JPH07133966A - Air conditioner using absorption freezer - Google Patents

Air conditioner using absorption freezer

Info

Publication number
JPH07133966A
JPH07133966A JP5303408A JP30340893A JPH07133966A JP H07133966 A JPH07133966 A JP H07133966A JP 5303408 A JP5303408 A JP 5303408A JP 30340893 A JP30340893 A JP 30340893A JP H07133966 A JPH07133966 A JP H07133966A
Authority
JP
Japan
Prior art keywords
refrigerant
evaporator
air
absorber
air conditioner
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP5303408A
Other languages
Japanese (ja)
Inventor
Takashi Tanaka
崇 田中
Hideki Furukawa
秀樹 古川
Kanako Nakayama
香奈子 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokyo Gas Co Ltd
Original Assignee
Tokyo Gas Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokyo Gas Co Ltd filed Critical Tokyo Gas Co Ltd
Priority to JP5303408A priority Critical patent/JPH07133966A/en
Publication of JPH07133966A publication Critical patent/JPH07133966A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To keep a higher operation efficiency by preventing a liquefied refrigerant from flowing into an absorber. CONSTITUTION:A refrigerant reception part 7 is disposed below an evaporator 10, matched with a location where a liquefied refrigerant from the evaporator flows down. The refrigerant reception part is directly connected with a diluted solution tank 21 through a bypass tube 8. A gas/liquid separation part 9 is provided in the course of the bypass tube. Accordingly, even though a refrigerant not vaporized by the evaporator flows down, it is received by the refrigerant reception part and directly flows into the diluted solution tank, so that a liquefied refrigerant is prevented from flowing into an absorber 20 to sharply lower the solution concentration, and hence efficiency is not lowered owing thereto. Further, since the gas/liquid separation part is provided in the course of the bypass tube, any flow of refrigerant vapor, etc., is prevented from being produced between the evaporator and the diluted solution tank.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は一般の住宅や小規模な建
物などを対象とした吸収式冷凍機を用いた空調装置に関
し、特に効率を良好に保つことのできる空調装置に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an air conditioner using an absorption refrigerating machine for general houses and small buildings, and more particularly to an air conditioner capable of maintaining good efficiency.

【0002】[0002]

【従来の技術】吸収式冷凍機を用いた空調装置は、現
在、ビルあるいは大型店舗などのような産業用、業務用
の設備に主として用いられている。
2. Description of the Related Art At present, an air conditioner using an absorption chiller is mainly used for industrial or commercial facilities such as a building or a large store.

【0003】吸収式冷凍機を用いた空調装置の冷房方式
は、再生器で蒸発させた冷媒蒸気を水冷方式の凝縮器で
凝縮させ、この凝縮した冷媒を蒸発器に導いて蒸発させ
て、その際の蒸発潜熱で冷房すべき室内に設けられたフ
ァンコイルユニットと冷凍機との間を循環する冷熱媒
(通常は水)を冷却する。一方、蒸発した冷媒蒸気は水
冷方式の吸収器で濃溶液(吸収液)に吸収させ、再び再
生器に戻すというサイクルで運転される。
In the cooling system of an air conditioner using an absorption refrigerator, the refrigerant vapor evaporated in the regenerator is condensed in a water-cooled condenser, and the condensed refrigerant is guided to the evaporator to be evaporated. The cooling heat medium (usually water) that circulates between the fan coil unit provided in the room to be cooled and the refrigerator is cooled by the latent heat of vaporization at that time. On the other hand, the evaporated refrigerant vapor is operated in a cycle in which a water-cooled absorber absorbs the concentrated solution (absorption liquid) and returns it to the regenerator.

【0004】この種の吸収式冷凍機を用いた空調装置で
は、室内側ファンコイルユニット内に循環させる冷熱媒
の温度を蒸発器において7℃前後まで冷却し、この冷熱
媒を室内のファンコイル内に循環させて室内空気を冷却
して12℃前後で蒸発器に戻すようにしている。吸収液
としてリチウムブロマイド水溶液を使用する場合は、吸
収器内の吸収液の温度を40℃前後に保つことが必要と
なり、この温度を維持するためには冷却塔を屋上などに
設置して水冷回路で冷却する方法が取られている。
In an air conditioner using this type of absorption refrigerator, the temperature of the cold heat medium circulated in the indoor fan coil unit is cooled to around 7 ° C. in the evaporator, and the cold heat medium is circulated in the indoor fan coil. It is circulated to cool the indoor air and return it to the evaporator at around 12 ° C. When using an aqueous lithium bromide solution as the absorbing liquid, it is necessary to maintain the temperature of the absorbing liquid in the absorber at around 40 ° C. To maintain this temperature, a cooling tower is installed on the rooftop or the like, and the water cooling circuit is installed. The method of cooling is adopted.

【0005】ところがこのような水冷方式を採用した従
来の吸収式冷凍機を用いた空調装置には次のような問題
がある。
However, the conventional air conditioner using the absorption type refrigerating machine adopting such a water cooling system has the following problems.

【0006】(1)吸収器を水冷方式で温度管理してい
るために、設備が大型になるとともに配管が必要にな
り、そのために多くの工事費がかかり、一般の住宅や小
規模の建物の冷房用には不向きである。
(1) Since the temperature of the absorber is controlled by a water cooling system, the equipment becomes large and piping is required. Therefore, a lot of construction cost is required, which is a problem for general houses and small buildings. Not suitable for cooling.

