is installed. The method of cooling is adopted.

【0005】ところがこのような水冷方式を採用した従
来の吸収式冷凍機を用いた空調装置には次のような問題
がある。
However, the conventional air conditioner using the absorption type refrigerating machine adopting such a water cooling system has the following problems.

【0006】(1)吸収器を水冷方式で温度管理してい
るために、設備が大型になるとともに配管が必要にな
り、そのために多くの工事費がかかり、一般の住宅や小
規模の建物の冷房用には不向きである。
(1) Since the temperature of the absorber is controlled by a water cooling system, the equipment becomes large and piping is required. Therefore, a lot of construction cost is required, which is a problem for general houses and small buildings. Not suitable for cooling.

【0007】(2)冷房すべき室内のファンコイルユニ
ットと冷凍機とを冷熱媒循環用の配管で結ぶ必要がある
ために、工事費や設備費が高額になる。これは、吸収液
と冷媒にアンモニア水を使用するアンモニア吸収式冷凍
機についても同じである。
(2) Since it is necessary to connect the fan coil unit and the refrigerator in the room to be cooled by the pipe for circulating the heating / cooling medium, the construction cost and equipment cost are high. The same applies to an ammonia absorption refrigerator that uses ammonia water as the absorbing liquid and the refrigerant.

【0008】そこで本発明者らは、冷房運転時、凝縮器
と吸収器とを水冷方式でなく空冷方式で冷却し、凝縮器
から蒸発器への冷媒の送出をポンプを用いることなく両
者間の圧力差で行うと共に、空調対象の室内空気が通る
通路内に蒸発器を位置させて室内空気を蒸発器の外部に
直接触れさせることによって冷却するようにした冷房モ
ードを有する空調装置についてすでに特許出願をしてい
る(特願平5−22351号)。
Therefore, the present inventors cool the condenser and the absorber by an air cooling method instead of the water cooling method during the cooling operation, and the refrigerant is sent from the condenser to the evaporator without using a pump. A patent application has already been filed for an air conditioner having a cooling mode in which the evaporator is located in a passage through which the room air to be air-conditioned passes and the room air is cooled by directly contacting the outside of the evaporator with the pressure difference. (Japanese Patent Application No. 5-22351).

【0009】図4は上記出願で提案された単効用吸収式
冷凍機を用いた空調装置の一変形例の要部を示し、図5
は同空調装置の設置状態を示す。
FIG. 4 shows an essential part of a modified example of an air conditioner using the single-effect absorption refrigerator proposed in the above application, and FIG.
Indicates the installation status of the air conditioner.

【0010】空調装置は、図5に示すように、室外機1
と室内機2とから成り、室外機1は図4に示すような構
成で空調しようとする住宅の室5の外に配置され、室内
機2は冷風の吹出し口と室内空気の吸込み口のみを有
し、室5の内部に配置される。室外機1と室内機2は冷
風の送風ダクト3と室内空気の吸気ダクト4とで接続さ
れている。送風ダクト3内あるいは吸気ダクト4内の所
定場所には送風ファン11が設けられている。6は、空
調装置の運転開始又は停止、自動運転の設定または解
除、室内温度の設定、冷風の吹出し風量の設定等を行う
リモコン操作器である。
As shown in FIG. 5, the air conditioner includes an outdoor unit 1
The outdoor unit 1 is arranged outside the room 5 of the house to be air-conditioned with the configuration shown in FIG. 4, and the indoor unit 2 has only the outlet for cool air and the inlet for indoor air. It has and is arranged inside the chamber 5. The outdoor unit 1 and the indoor unit 2 are connected by a blower duct 3 for cold air and an intake duct 4 for indoor air. A blower fan 11 is provided at a predetermined place in the blower duct 3 or the intake duct 4. Reference numeral 6 denotes a remote controller for starting or stopping the operation of the air conditioner, setting or canceling automatic operation, setting the room temperature, setting the amount of cold air blown out, and the like.

【0011】室外機1の内部は図4に示すような構成に
なっており、吸収液としてリチウムブロマイド水溶液が
用いられ、冷媒として水が用いられる。
The inside of the outdoor unit 1 has a structure as shown in FIG. 4, in which an aqueous lithium bromide solution is used as the absorbing liquid and water is used as the refrigerant.

【0012】蒸発器10は、送風ダクト3と吸気ダクト
4との接続位置に設置されており、その内部で減圧作用
により冷媒を蒸発させ、その蒸発潜熱(気化熱)の働き
で内部から冷却を受けるようになっている。
The evaporator 10 is installed at a position where the blower duct 3 and the intake duct 4 are connected to each other. The inside of the evaporator 10 evaporates the refrigerant due to the depressurization action, and the latent heat of vaporization (vaporization heat) acts to cool it from the inside. I am supposed to receive it.

【0013】再生器12は、冷媒を吸収して濃度の低く
なった吸収液(希溶液)をバーナ13により加熱するこ
とによって冷媒蒸気を発生させるとともに吸収液の濃度
を濃縮する機能を有する。バーナ13へは燃料供給管1
4から燃料ガスが供給され、その燃焼度合いは燃料供給
制御弁15により調節される。
The regenerator 12 has a function of generating a refrigerant vapor by heating the absorbing solution (dilute solution) having a low concentration by absorbing the refrigerant by the burner 13 and concentrating the concentration of the absorbing solution. Fuel supply pipe 1 to burner 13
4, fuel gas is supplied, and the degree of combustion is adjusted by the fuel supply control valve 15.