【0007】(2)冷房すべき室内のファンコイルユニ
ットと冷凍機とを冷熱媒循環用の配管で結ぶ必要がある
ために、工事費や設備費が高額になる。これは、吸収液
と冷媒にアンモニア水を使用するアンモニア吸収式冷凍
機についても同じである。
(2) Since it is necessary to connect the fan coil unit and the refrigerator in the room to be cooled by the pipe for circulating the heating / cooling medium, the construction cost and equipment cost are high. The same applies to an ammonia absorption refrigerator that uses ammonia water as the absorbing liquid and the refrigerant.

【0008】そこで本発明者らは、冷房運転時、凝縮器
と吸収器とを水冷方式でなく空冷方式で冷却し、凝縮器
から蒸発器への冷媒の送出をポンプを用いることなく両
者間の圧力差で行うと共に、空調対象の室内空気が通る
通路内に蒸発器を位置させて室内空気を蒸発器の外部に
直接触れさせることによって冷却するようにした冷房モ
ードを有する空調装置についてすでに特許出願をしてい
る(特願平5−22351号)。
Therefore, the present inventors cool the condenser and the absorber by an air cooling method instead of the water cooling method during the cooling operation, and the refrigerant is sent from the condenser to the evaporator without using a pump. A patent application has already been filed for an air conditioner having a cooling mode in which the evaporator is located in a passage through which the room air to be air-conditioned passes and the room air is cooled by directly contacting the outside of the evaporator with the pressure difference. (Japanese Patent Application No. 5-22351).

【0009】図3は上記出願で提案された単効用吸収式
冷凍機を用いた空調装置の一変形例の要部を示し、図4
は同空調装置の設置状態を示す。
FIG. 3 shows a main part of a modified example of the air conditioner using the single-effect absorption refrigerator proposed in the above application, and FIG.
Indicates the installation status of the air conditioner.

【0010】空調装置は、図4に示すように、室外機1
と室内機2とから成り、室外機1は図3に示すような構
成で空調しようとする住宅の室5の外に配置され、室内
機2は冷風の吹出し口と室内空気の吸込み口のみを有
し、室5の内部に配置される。室外機1と室内機2は冷
風の送風ダクト3と室内空気の吸気ダクト4とで接続さ
れている。送風ダクト3内あるいは吸気ダクト4内の所
定場所には送風ファン11が設けられている。6は、空
調装置の運転開始又は停止、自動運転の設定または解
除、室内温度の設定、冷風の吹出し風量の設定等を行う
リモコン操作器である。
As shown in FIG. 4, the air conditioner includes an outdoor unit 1
The outdoor unit 1 is arranged outside the room 5 of the house to be air-conditioned with the configuration shown in FIG. 3, and the indoor unit 2 has only the outlet for cold air and the inlet for indoor air. It has and is arranged inside the chamber 5. The outdoor unit 1 and the indoor unit 2 are connected by a blower duct 3 for cold air and an intake duct 4 for indoor air. A blower fan 11 is provided at a predetermined place in the blower duct 3 or the intake duct 4. Reference numeral 6 denotes a remote controller for starting or stopping the operation of the air conditioner, setting or canceling automatic operation, setting the room temperature, setting the amount of cold air blown out, and the like.

【0011】室外機1の内部は図3に示すような構成に
なっており、吸収液としてリチウムブロマイド水溶液が
用いられ、冷媒として水が用いられる。
The inside of the outdoor unit 1 has a structure as shown in FIG. 3, in which an aqueous lithium bromide solution is used as the absorbing liquid and water is used as the refrigerant.

【0012】蒸発器10は、送風ダクト3と吸気ダクト
4との接続位置に設置されており、その内部で減圧作用
により冷媒を蒸発させ、その蒸発潜熱(気化熱)の働き
で内部から冷却を受けるようになっている。
The evaporator 10 is installed at a position where the blower duct 3 and the intake duct 4 are connected to each other. The inside of the evaporator 10 evaporates the refrigerant due to the depressurization action, and the latent heat of vaporization (vaporization heat) acts to cool it from the inside. I am supposed to receive it.

【0013】再生器12は、冷媒を吸収して濃度の低く
なった吸収液(希溶液)をバーナ13により加熱するこ
とによって冷媒蒸気を発生させるとともに吸収液の濃度
を濃縮する機能を有する。バーナ13へは燃料供給管1
4から燃料ガスが供給され、その燃焼度合いは燃料供給
制御弁15により調節される。
The regenerator 12 has a function of generating a refrigerant vapor by heating the absorbing solution (dilute solution) having a low concentration by absorbing the refrigerant by the burner 13 and concentrating the concentration of the absorbing solution. Fuel supply pipe 1 to burner 13
4, fuel gas is supplied, and the degree of combustion is adjusted by the fuel supply control valve 15.

【0014】凝縮器16は、再生器12から送られてく
る冷媒蒸気を空冷ファン17により冷却して液化し、こ
の液化冷媒を蒸発器10に送出する機能を有している。
The condenser 16 has a function of cooling the refrigerant vapor sent from the regenerator 12 by the air cooling fan 17 and liquefying it, and sending this liquefied refrigerant to the evaporator 10.

【0015】符号18は、空調装置内を循環している冷
媒の総量を調節するとともに、再生器12に供給される
希溶液濃度を調節するために冷媒の一部を貯蔵するため
の冷媒タンクであり、弁V5を介して凝縮器16に接続
されている。
Reference numeral 18 denotes a refrigerant tank for controlling a total amount of the refrigerant circulating in the air conditioner and a part of the refrigerant for controlling the concentration of the dilute solution supplied to the regenerator 12. Yes, and is connected to the condenser 16 via valve V5.

【0016】吸収器20は吸収液を蓄えており、蒸発器
10で蒸発した冷媒をその吸収液に吸収させる機能を有
しており、凝縮器16と同じ空冷ファン17により空冷
される。冷媒を吸収して濃度の低くなった吸収液は一旦
希溶液タンク21に蓄えられる。
The absorber 20 stores the absorbing liquid, has a function of absorbing the refrigerant evaporated in the evaporator 10 into the absorbing liquid, and is cooled by the same air cooling fan 17 as the condenser 16. The absorbing liquid which has absorbed the refrigerant and has a low concentration is temporarily stored in the dilute solution tank 21.

【0017】符号22は、希溶液タンク21から再生器
12に向かう濃度の低い低温の吸収液と再生器12から
吸収器20に向かう濃度の高い高温の吸収液との間で熱
交換を行なう熱交換器、23は、冷媒を吸収して濃度の
低くなった吸収液を希溶液タンク21から再生器12に
送出するポンプ、24は、蒸発器10の上流側と凝縮器
16の下流側との間に設けられたキャピラリ又はそれに
相当する圧損手段である。
Reference numeral 22 denotes heat for exchanging heat between the low-concentration low-concentration absorption liquid flowing from the dilute solution tank 21 to the regenerator 12 and the high-concentration high-temperature absorption liquid flowing from the regenerator 12 to the absorber 20. An exchanger, 23 is a pump that absorbs the refrigerant and sends out an absorbent having a low concentration from the dilute solution tank 21 to the regenerator 12, and 24 is one between the upstream side of the evaporator 10 and the downstream side of the condenser 16. A capillary provided between them or a pressure loss means corresponding thereto.

【0018】V1、V2、V3、V4、V5はいずれも
電磁弁のような調整弁であり、特にV4は逆止弁機能を
備えた調整弁である。
All of V1, V2, V3, V4 and V5 are regulating valves such as solenoid valves, and in particular V4 is a regulating valve having a check valve function.

【0019】上記の空調装置は、吸収液を希溶液タンク
21から再生器12に送出するのにポンプ23を用いて
いる点を除き、基本的には各容器の温度を制御すること
によって各容器間に圧力差を作り、その圧力差で冷媒及
び吸収液が送出され、循環するようにしている。
The above air conditioner basically controls each container by controlling the temperature of each container except that the pump 23 is used to deliver the absorbing liquid from the dilute solution tank 21 to the regenerator 12. A pressure difference is created between them, and the refrigerant and the absorbing liquid are delivered and circulated by the pressure difference.

【0020】[0020]

【発明が解決しようとする課題】ところでこのような空
冷方式の空調装置においては、設定された希望条件に室
内環境を保つため、送風ダクトから送出される風量が自
動的に変更されたり、あるいは吹出す送風が強い場合等
に使用者が任意に風量を下げる場合がある。このように
して送風風量が変更されると、この送風によって奪われ
る蒸発器の熱量が減少し、蒸発器に流入する液化冷媒の
うちの一部が蒸発されず液体のまま吸収器に流入する現
象が発生する。すると、吸収器内の溶液濃度が大きく低
下し、吸収能力が低下してしまい最適な状態での運転が
できなくなり、効率が悪化するという問題があった。
By the way, in such an air-cooling type air conditioner, in order to maintain the indoor environment in a set desired condition, the amount of air sent from the air duct is automatically changed or blown. When the blowing air is strong, the user may lower the air volume arbitrarily. When the amount of air blown is changed in this way, the amount of heat of the evaporator taken away by this air blow decreases, and part of the liquefied refrigerant flowing into the evaporator does not evaporate and flows into the absorber as a liquid. Occurs. Then, the concentration of the solution in the absorber is greatly reduced, the absorption capacity is reduced, the operation in the optimum state cannot be performed, and the efficiency is deteriorated.

【0021】本発明は上記の点に鑑みてなされたもの
で、冷媒を気化させる蒸発器と、冷媒を吸収する吸収液
を蓄え前記蒸発器で気化された冷媒蒸気を該吸収液に吸
収させる吸収器とを備え、冷房対象室内空気を導入する
通路内に前記蒸発器を配置して該室内空気を直接冷却し
た後、この冷却された空気をダクトを通して直接室内に
送風して冷房を行なう吸収式冷凍機を用いた空調装置に
おいて、室内への風量が低下された場合等、蒸発器にお
ける必要冷媒量が減少した場合でも、蒸発器において気
化しなかった液化冷媒を吸収器に流入させず、高い効率
で常時運転できるようにすることを目的とする。
The present invention has been made in view of the above points, and an evaporator for vaporizing a refrigerant, an absorbing liquid for absorbing the refrigerant, and an absorbing liquid for absorbing the refrigerant vapor vaporized by the evaporator into the absorbing liquid. An absorption type in which the evaporator is arranged in a passage for introducing indoor air to be cooled to directly cool the indoor air, and then the cooled air is blown directly into the room to cool the room. In an air conditioner using a refrigerator, even if the amount of refrigerant required in the evaporator is reduced, such as when the amount of airflow into the room is reduced, the liquefied refrigerant that was not vaporized in the evaporator does not flow into the absorber and is high. The purpose is to be able to always operate efficiently.