【0014】凝縮器16は、再生器12から送られてく
る冷媒蒸気を空冷ファン17により冷却して液化し、こ
の液化冷媒を蒸発器10に送出する機能を有している。
The condenser 16 has a function of cooling the refrigerant vapor sent from the regenerator 12 by the air cooling fan 17 and liquefying it, and sending this liquefied refrigerant to the evaporator 10.

【0015】符号18は、空調装置内を循環している冷
媒の総量を調節するとともに、再生器12に供給される
希溶液濃度を調節するために冷媒の一部を貯蔵するため
の冷媒タンクであり、弁V5を介して凝縮器16に接続
されている。
Reference numeral 18 denotes a refrigerant tank for controlling a total amount of the refrigerant circulating in the air conditioner and a part of the refrigerant for controlling the concentration of the dilute solution supplied to the regenerator 12. Yes, and is connected to the condenser 16 via valve V5.

【0016】吸収器20は吸収液を蓄えており、蒸発器
10で蒸発した冷媒をその吸収液に吸収させる機能を有
しており、凝縮器16と同じ空冷ファン17により空冷
される。冷媒を吸収して濃度の低くなった吸収液は一旦
希溶液タンク21に蓄えられる。
The absorber 20 stores the absorbing liquid, has a function of absorbing the refrigerant evaporated in the evaporator 10 into the absorbing liquid, and is cooled by the same air cooling fan 17 as the condenser 16. The absorbing liquid which has absorbed the refrigerant and has a low concentration is temporarily stored in the dilute solution tank 21.

【0017】符号22は、希溶液タンク21から再生器
12に向かう濃度の低い低温の吸収液と再生器12から
吸収器20に向かう濃度の高い高温の吸収液との間で熱
交換を行なう熱交換器、23は、冷媒を吸収して濃度の
低くなった吸収液を希溶液タンク21から再生器12に
送出するポンプ、24は、蒸発器10の上流側と凝縮器
16の下流側との間に設けられたキャピラリ又はそれに
相当する圧損手段である。
Reference numeral 22 denotes heat for exchanging heat between the low-concentration low-concentration absorption liquid flowing from the dilute solution tank 21 to the regenerator 12 and the high-concentration high-temperature absorption liquid flowing from the regenerator 12 to the absorber 20. An exchanger, 23 is a pump that absorbs the refrigerant and sends out an absorbent having a low concentration from the dilute solution tank 21 to the regenerator 12, and 24 is one between the upstream side of the evaporator 10 and the downstream side of the condenser 16. A capillary provided between them or a pressure loss means corresponding thereto.

【0018】V1、V2、V3、V4、V5はいずれも
電磁弁のような調整弁であり、特にV4は逆止弁機能を
備えた調整弁である。
All of V1, V2, V3, V4 and V5 are regulating valves such as solenoid valves, and in particular V4 is a regulating valve having a check valve function.

【0019】上記の空調装置は、吸収液を希溶液タンク
21から再生器12に送出するのにポンプ23を用いて
いる点を除き、基本的には各容器の温度を制御すること
によって各容器間に圧力差を作り、その圧力差で冷媒及
び吸収液が送出され、循環するようにしている。
The above air conditioner basically controls each container by controlling the temperature of each container except that the pump 23 is used to deliver the absorbing liquid from the dilute solution tank 21 to the regenerator 12. A pressure difference is created between them, and the refrigerant and the absorbing liquid are delivered and circulated by the pressure difference.

【0020】[0020]

【発明が解決しようとする課題】ところでこのような空
冷方式の空調装置においては、ポンプで希溶液を希溶液
タンクから再生器に送り、再生器で加熱することにより
希溶液から冷媒の水と濃縮した溶液を供給している。又
再生器から吸収器への溶液の供給は再生器と吸収器との
間の圧力差に基づいており、両者間の圧力差が減少する
と、溶液の供給量も減少する。吸収器への溶液の供給が
減少した場合には、再生器内の溶液量が過剰となり、再
生器での液面異常を発生することがある。又、温度の低
下した再生器へ、温度の低い希溶液を多量に供給すると
より温度、すなわち圧力の低下を招くこととなり、空調
装置の円滑な運転を妨げることがあった。
In such an air-cooling type air conditioner, a dilute solution is sent from a dilute solution tank to a regenerator by a pump and heated by the regenerator so that the dilute solution concentrates with water as a refrigerant. Is being supplied. Further, the supply of the solution from the regenerator to the absorber is based on the pressure difference between the regenerator and the absorber, and when the pressure difference between the two is reduced, the supply amount of the solution is also reduced. When the supply of the solution to the absorber decreases, the amount of the solution in the regenerator becomes excessive, which may cause a liquid level abnormality in the regenerator. Further, when a large amount of the dilute solution having a low temperature is supplied to the regenerator having a decreased temperature, the temperature, that is, the pressure is further decreased, which may hinder the smooth operation of the air conditioner.