【0022】[0022]

【課題を解決するための手段】本発明は上記の目的を達
成するために、冷媒を気化させる蒸発器と、冷媒を吸収
する吸収液を蓄え前記蒸発器で気化された冷媒蒸気を該
吸収液に吸収させる吸収器とを備え、冷房対象室内空気
を導入する通路内に前記蒸発器を配置して該室内空気を
直接冷却した後、この冷却された空気をダクトを通して
直接室内に送風して冷房を行なう吸収式冷凍機を用いた
空調装置において、前記蒸発器内で気化せず液体の状態
で該蒸発器から流下する液化冷媒を該蒸発器の下部にお
いて受ける冷媒受部と、前記吸収器に接続され希溶液を
蓄える希溶液タンクと前記冷媒受部とを該吸収器を介さ
ず直接接続するバイパス管と、該バイパス管に設けた気
液分離部とを備えて吸収式冷凍機を用いた空調装置を構
成したのである。
In order to achieve the above object, the present invention provides an evaporator for vaporizing a refrigerant, an absorbent for absorbing the refrigerant, and a refrigerant vapor vaporized in the evaporator for absorbing the vapor. And an absorber for absorbing the indoor air, the evaporator is arranged in a passage for introducing the indoor air to be cooled, and the indoor air is directly cooled, and then the cooled air is blown directly into the room for cooling. In an air conditioner using an absorption refrigerating machine that performs the above, in the evaporator, a refrigerant receiving portion that receives a liquefied refrigerant flowing down from the evaporator in a liquid state without being vaporized in the evaporator, and the absorber. An absorption refrigerating machine was provided with a bypass pipe that directly connects the dilute solution tank that is connected and stores the dilute solution and the refrigerant receiving unit without the absorber, and a gas-liquid separating unit provided in the bypass pipe. It constituted the air conditioner.

【0023】[0023]

【作用】蒸発器に必要な冷媒量より多くの冷媒が蒸発器
に送られて気化しない冷媒が発生した場合には、この液
化冷媒は蒸発器をそのまま通過し流下する。流下した液
化冷媒は吸収器に流入する前に冷媒受部に受け止めら
れ、バイパス管を通って希溶液タンクに直接送られる。
したがって、液化冷媒は吸収器には流入せず、吸収器の
濃度が不必要に低下することがない。しかも、バイパス
管の途中には、気液分離部が設けられているので、蒸発
器と希溶液タンクとの間で気体が移動することはない。
したがつて、蒸発器に過剰な冷媒が供給されても未蒸発
のままの液化冷媒が吸収器に流入することはなく、空調
装置の効率が低下することがなく高い効率を維持でき
る。
When more refrigerant than the amount of refrigerant required for the evaporator is sent to the evaporator and a non-vaporized refrigerant is generated, the liquefied refrigerant passes through the evaporator as it is and flows down. The liquefied refrigerant that has flowed down is received by the refrigerant receiving portion before flowing into the absorber, and is directly sent to the dilute solution tank through the bypass pipe.
Therefore, the liquefied refrigerant does not flow into the absorber, and the concentration of the absorber does not unnecessarily decrease. Moreover, since the gas-liquid separator is provided in the middle of the bypass pipe, the gas does not move between the evaporator and the dilute solution tank.
Therefore, even if an excessive amount of refrigerant is supplied to the evaporator, the liquefied refrigerant that has not been evaporated still does not flow into the absorber, and the efficiency of the air conditioner does not decrease, and high efficiency can be maintained.

【0024】[0024]

【実施例】以下本発明を図面に基づいて説明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS The present invention will be described below with reference to the drawings.

【0025】図1に、本発明にかかる単効用吸収式冷凍
機を用いた空調装置の一実施例を示す。
FIG. 1 shows an embodiment of an air conditioner using a single-effect absorption refrigerator according to the present invention.

【0026】本発明による空調装置の機構的構成の概略
は図3に示したとほぼ同じであるので、同一部分の説明
は省略し、異なる部分及び空調装置の制御に必要な電気
回路等について説明する。
Since the mechanical structure of the air conditioner according to the present invention is substantially the same as that shown in FIG. 3, the description of the same parts will be omitted, and different parts and electric circuits necessary for controlling the air conditioner will be described. .

【0027】図1において、T1は蒸発器10の上流側
に設けられた室内温度検出用のセンサ、T2は送風温度
検出用のセンサ、T3は再生器の液面レベル検出用のセ
ンサ、T4は凝縮器温度検出用のセンサである。
In FIG. 1, T1 is a sensor for detecting the indoor temperature provided on the upstream side of the evaporator 10, T2 is a sensor for detecting the air temperature, T3 is a sensor for detecting the liquid level of the regenerator, and T4 is T4. This is a sensor for detecting the condenser temperature.