【0021】本発明は上記の点に鑑みてなされたもの
で、希溶液タンクから再生器に冷媒蒸気を吸収した希溶
液を送り込むポンプと、該ポンプにより送り込まれた希
溶液を加熱して冷媒蒸気と濃溶液とを発生する再生器
と、該再生器で発生した冷媒蒸気を凝縮させる凝縮器
と、凝縮された冷媒を気化させる蒸発器と、冷媒を吸収
する吸収液を蓄え前記蒸発器で気化された冷媒蒸気を該
吸収液に吸収させる吸収器と、前記吸収器と凝縮器とを
共に冷却する空冷ファンを備え、冷房対象室内空気を導
入する通路内に前記蒸発器を配置して該室内空気を直接
冷却した後、この冷却された空気をダクトを通して直接
室内に送風して冷房を行なう吸収式冷凍機を用いた空調
装置において、再生器への希溶液の供給量を最適化し、
効率のよい円滑な冷房運転が実現できることを目的とす
る。
The present invention has been made in view of the above points, and a pump for feeding a dilute solution having absorbed refrigerant vapor from a dilute solution tank to a regenerator, and a refrigerant vapor by heating the dilute solution fed by the pump. And a regenerator that generates a concentrated solution, a condenser that condenses the refrigerant vapor generated in the regenerator, an evaporator that vaporizes the condensed refrigerant, and an absorbing liquid that absorbs the refrigerant and vaporizes in the evaporator. An absorber that absorbs the absorbed refrigerant vapor into the absorbing liquid; and an air-cooling fan that cools both the absorber and the condenser, and the evaporator is arranged in a passage for introducing the air to be cooled in the room. After directly cooling the air, in an air conditioner using an absorption refrigerator that cools the air by directly blowing the cooled air into the room through a duct, the supply amount of the dilute solution to the regenerator is optimized,
The objective is to realize efficient and smooth cooling operation.

【0022】[0022]

【課題を解決するための手段】本発明は上記の目的を達
成するために、希溶液タンクから再生器に冷媒蒸気を吸
収した希溶液を送り込むポンプと、該ポンプにより送り
込まれた希溶液を加熱して冷媒蒸気と濃溶液とを発生す
る再生器と、該再生器で発生した冷媒蒸気を凝縮させる
凝縮器と、凝縮された冷媒を気化させる蒸発器と、冷媒
を吸収する吸収液を蓄え前記蒸発器で気化された冷媒蒸
気を該吸収液に吸収させる吸収器と、前記吸収器と凝縮
器とを共に冷却する空冷ファンを備え、冷房対象室内空
気を導入する通路内に前記蒸発器を配置して該室内空気
を直接冷却した後、この冷却された空気をダクトを通し
て直接室内に送風して冷房を行なう吸収式冷凍機を用い
た空調装置において、前記再生器の溶液温度t1を検出
する第1検出手段と、前記希溶液タンクの溶液温度t2
を検出する第2検出手段と、前記温度t1とt2の値に
基づいて前記再生器への希溶液量を演算する演算手段
と、前記ポンプの能力を該演算手段の演算結果に基づい
て制御する制御手段とを備えて吸収式冷凍機を用いた空
調装置を構成したのである。
In order to achieve the above object, the present invention provides a pump for feeding a dilute solution having absorbed refrigerant vapor from a dilute solution tank to a regenerator, and a heating of the dilute solution fed by the pump. A regenerator that generates a refrigerant vapor and a concentrated solution, a condenser that condenses the refrigerant vapor generated in the regenerator, an evaporator that vaporizes the condensed refrigerant, and an absorbing liquid that absorbs the refrigerant An absorber for absorbing the refrigerant vapor vaporized in the evaporator into the absorbing liquid, and an air cooling fan for cooling both the absorber and the condenser are provided, and the evaporator is arranged in a passage for introducing air to be cooled in the room. After cooling the indoor air directly, the cooled air is blown directly into the room through a duct to cool the room, and in an air conditioner using an absorption refrigerator, the solution temperature t1 of the regenerator is detected. 1 detection means , Of the rare solution tank solution temperature t2
Detecting means for calculating the amount of dilute solution to the regenerator based on the values of the temperatures t1 and t2, and the capacity of the pump based on the calculation result of the calculating means. The air conditioner using the absorption chiller is provided with the control means.

【0023】[0023]

【作用】再生器の温度t1と、希溶液タンクの温度t2
の温度差が小さくなれば、これら両者間の圧力差も減少
する。この圧力差の減少は再生器と吸収器との間の圧力
差の減少となり、吸収器への濃溶液の供給量も減少し、
再生器への希溶液の必要量がこれによって決定される。
それゆえ、t1とt2の温度に基づいて希溶液の再生器
への供給量を制御、すなわち希溶液タンクから再生器へ
希溶液を送出するポンプの能力を制御することにより、
最適な量の希溶液を再生器に供給できる。
Operation: Regenerator temperature t1 and dilute solution tank temperature t2
The smaller the temperature difference between the two, the smaller the pressure difference between them. This decrease in pressure difference results in a decrease in pressure difference between the regenerator and the absorber, and the amount of concentrated solution supplied to the absorber also decreases.
This determines the required amount of dilute solution for the regenerator.
Therefore, by controlling the feed rate of the dilute solution to the regenerator based on the temperatures of t1 and t2, that is, by controlling the ability of the pump to pump the dilute solution from the dilute solution tank to the regenerator,
The optimal amount of dilute solution can be fed to the regenerator.

【0024】[0024]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0025】図2に、本発明にかかる単効用吸収式冷凍
機を用いた空調装置の一実施例を示す。
FIG. 2 shows an embodiment of an air conditioner using a single-effect absorption refrigerator according to the present invention.

【0026】本発明による空調装置の機構的構成の概略
は図4に示したとほぼ同じであるので、同一部分の説明
は省略し、異なる部分及び空調装置の制御に必要な電気
回路等について説明する。
Since the mechanical structure of the air conditioner according to the present invention is substantially the same as that shown in FIG. 4, the description of the same parts will be omitted and different parts and electric circuits necessary for controlling the air conditioner will be described. .

【0027】図2において、T1は蒸発器10の上流側
に設けられた室内温度検出用のセンサ、T2は送風温度
検出用のセンサ、T3は再生器12の液面レベル検出用
のセンサ、T4は凝縮器16の温度検出用のセンサ、T
gは再生器12の溶液の温度を検出する第1検出手段と
してのセンサ、Ttは希溶液タンク21の溶液温度を検
出する第2検出手段としてのセンサである。
In FIG. 2, T1 is a sensor for detecting the room temperature provided on the upstream side of the evaporator 10, T2 is a sensor for detecting the temperature of the blown air, T3 is a sensor for detecting the liquid level of the regenerator 12, and T4. Is a sensor for detecting the temperature of the condenser 16, T
g is a sensor as a first detecting means for detecting the temperature of the solution in the regenerator 12, and Tt is a sensor as a second detecting means for detecting the solution temperature in the dilute solution tank 21.

【0028】又、CPU、メモリ、駆動回路からなるコ
ントローラ30と、リモコン操作器6(図5参照)から
の設定信号を室内機2の受信部2aで受け、受信部2a
からの信号を受ける通信制御器31とが設けられてお
り、コントローラ30はセンサT1、T2等からの信号
と、通信制御器31からの信号とを受け、送風ファン1
1、空冷ファン17、ポンプ23の動作を制御するよう
になっている。
Further, the receiving unit 2a of the indoor unit 2 receives the setting signal from the controller 30 including the CPU, the memory and the driving circuit and the remote controller 6 (see FIG. 5), and the receiving unit 2a receives the setting signal.
A communication controller 31 for receiving signals from the communication controller 31 is provided, and the controller 30 receives signals from the sensors T1, T2 and the like and signals from the communication controller 31 and receives the signals from the blower fan 1
1, the operation of the air cooling fan 17 and the pump 23 is controlled.

【0029】更にコントローラ30には、図1に示すよ
うに演算手段7、制御手段8を備えている。演算手段7
は、センサTg、センサTtに接続しており、これらか
ら再生器12と希溶液タンク21の溶液温度を入力す
る。そして、入力したこれらの温度t1、t2から再生
器12に必要な希溶液量を演算し、その演算結果を制御
手段8に送る。制御手段8は、ポンプ23のモータM2
に接続しており、演算手段7からの演算結果に基づいて
モータM2 の回転数を調整しポンプ23の能力を制御す
る。
Further, the controller 30 is provided with a computing means 7 and a control means 8 as shown in FIG. Computing means 7
Is connected to a sensor Tg and a sensor Tt, from which the solution temperature of the regenerator 12 and the dilute solution tank 21 is input. Then, the amount of dilute solution required for the regenerator 12 is calculated from the input temperatures t1 and t2, and the calculation result is sent to the control means 8. The control means 8 controls the motor M 2 of the pump 23.
And adjusts the rotation speed of the motor M 2 based on the calculation result from the calculation means 7 to control the capacity of the pump 23.

【0030】次に、モータM2 の回転数、つまりポンプ
23の能力と、再生器12や希溶液タンク21の温度と
の関係について説明する。例えば、運転開始時では、再
生器12の温度が低く、温度を速やかに上昇させる必要
があり、かつ再生器12から吸収器20に送られる濃溶
液の量が少ないので冷媒の発生量を抑えるため、低温の
希溶液の流入量を制限する必要がある。又、再生器12
と希溶液タンク21の溶液の温度差が小さくなった場合
には、再生器12と希溶液タンク21の間の圧力差が減
少し、再生器12から吸収器20に移動する濃溶液の量
が減少する。したがって、再生器12内の溶液量が過剰
とならないようにするために再生器12に送る希溶液の
量を少なくさせる必要がある。ポンプ23の能力は、こ
のような必要性から、再生器12で発生させる冷媒量に
対応した希溶液が過不足なく再生器12に送り込まれる
ように決定される。
Next, the relationship between the rotation speed of the motor M 2 , that is, the capacity of the pump 23 and the temperatures of the regenerator 12 and the dilute solution tank 21 will be described. For example, at the start of operation, the temperature of the regenerator 12 is low, the temperature needs to be raised quickly, and the amount of concentrated solution sent from the regenerator 12 to the absorber 20 is small, so that the amount of refrigerant generated is suppressed. It is necessary to limit the inflow amount of the low temperature dilute solution. Also, the regenerator 12
When the temperature difference between the solutions in the dilute solution tank 21 and the dilute solution tank 21 becomes small, the pressure difference between the regenerator 12 and the dilute solution tank 21 decreases, and the amount of the concentrated solution moving from the regenerator 12 to the absorber 20 decreases. Decrease. Therefore, it is necessary to reduce the amount of the dilute solution sent to the regenerator 12 in order to prevent the amount of the solution in the regenerator 12 from becoming excessive. Due to such a need, the capacity of the pump 23 is determined so that the dilute solution corresponding to the amount of the refrigerant generated in the regenerator 12 is fed to the regenerator 12 without excess or deficiency.