【0028】又、CPU、メモリ、駆動回路からなるコ
ントローラ30と、リモコン操作器6(図4参照)から
の設定信号を室内機2の受信部2aで受け、受信部2a
からの信号を受ける通信制御器31とが設けられてお
り、コントローラ30はセンサT1、T2等からの信号
と、通信制御器31からの信号とを受け、送風ファン1
1、空冷ファン17、ポンプ23の動作を制御するよう
になっている。
Further, the receiving unit 2a of the indoor unit 2 receives the setting signal from the controller 30 including the CPU, the memory and the driving circuit and the remote controller 6 (see FIG. 4), and the receiving unit 2a.
A communication controller 31 for receiving signals from the communication controller 31 is provided, and the controller 30 receives signals from the sensors T1, T2 and the like and signals from the communication controller 31 and receives the signals from the blower fan 1
1, the operation of the air cooling fan 17 and the pump 23 is controlled.

【0029】また、吸収器20には、蒸発器10との接
続部に冷媒受部7が設置されている。冷媒受部7は、吸
収器20と蒸発器10とを連結する連結管に直接接続さ
れてはおらず、その連結管の下部に間隔を有し、しか
も、蒸発器10から流下してくる液化冷媒の落下点に合
わせて設置してある。この冷媒受部7には、バイパス管
8が接続してあり、このバイパス管8により冷媒受部7
は希溶液タンク21に直接接続している。バイパス管8
の途中には気液分離部9が設けてあり、冷媒受部7の方
から希溶液タンク21の側へは溶媒を通過させるが、こ
れらの間での気体の流通を防止している。
Further, the absorber 20 is provided with a refrigerant receiving portion 7 at a connecting portion with the evaporator 10. The refrigerant receiving portion 7 is not directly connected to the connecting pipe that connects the absorber 20 and the evaporator 10, but has a space below the connecting pipe, and the liquefied refrigerant flowing down from the evaporator 10 is also present. It is installed according to the drop point. A bypass pipe 8 is connected to the refrigerant receiving portion 7, and the refrigerant receiving portion 7 is connected by the bypass pipe 8.
Is directly connected to the dilute solution tank 21. Bypass pipe 8
A gas-liquid separation section 9 is provided in the middle of the above, and the solvent is passed from the refrigerant receiving section 7 to the dilute solution tank 21 side, but the flow of gas between these is prevented.

【0030】次に図2を参照して冷房サイクルの動作を
説明する。
Next, the operation of the cooling cycle will be described with reference to FIG.

【0031】運転開始前は、弁V1、V3,V5は閉じ
ており、弁V2、V4は開いている。再生器12は空の
状態になっており、吸収液と冷媒は混合された希溶液の
状態で希溶液タンク21に蓄えられている。
Before the start of operation, the valves V1, V3 and V5 are closed and the valves V2 and V4 are open. The regenerator 12 is in an empty state, and the absorbing liquid and the refrigerant are stored in the diluted solution tank 21 in a mixed diluted solution state.

【0032】リモコン操作器6の運転ボタンをオンし、
希望温度、もしくは希望風量を設定すると、弁V1、V
3、V5が開くとともに弁V2、V4が閉じ(F−
1)、モータM2 が駆動されてポンプ23により希溶液
タンク21から希溶液が再生器12に送出される(F−
2)。コントローラ30のCPUは、センサT3からの
信号を見て再生器12の液面が規定のレベルに達してい
るか否かを判断し(F−3)、液面が規定のレベルに達
しているときは、燃料供給制御弁15を開いて燃料供給
管14から燃料ガスを供給し、バーナ13に点火する
(F−4)。
Turn on the operation button of the remote controller 6,
When the desired temperature or desired air volume is set, valves V1 and V
3, V5 open and valves V2, V4 close (F-
1), the motor M 2 is driven and the dilute solution is sent from the dilute solution tank 21 to the regenerator 12 by the pump 23 (F-
2). The CPU of the controller 30 judges whether the liquid level of the regenerator 12 has reached the specified level by looking at the signal from the sensor T3 (F-3), and when the liquid level has reached the specified level. Opens the fuel supply control valve 15, supplies the fuel gas from the fuel supply pipe 14, and ignites the burner 13 (F-4).

【0033】再生器12が加熱されると希溶液から冷媒
蒸気が発生し、冷媒蒸気が凝縮器16に送られるととも
に冷媒を分離させた濃溶液(吸収液)は弁V1が開かれ
吸収器20に送られる。冷媒蒸気の流入によって凝縮器
16は温度が次第に上昇するので、コントローラ30の
CPUは、センサT4からの信号により凝縮器16の温
度が所定値に達したか否かを判断し(F−5)、所定値
に達したときは空冷ファン17を回転する(F−6)。
その結果、凝縮器16では再生器12から送られてくる
冷媒蒸気が液化し、液化した冷媒は、弁V5を介して冷
媒タンク18に流入する。次に冷媒タンク18の冷媒量
が所定値に達したか否かを判断し(F−7)、所定値に
達したときには弁V5を閉じ(F−8)、送風ファン1
1を回転させる(F−9)。
When the regenerator 12 is heated, refrigerant vapor is generated from the dilute solution, the refrigerant vapor is sent to the condenser 16, and the concentrated solution (absorption liquid) from which the refrigerant has been separated is opened by the valve V1 and the absorber 20. Sent to. Since the temperature of the condenser 16 gradually rises due to the inflow of the refrigerant vapor, the CPU of the controller 30 determines from the signal from the sensor T4 whether or not the temperature of the condenser 16 has reached a predetermined value (F-5). When the predetermined value is reached, the air cooling fan 17 is rotated (F-6).
As a result, in the condenser 16, the refrigerant vapor sent from the regenerator 12 is liquefied, and the liquefied refrigerant flows into the refrigerant tank 18 via the valve V5. Next, it is determined whether or not the amount of refrigerant in the refrigerant tank 18 reaches a predetermined value (F-7), and when it reaches the predetermined value, the valve V5 is closed (F-8) and the blower fan 1
1 is rotated (F-9).