【0031】このポンプ23の能力と、再生器12や希
溶液タンク21の温度との関係は、かかる関係を有する
関係式を演算手段7に組み込んでおき、センサTtやT
gからの温度が入力されるたびに演算手段7は演算した
演算値を制御手段8に送りポンプ23を制御してもよい
し、また図示しない記憶手段を演算手段7に接続させ、
この記憶手段にポンプ23の能力と、再生器12や希溶
液タンク21の温度とを対応させるテーブルを予め記憶
させておいて、センサTtやTgから入力した温度をこ
のテーブルに照合させてポンプの能力を求め制御するよ
うにしてもよい。
Regarding the relationship between the capacity of the pump 23 and the temperatures of the regenerator 12 and the dilute solution tank 21, a relational expression having such a relationship is incorporated in the calculating means 7, and the sensors Tt and Tt.
Each time the temperature from g is input, the calculation means 7 may send the calculated value to the control means 8 to control the pump 23, or connect a storage means (not shown) to the calculation means 7.
A table in which the capacity of the pump 23 and the temperatures of the regenerator 12 and the dilute solution tank 21 are associated with each other is previously stored in this storage means, and the temperature input from the sensors Tt and Tg is collated with this table to check the pump. The ability may be obtained and controlled.

【0032】次に図3を参照して冷房サイクルの動作を
説明する。
Next, the operation of the cooling cycle will be described with reference to FIG.

【0033】運転開始前は、弁V1、V3,V5は閉じ
ており、弁V2、V4は開いている。再生器12は空の
状態になっており、吸収液と冷媒は混合された希溶液の
状態で希溶液タンク21に蓄えられている。
Before the start of operation, the valves V1, V3 and V5 are closed and the valves V2 and V4 are open. The regenerator 12 is in an empty state, and the absorbing liquid and the refrigerant are stored in the diluted solution tank 21 in a mixed diluted solution state.

【0034】リモコン操作器6の運転ボタンをオンし、
希望温度、もしくは希望風量を設定すると、弁V1、V
3、V5が開くとともに弁V2、V4が閉じ(F−
1)、モータM2 が駆動されてポンプ23により希溶液
タンク21から希溶液が再生器12に送出される(F−
2)。コントローラ30のCPUは、センサT3からの
信号を見て再生器12の液面が規定のレベルに達してい
るか否かを判断し(F−3)、液面が規定のレベルに達
しているときは、燃料供給制御弁15を開いて燃料供給
管14から燃料ガスを供給し、バーナ13に点火する
(F−4)。
Turn on the operation button of the remote controller 6,
When the desired temperature or desired air volume is set, valves V1 and V
3, V5 open and valves V2, V4 close (F-
1), the motor M 2 is driven and the dilute solution is sent from the dilute solution tank 21 to the regenerator 12 by the pump 23 (F-
2). The CPU of the controller 30 judges whether the liquid level of the regenerator 12 has reached the specified level by looking at the signal from the sensor T3 (F-3), and when the liquid level has reached the specified level. Opens the fuel supply control valve 15, supplies the fuel gas from the fuel supply pipe 14, and ignites the burner 13 (F-4).

【0035】再生器12が加熱されると希溶液から冷媒
蒸気が発生し、冷媒蒸気が凝縮器16に送られるととも
に冷媒を分離させた濃溶液(吸収液)は弁V1が開かれ
吸収器20に送られる。冷媒蒸気の流入によって凝縮器
16は温度が次第に上昇するので、コントローラ30の
CPUは、センサT4からの信号により凝縮器16の温
度が所定値に達したか否かを判断し(F−5)、所定値
に達したときは空冷ファン17を回転する(F−6)。
その結果、凝縮器16では再生器12から送られてくる
冷媒蒸気が液化し、液化した冷媒は、弁V5を介して冷
媒タンク18に流入する。次に冷媒タンク18の冷媒量
が所定値に達したか否かを判断し(F−7)、所定値に
達したときには弁V5を閉じ(F−8)、送風ファン1
1を回転させる(F−9)。
When the regenerator 12 is heated, a refrigerant vapor is generated from the dilute solution, the refrigerant vapor is sent to the condenser 16, and the concentrated solution (absorption liquid) from which the refrigerant has been separated is opened by the valve V1 and the absorber 20. Sent to. Since the temperature of the condenser 16 gradually rises due to the inflow of the refrigerant vapor, the CPU of the controller 30 determines from the signal from the sensor T4 whether or not the temperature of the condenser 16 has reached a predetermined value (F-5). When the predetermined value is reached, the air cooling fan 17 is rotated (F-6).
As a result, in the condenser 16, the refrigerant vapor sent from the regenerator 12 is liquefied, and the liquefied refrigerant flows into the refrigerant tank 18 via the valve V5. Next, it is determined whether or not the amount of refrigerant in the refrigerant tank 18 reaches a predetermined value (F-7), and when it reaches the predetermined value, the valve V5 is closed (F-8) and the blower fan 1
1 is rotated (F-9).

【0036】このとき、凝縮器16からの冷媒はキャピ
ラリ24を通って蒸発器10に流れ込み、冷媒が蒸発器
10の内部で蒸発(気化)し、気化熱による冷却作用が
起こる。その結果、送風ファン11により吸気ダクト4
を通って室内から送られてくる空気が蒸発器10の外表
面に直接接触することによって冷却される。冷却された
空気は送風ダクト3を通って室内機2に送られ、室5内
に冷風として吹き出され、室5が冷房される(F−1
0)。
At this time, the refrigerant from the condenser 16 flows into the evaporator 10 through the capillary 24, the refrigerant evaporates (vaporizes) inside the evaporator 10, and the cooling action by the heat of vaporization occurs. As a result, the blower fan 11 causes the intake duct 4
The air sent from the inside through the chamber is cooled by directly contacting the outer surface of the evaporator 10. The cooled air is sent to the indoor unit 2 through the air duct 3 and blown into the room 5 as cold air to cool the room 5 (F-1).
0).

【0037】蒸発器10で蒸発して蒸気となった冷媒は
吸収器20に流れ込み、そこで吸収液に吸収される。冷
媒を吸収して濃度が低下した吸収液は一旦希溶液タンク
21に入った後ポンプ23により弁V3を通って、熱交
換器22で再生器12から送り出される濃度の高い高温
の吸収液と熱交換され、再生器12に送り込まれる。こ
れが冷房動作の定常モードである。この間、必要に応じ
て弁V5は開、閉を繰り返す。
The refrigerant vaporized in the evaporator 10 to become vapor flows into the absorber 20, where it is absorbed by the absorbing liquid. The absorption liquid, which has absorbed the refrigerant and has a reduced concentration, once enters the dilute solution tank 21, then passes through the valve V3 by the pump 23, and is transferred from the regenerator 12 by the heat exchanger 22 to the high-concentration high-temperature absorption liquid and heat. It is exchanged and sent to the regenerator 12. This is the steady mode of cooling operation. During this time, the valve V5 is repeatedly opened and closed as needed.

【0038】そして、例えば、運転開始時等センサTg
により検出された再生器12の溶液温度t1の温度が低
い場合には、検出した温度t1に対応した希溶液量を演
算手段7が演算し、それに基づいてポンプ23の能力が
低くなり、必要な量の希溶液が再生器12に過不足なく
送り込まれる。
Then, for example, the sensor Tg at the start of operation, etc.
When the temperature of the solution temperature t1 of the regenerator 12 detected by the above is low, the calculating means 7 calculates the amount of the dilute solution corresponding to the detected temperature t1, and the capacity of the pump 23 becomes low based on the calculated amount, and the necessary value is obtained. A sufficient amount of the dilute solution is sent to the regenerator 12 without excess or deficiency.

【0039】このことにより、再生器12の内部圧力が
十分でないために再生器12から吸収器20へ流出され
る溶液が少ない状態の運転開始時でも、再生器12内の
溶液量が過剰になることはなく、また再生器12内に温
度の低い希溶液が大量に流入されないことから溶液温度
を速やかに上昇させることができる。
As a result, the amount of solution in the regenerator 12 becomes excessive even at the start of operation when the amount of solution flowing from the regenerator 12 to the absorber 20 is small because the internal pressure of the regenerator 12 is not sufficient. In addition, since a large amount of a dilute solution having a low temperature does not flow into the regenerator 12, the solution temperature can be raised quickly.

【0040】更に、通常運転中においても、再生器12
の溶液温度t1が低下して再生器12の溶液温度t1
と、希溶液タンク21の溶液温度t2との差が小さくな
った場合に、演算手段7の演算値に基づいてポンプ23
の能力が制御され、、再生器12への希溶液の送出量が
必要な量に制御されるので、再生器12から吸収器20
へ流出される溶液が少ない状態でも、再生器12内の溶
液量が過剰になることはない。
Furthermore, even during normal operation, the regenerator 12
Solution temperature t1 of the regenerator 12 decreases
And the solution temperature t2 of the dilute solution tank 21 becomes small, the pump 23 is calculated based on the calculated value of the calculating means 7.
The capacity of the regenerator 12 is controlled and the amount of the dilute solution delivered to the regenerator 12 is controlled to a required amount.
The amount of solution in the regenerator 12 does not become excessive even when the amount of solution flowing out to is small.

【0041】したがって、希溶液が希溶液タンク21か
ら再生器12に、再生器12に必要な量だけ過不足なく
常に送り込まれ、空調装置全体として必要な量の冷媒が
発生され、効率よく、円滑に空調装置を運転することが
できる。
Therefore, the dilute solution is constantly fed from the dilute solution tank 21 to the regenerator 12 in an amount sufficient for the regenerator 12 without excess or deficiency, and the required amount of refrigerant is generated for the entire air conditioner, which is efficient and smooth. The air conditioner can be operated.

【0042】次に、冷房運転中における系の各部におけ
る容器および吸収液、冷媒の温度および圧力を例示す
る。
Next, the temperature and pressure of the container, the absorbing liquid, and the refrigerant in each part of the system during the cooling operation will be exemplified.