【0034】このとき、凝縮器16からの冷媒はキャピ
ラリ24を通って蒸発器10に流れ込み、冷媒が蒸発器
10の内部で蒸発(気化)し、気化熱による冷却作用が
起こる。その結果、送風ファン11により吸気ダクト4
を通って室内から送られてくる空気が蒸発器10の外表
面に直接接触することによって冷却される。冷却された
空気は送風ダクト3を通って室内機2に送られ、室5内
に冷風として吹き出され、室5が冷房される(F−1
0)。
At this time, the refrigerant from the condenser 16 flows into the evaporator 10 through the capillary 24, the refrigerant is evaporated (vaporized) inside the evaporator 10, and a cooling action by the heat of vaporization occurs. As a result, the blower fan 11 causes the intake duct 4
The air sent from the inside through the chamber is cooled by directly contacting the outer surface of the evaporator 10. The cooled air is sent to the indoor unit 2 through the air duct 3 and blown into the room 5 as cold air to cool the room 5 (F-1).
0).

【0035】蒸発器10で蒸発して蒸気となった冷媒は
吸収器20に流れ込み、そこで吸収液に吸収される。冷
媒を吸収して濃度が低下した吸収液は一旦希溶液タンク
21に入った後ポンプ23により弁V3を通って、熱交
換器22で再生器12から送り出される濃度の高い高温
の吸収液と熱交換され、再生器12に送り込まれる。こ
れが冷房動作の定常モードである。この間、必要に応じ
て弁V5は開、閉を繰り返す。
The refrigerant evaporated in the evaporator 10 to become vapor flows into the absorber 20 where it is absorbed by the absorbing liquid. The absorption liquid, which has absorbed the refrigerant and has a reduced concentration, once enters the dilute solution tank 21, then passes through the valve V3 by the pump 23, and is transferred from the regenerator 12 by the heat exchanger 22 to the high-concentration high-temperature absorption liquid and heat. It is exchanged and sent to the regenerator 12. This is the steady mode of cooling operation. During this time, the valve V5 is repeatedly opened and closed as needed.

【0036】ここで、送風ファン11の送風量が低下し
た場合等、蒸発器10への冷媒供給量が過剰になったと
きについて説明する。
Here, the case where the amount of refrigerant supplied to the evaporator 10 becomes excessive, for example, when the amount of air blown by the blower fan 11 decreases, will be described.

【0037】蒸発器10への冷媒の供給量が過剰になっ
た場合には、蒸発器10に流入した冷媒の全てが蒸発せ
ず、一部が液体のまま吸収器20の方へ流下する。流下
してきた液化冷媒は、冷媒受部7上に落下し、バイパス
管8を通って希溶液タンク21に送られる。したがっ
て、気化されなかった液化冷媒がそのまま吸収器20に
流入することはなく、液化冷媒によって吸収液の濃度が
希釈されない。したがつて、高い効率を維持した状態で
冷房運転を行なうことができる。
When the supply amount of the refrigerant to the evaporator 10 becomes excessive, all of the refrigerant flowing into the evaporator 10 does not evaporate, and a part of the refrigerant flows as a liquid to the absorber 20. The liquefied refrigerant that has flowed down falls on the refrigerant receiver 7 and is sent to the dilute solution tank 21 through the bypass pipe 8. Therefore, the liquefied refrigerant that has not been vaporized does not flow into the absorber 20 as it is, and the concentration of the absorbing liquid is not diluted by the liquefied refrigerant. Therefore, the cooling operation can be performed while maintaining high efficiency.

【0038】更に、バイパス管8には、液化冷媒のよう
な液体は通すが気体の流通を遮る気液分離部9が設置さ
れているので、蒸発器10の冷媒蒸気が希溶液タンク2
1に流入せず、また蒸発器10の圧力も所定の値に保持
できる。
Further, the bypass pipe 8 is provided with a gas-liquid separating portion 9 which allows a liquid such as a liquefied refrigerant to pass through but blocks the flow of gas, so that the refrigerant vapor of the evaporator 10 is diluted with the dilute solution tank 2.
1, and the pressure of the evaporator 10 can be maintained at a predetermined value.

【0039】次に、冷房運転中における系の各部におけ
る容器および吸収液、冷媒の温度および圧力を例示す
る。
Next, the temperature and pressure of the container, the absorbing liquid, and the refrigerant in each part of the system during the cooling operation will be exemplified.