【0043】 温 度(℃) 圧 力(Torr) 蒸発器10: 10〜20 10〜20 再生器12: 60〜90 90〜110 凝縮器16: 50〜80 90〜110 吸収器20: 45〜50 11 冷媒タンク18: 30〜50 40〜50 希溶液タンク21: 40〜60 11 熱交換器22: 30〜90 − 吸気ダクト4: 26(室温) − 送風ダクト 13〜20 − 希溶液: 35〜40 濃度:61% 濃溶液: 90 濃度:64.8% そして、図3のフローチャートに戻り、リモコン操作器
6の運転ボタンがオフされると(F−11)、停止処理
を行なった(F−12)後終了する。停止処理として
は、まず、バーナ13を消火し、弁V2、V4を開き、
弁V1を閉じる。次にしばらくしてからポンプ23を停
止し、弁V3を閉じ、送風ファン11及び空冷ファン1
7を停止する。このようにすることにより、冷媒タンク
18内の冷媒および再生器12内の吸収液が希溶液タン
ク21にすべて流れ込む。これは、装置が停止している
間に吸収液により冷媒タンク18や再生器12が腐食す
るのを防止し、また濃溶液を希釈して晶析を防止するた
めである。
Temperature (° C.) Pressure (Torr) Evaporator 10:10 to 20 10 to 20 Regenerator 12: 60 to 90 90 to 110 Condenser 16: 50 to 80 90 to 110 Absorber 20: 45 to 50 11 Refrigerant tank 18: 30-50 50 40-50 Dilute solution tank 21: 40-60 11 Heat exchanger 22: 30-90-Intake duct 4: 26 (room temperature) -Blower duct 13-20- Dilute solution: 35-40 Concentration: 61% Concentrated solution: 90 Concentration: 64.8% Then, returning to the flowchart of FIG. 3, when the operation button of the remote controller 6 is turned off (F-11), the stop process is performed (F-12). ) After that, it ends. As the stop processing, first, the burner 13 is extinguished, the valves V2 and V4 are opened,
Close valve V1. Then, after a while, the pump 23 is stopped, the valve V3 is closed, and the blower fan 11 and the air cooling fan 1
Stop 7. By doing so, the refrigerant in the refrigerant tank 18 and the absorbing liquid in the regenerator 12 all flow into the dilute solution tank 21. This is for preventing the refrigerant tank 18 and the regenerator 12 from being corroded by the absorbing liquid while the apparatus is stopped, and for diluting the concentrated solution to prevent crystallization.

【0044】尚、上記実施例では、従来例と同様冷媒を
水とし、吸収液をリチウムブロマイドとしたが、本発明
はこれに限るものではなく、他の同様に機能する物質で
もよい。
In the above embodiment, the refrigerant is water and the absorbing liquid is lithium bromide as in the conventional example, but the present invention is not limited to this, and other substances having the same function may be used.

【0045】[0045]

【発明の効果】本発明によれば、吸収式冷凍機を用いた
空調装置において、再生器と希溶液タンクにそれぞれの
溶液温度を検出する検出手段と、これらの検出手段の検
出した温度に基づき再生器での希溶液の必要量を演算す
る演算手段と、この演算値からポンプの能力を制御する
制御手段とを設けたので、再生器における希溶液の必要
量が演算でき、これに基づいてポンプを制御して最適な
量の希溶液が再生器に送り込まれ、円滑にかつ効率よく
空調装置を運転することができる。
According to the present invention, in the air conditioner using the absorption refrigerator, the regenerator and the dilute solution tank detect the temperature of each solution, and based on the temperatures detected by these detectors. Since the calculating means for calculating the required amount of the dilute solution in the regenerator and the control means for controlling the capacity of the pump from the calculated value are provided, the required amount of the dilute solution in the regenerator can be calculated, and based on this, By controlling the pump, the optimum amount of the dilute solution is sent to the regenerator, and the air conditioner can be operated smoothly and efficiently.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空調装置の一実施例の要部のブロ
ック図である。
FIG. 1 is a block diagram of a main part of an embodiment of an air conditioner according to the present invention.

【図2】本発明による空調装置の一実施例の要部のブロ
ック図である。
FIG. 2 is a block diagram of a main part of an embodiment of an air conditioner according to the present invention.

【図3】本発明による空調装置のフローチャートであ
る。
FIG. 3 is a flow chart of an air conditioner according to the present invention.

【図4】従来の空調装置の一例を示すブロック図であ
る。
FIG. 4 is a block diagram showing an example of a conventional air conditioner.

【図5】空調装置の設置状態を示す図である。FIG. 5 is a diagram showing an installation state of an air conditioner.