【0040】 温 度(℃) 圧 力(Torr) 蒸発器10: 10〜20 10〜20 再生器12: 60〜90 90〜110 凝縮器16: 50〜80 90〜110 吸収器20: 45〜50 11 冷媒タンク18: 30〜50 40〜50 希溶液タンク21: 40〜60 11 熱交換器22: 30〜90 − 吸気ダクト4: 26(室温) − 送風ダクト 13〜20 − 希溶液: 35〜40 濃度:61% 濃溶液: 90 濃度:64.8% そして、図2のフローチャートに戻り、リモコン操作器
6の運転ボタンがオフされると(F−11)、停止処理
を行なった(F−12)後終了する。停止処理として
は、まず、バーナ13を消火し、弁V2、V4を開き、
弁V1を閉じる。次にしばらくしてからポンプ23を停
止し、弁V3を閉じ、送風ファン11及び空冷ファン1
7を停止する。このようにすることにより、冷媒タンク
18内の冷媒および再生器12内の吸収液が希溶液タン
ク21にすべて流れ込む。これは、装置が停止している
間に吸収液により冷媒タンク18や再生器12が腐食す
るのを防止し、また濃溶液を希釈して晶析を防止するた
めである。
Temperature (° C.) Pressure (Torr) Evaporator 10:10 to 20 10 to 20 Regenerator 12: 60 to 90 90 to 110 Condenser 16: 50 to 80 90 to 110 Absorber 20: 45 to 50 11 Refrigerant tank 18: 30-50 50 40-50 Dilute solution tank 21: 40-60 11 Heat exchanger 22: 30-90-Intake duct 4: 26 (room temperature) -Blower duct 13-20- Dilute solution: 35-40 Concentration: 61% Concentrated solution: 90 Concentration: 64.8% Then, returning to the flowchart of FIG. 2, when the operation button of the remote controller 6 is turned off (F-11), the stop process is performed (F-12). ) After that, it ends. As the stop processing, first, the burner 13 is extinguished, the valves V2 and V4 are opened,
Close valve V1. Then, after a while, the pump 23 is stopped, the valve V3 is closed, and the blower fan 11 and the air cooling fan 1
Stop 7. By doing so, the refrigerant in the refrigerant tank 18 and the absorbing liquid in the regenerator 12 all flow into the dilute solution tank 21. This is for preventing the refrigerant tank 18 and the regenerator 12 from being corroded by the absorbing liquid while the apparatus is stopped, and for diluting the concentrated solution to prevent crystallization.

【0041】以上述べたように、本実施例の空調装置に
よれば、送風ファン11の風量が低下した場合等、蒸発
器10における必要冷媒量が減少し冷媒の一部が蒸発さ
れないときであっても、液体のままの冷媒が吸収器20
に流入することはなく、吸収器20の濃度を低下させる
ことはなく、高い効率での冷房運転を保持できる。
As described above, according to the air conditioner of this embodiment, the required amount of refrigerant in the evaporator 10 is reduced and a part of the refrigerant is not evaporated, such as when the air volume of the blower fan 11 is reduced. However, the refrigerant that is still liquid is absorbed in the absorber 20.
Does not flow into the air conditioner, the concentration of the absorber 20 is not reduced, and the cooling operation with high efficiency can be maintained.

【0042】尚、上記実施例では、従来例と同様冷媒を
水とし、吸収液をリチウムブロマイドとしたが、本発明
はこれに限るものではなく、他の同様に機能する物質で
もよい。
In the above embodiment, the refrigerant is water and the absorbing liquid is lithium bromide as in the conventional example, but the present invention is not limited to this, and other substances having the same function may be used.

【0043】[0043]

【発明の効果】本発明によれば、吸収式冷凍機を用いた
空調装置において、送風量が低下した場合等、蒸発器で
の必要冷媒量が低下して、蒸発器内に流入した冷媒の全
てが蒸発されない場合であっても、蒸発されなかった液
化冷媒は冷媒受部によって受けられ、バイパス管を通し
て直接希溶液タンクに送り込まれるので、蒸発されない
液化冷媒が吸収器に流入せず、吸収液の濃度が液化冷媒
によって大きく希釈されることがない。このため、吸収
液の濃度を高く保ち、常に高い効率で運転をすることが
できる。又、バイパス管の途中に気液分離部を設けたの
で、液体の冷媒は蒸発器から希溶液タンクに流入する
が、気体の冷媒を通過させないので、蒸発器と希溶液タ
ンクとの間で冷媒蒸気が直接流入出することはない。
According to the present invention, in an air conditioner using an absorption refrigerator, the amount of refrigerant required in the evaporator is reduced, such as when the amount of blown air is reduced, and the amount of refrigerant flowing into the evaporator is reduced. Even if not all are evaporated, the liquefied refrigerant that has not been evaporated is received by the refrigerant receiving part and sent directly to the dilute solution tank through the bypass pipe, so the liquefied refrigerant that is not evaporated does not flow into the absorber, The concentration of is not greatly diluted by the liquefied refrigerant. Therefore, the concentration of the absorbing liquid can be kept high and the operation can always be performed with high efficiency. Further, since the gas-liquid separator is provided in the middle of the bypass pipe, the liquid refrigerant flows from the evaporator into the dilute solution tank, but does not pass the gas refrigerant, so the refrigerant between the evaporator and the dilute solution tank is not passed. There is no direct inflow or outflow of steam.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明による空調装置の一実施例の要部のブロ
ック図である。
FIG. 1 is a block diagram of a main part of an embodiment of an air conditioner according to the present invention.

【図2】本発明による空調装置のフローチャートであ
る。
FIG. 2 is a flow chart of an air conditioner according to the present invention.

【図3】従来の空調装置の一例を示すブロック図であ
る。
FIG. 3 is a block diagram showing an example of a conventional air conditioner.

【図4】空調装置の設置状態を示す図である。FIG. 4 is a diagram showing an installation state of an air conditioner.