【符号の説明】[Explanation of symbols]

1 室外機 2 室内機 3 送風ダクト 4 吸気ダクト 5 室 6 リモコン操作器 7 演算手段 8 制御手段 10 蒸発器 11 送風ファン 12 再生器 13 バーナ 16 凝縮器 17 空冷ファン 18 冷媒タンク 20 吸収器 21 希溶液タンク 23 ポンプ 30 コントローラ 31 通信制御器 T1、T2、T3、T4、Tg、Tt センサ V1、V2、V3、V4、V5 弁 1 outdoor unit 2 indoor unit 3 blower duct 4 intake duct 5 chamber 6 remote controller 7 computing means 8 control means 10 evaporator 11 blower fan 12 regenerator 13 burner 16 condenser 17 air-cooling fan 18 refrigerant tank 20 absorber 21 dilute solution Tank 23 Pump 30 Controller 31 Communication Controller T1, T2, T3, T4, Tg, Tt Sensor V1, V2, V3, V4, V5 Valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 希溶液タンクから再生器に冷媒蒸気を吸
収した希溶液を送り込むポンプと、該ポンプにより送り
込まれた希溶液を加熱して冷媒蒸気と濃溶液とを発生す
る再生器と、該再生器で発生した冷媒蒸気を凝縮させる
凝縮器と、凝縮された冷媒を気化させる蒸発器と、冷媒
を吸収する吸収液を蓄え前記蒸発器で気化された冷媒蒸
気を該吸収液に吸収させる吸収器と、前記吸収器と凝縮
器とを共に冷却する空冷ファンを備え、冷房対象室内空
気を導入する通路内に前記蒸発器を配置して該室内空気
を直接冷却した後、この冷却された空気をダクトを通し
て直接室内に送風して冷房を行なう吸収式冷凍機を用い
た空調装置において、前記再生器の溶液温度t1を検出
する第1検出手段と、前記希溶液タンクの溶液温度t2
を検出する第2検出手段と、前記温度t1とt2の値に
基づいて前記再生器への希溶液量を演算する演算手段
と、前記ポンプの能力を該演算手段の演算結果に基づい
て制御する制御手段とを備えたことを特徴とする吸収式
冷凍機を用いた空調装置。
1. A pump for feeding a dilute solution that has absorbed refrigerant vapor from a dilute solution tank to a regenerator, a regenerator for heating the dilute solution fed by the pump to generate a refrigerant vapor and a concentrated solution, A condenser that condenses the refrigerant vapor generated in the regenerator, an evaporator that vaporizes the condensed refrigerant, and an absorption that stores an absorbing liquid that absorbs the refrigerant and that absorbs the refrigerant vapor that is vaporized in the evaporator into the absorbing liquid. And an air cooling fan that cools both the absorber and the condenser, and the evaporator is placed in a passage for introducing the room air to be cooled, and the room air is directly cooled, and then the cooled air is cooled. In an air conditioner using an absorption refrigerating machine that cools air by blowing air directly into a room through a duct, first detecting means for detecting a solution temperature t1 of the regenerator, and a solution temperature t2 of the dilute solution tank.
Detecting means for calculating the amount of dilute solution to the regenerator based on the values of the temperatures t1 and t2, and the capacity of the pump based on the calculation result of the calculating means. An air conditioner using an absorption chiller, comprising: a control means.
JP33931193A 1993-12-03 1993-12-03 Air conditioning device using absorption type refrigerator Pending JPH07158994A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP33931193A JPH07158994A (en) 1993-12-03 1993-12-03 Air conditioning device using absorption type refrigerator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP33931193A JPH07158994A (en) 1993-12-03 1993-12-03 Air conditioning device using absorption type refrigerator

Publications (1)

Publication Number Publication Date
JPH07158994A true JPH07158994A (en) 1995-06-20

Family

ID=18326259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP33931193A Pending JPH07158994A (en) 1993-12-03 1993-12-03 Air conditioning device using absorption type refrigerator

Country Status (1)

Country Link
JP (1) JPH07158994A (en)

Similar Documents

Publication Publication Date Title
JP3399663B2 (en) Air conditioner using absorption refrigerator
JPH07158994A (en) Air conditioning device using absorption type refrigerator
JP3124662B2 (en) Air conditioner using absorption refrigerator
JP3124661B2 (en) Air conditioner using absorption refrigerator
JP3197725B2 (en) Air conditioner using absorption refrigerator
JPH07158992A (en) Air conditioning device using absorption type refrigerator
JP3313876B2 (en) Air conditioner using absorption refrigerator
JP3227036B2 (en) Air conditioner using absorption refrigerator
JP3313481B2 (en) Air conditioner using absorption refrigerator
JP3142997B2 (en) Air conditioner using absorption refrigerator
JPH08145495A (en) Air conditioner using absorption type refrigerator
JP3229464B2 (en) Air conditioner using absorption refrigerator
JP3313880B2 (en) Air conditioner using absorption refrigerator
JP3142998B2 (en) Air conditioner using absorption refrigerator
JP3174674B2 (en) Air conditioner using absorption refrigerator
JP3118124B2 (en) Air conditioner using absorption refrigerator
JP3313486B2 (en) Air conditioner using absorption refrigerator
JPH0798164A (en) Air-conditioner using absorptive freezer
JPH07103603A (en) Air-conditioner utilizing absorptine refrigerator
JPH07120099A (en) Air conditioner using absorption type refrigerator
JP3399664B2 (en) Air conditioner using absorption refrigerator
JPH07133966A (en) Air conditioner using absorption freezer
JP3118127B2 (en) Air conditioner using absorption refrigerator
JPH07158995A (en) Air conditioning device using absorption type refrigerator
JP3231923B2 (en) Air conditioner using absorption refrigerator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20010710