【符号の説明】[Explanation of symbols]

1 室外機 2 室内機 3 送風ダクト 4 吸気ダクト 5 室 6 リモコン操作器 7 冷媒受部 8 バイパス管 9 気液分離部 10 蒸発器 11 送風ファン 12 再生器 13 バーナ 16 凝縮器 17 空冷ファン 18 冷媒タンク 20 吸収器 21 希溶液タンク 30 コントローラ 31 通信制御器 35 制御手段 36 記憶手段 T1、T2、T3、T4 センサ V1、V2、V3、V4、V5 弁 1 Outdoor unit 2 Indoor unit 3 Blower duct 4 Intake duct 5 Room 6 Remote controller 7 Refrigerator receiver 8 Bypass pipe 9 Gas-liquid separator 10 Evaporator 11 Blower fan 12 Regenerator 13 Burner 16 Condenser 17 Air-cooling fan 18 Refrigerant tank 20 Absorber 21 Dilute solution tank 30 Controller 31 Communication controller 35 Control means 36 Storage means T1, T2, T3, T4 sensor V1, V2, V3, V4, V5 valve

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 冷媒を気化させる蒸発器と、冷媒を吸収
する吸収液を蓄え前記蒸発器で気化された冷媒蒸気を該
吸収液に吸収させる吸収器とを備え、冷房対象室内空気
を導入する通路内に前記蒸発器を配置して該室内空気を
直接冷却した後、この冷却された空気をダクトを通して
直接室内に送風して冷房を行なう吸収式冷凍機を用いた
空調装置において、前記蒸発器内で気化せず液体の状態
で該蒸発器から流下する液化冷媒を該蒸発器の下部にお
いて受ける冷媒受部と、前記吸収器に接続され希溶液を
蓄える希溶液タンクと前記冷媒受部とを該吸収器を介さ
ず直接接続するバイパス管と、該バイパス管に設けた気
液分離部とを備えたことを特徴とする吸収式冷凍機を用
いた空調装置。
1. An evaporator for vaporizing a refrigerant, and an absorber for storing an absorbing liquid for absorbing the refrigerant and absorbing the refrigerant vapor vaporized by the evaporator into the absorbing liquid, wherein the air to be cooled is introduced. An air conditioner using an absorption refrigerating machine in which the evaporator is arranged in a passage to directly cool the indoor air, and then the cooled air is blown directly into the room to cool the room. A refrigerant receiving part for receiving a liquefied refrigerant flowing down from the evaporator in a liquid state without being vaporized therein, a dilute solution tank connected to the absorber for storing a dilute solution, and the refrigerant receiving part. An air conditioner using an absorption refrigerating machine, comprising: a bypass pipe that is directly connected without using the absorber; and a gas-liquid separator provided in the bypass pipe.
JP5303408A 1993-11-09 1993-11-09 Air conditioner using absorption freezer Pending JPH07133966A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5303408A JPH07133966A (en) 1993-11-09 1993-11-09 Air conditioner using absorption freezer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5303408A JPH07133966A (en) 1993-11-09 1993-11-09 Air conditioner using absorption freezer

Publications (1)

Publication Number Publication Date
JPH07133966A true JPH07133966A (en) 1995-05-23

Family

ID=17920670

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5303408A Pending JPH07133966A (en) 1993-11-09 1993-11-09 Air conditioner using absorption freezer

Country Status (1)

Country Link
JP (1) JPH07133966A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008393A1 (en) * 2011-07-12 2013-01-17 アイシン精機株式会社 Vehicle-mounted absorption heat pump apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2013008393A1 (en) * 2011-07-12 2013-01-17 アイシン精機株式会社 Vehicle-mounted absorption heat pump apparatus
US9689592B2 (en) 2011-07-12 2017-06-27 Aisin Seiki Kabushiki Kaisha In-vehicle absorption heat pump device

Similar Documents

Publication Publication Date Title
JPH07133966A (en) Air conditioner using absorption freezer
JP3124665B2 (en) Air conditioner using absorption refrigerator
JP3124662B2 (en) Air conditioner using absorption refrigerator
JP3399663B2 (en) Air conditioner using absorption refrigerator
JP3118127B2 (en) Air conditioner using absorption refrigerator
JP3142997B2 (en) Air conditioner using absorption refrigerator
JP3313876B2 (en) Air conditioner using absorption refrigerator
JP3197725B2 (en) Air conditioner using absorption refrigerator
JPH07146024A (en) Air-conditioner utilizing absorption type refrigerator
JPH0798164A (en) Air-conditioner using absorptive freezer
JP3313481B2 (en) Air conditioner using absorption refrigerator
JP3124661B2 (en) Air conditioner using absorption refrigerator
JP3313486B2 (en) Air conditioner using absorption refrigerator
JP3118124B2 (en) Air conditioner using absorption refrigerator
JP3142998B2 (en) Air conditioner using absorption refrigerator
JP3229464B2 (en) Air conditioner using absorption refrigerator
JPH07103603A (en) Air-conditioner utilizing absorptine refrigerator
JP3086572B2 (en) Air conditioner using absorption refrigerator
JP3313880B2 (en) Air conditioner using absorption refrigerator
JPH08145495A (en) Air conditioner using absorption type refrigerator
JP3118128B2 (en) Air conditioner using absorption refrigerator
JP3174674B2 (en) Air conditioner using absorption refrigerator
JPH07158995A (en) Air conditioning device using absorption type refrigerator
JPH07133967A (en) Air conditioner using absorption freezer
JPH07158994A (en) Air conditioning device using absorption type refrigerator

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20021008