JPH0715883B2 - Photovoltaic device manufacturing method and manufacturing apparatus - Google Patents

Photovoltaic device manufacturing method and manufacturing apparatus

Info

Publication number
JPH0715883B2
JPH0715883B2 JP59089876A JP8987684A JPH0715883B2 JP H0715883 B2 JPH0715883 B2 JP H0715883B2 JP 59089876 A JP59089876 A JP 59089876A JP 8987684 A JP8987684 A JP 8987684A JP H0715883 B2 JPH0715883 B2 JP H0715883B2
Authority
JP
Japan
Prior art keywords
gas
chamber
gas chamber
substrate
wall surface
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP59089876A
Other languages
Japanese (ja)
Other versions
JPS60233817A (en
Inventor
正彦 野澤
隆浩 青山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daihen Corp
Original Assignee
Daihen Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daihen Corp filed Critical Daihen Corp
Priority to JP59089876A priority Critical patent/JPH0715883B2/en
Publication of JPS60233817A publication Critical patent/JPS60233817A/en
Publication of JPH0715883B2 publication Critical patent/JPH0715883B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L31/00Semiconductor devices sensitive to infrared radiation, light, electromagnetic radiation of shorter wavelength or corpuscular radiation and specially adapted either for the conversion of the energy of such radiation into electrical energy or for the control of electrical energy by such radiation; Processes or apparatus specially adapted for the manufacture or treatment thereof or of parts thereof; Details thereof
    • H01L31/18Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof
    • H01L31/20Processes or apparatus specially adapted for the manufacture or treatment of these devices or of parts thereof such devices or parts thereof comprising amorphous semiconductor materials
    • H01L31/206Particular processes or apparatus for continuous treatment of the devices, e.g. roll-to roll processes, multi-chamber deposition
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E10/00Energy generation through renewable energy sources
    • Y02E10/50Photovoltaic [PV] energy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Description

【発明の詳細な説明】 本発明はプラズマCVD法により多室分離炉を用いて製造
する光起電力素子の製造方法及び製造装置に関し、特に
光起電力素子の光電変換効率を大幅に高め得る光起電力
素子の製造方法及び製造装置に関するものである。
Description: TECHNICAL FIELD The present invention relates to a method and an apparatus for manufacturing a photovoltaic device manufactured by a plasma CVD method using a multi-chamber separation furnace, and more particularly to an optical device capable of significantly increasing the photoelectric conversion efficiency of the photovoltaic device. The present invention relates to a method and an apparatus for manufacturing an electromotive force element.

プラズマCVD法により、例えば3室分離炉を使用して光
起電力素子を製造する場合には、シヤツタによつて隔絶
されて連接した3つの金属製ガス室に基板を順次収容
し、基板を収容したガス室には所定の半導体薄膜を生成
させるための極めて純度の高い薄膜生成用ガス(以下生
成用ガスという)を送給して、対向した一対の電極(以
下、放電電極という。)で生成用ガスを分解させて基板
表面に所定の第1層目の薄膜を生成させる。なお、金属
製ガス室は接地されている。その後ガス室内の生成用ガ
スを排出させた後、基板を移動させて隣接のガス室に収
容し、このガス室においても前記同様に前記のガスとは
成分の異なる生成用ガスを送給してグロー放電させるこ
とによつて基板の第1層目の薄膜表面に第2層目の薄膜
を生成させる。続いて、このガス室内の生成用ガスを排
出させた後、基板を更に隣接のガス室に移動させて収容
し、前記同様に前記ガスとは成分の異なる所定の生成用
ガスを送給してグロー放電させることによつて基板の第
2層目の薄膜表面に第3層目の薄膜を生成させる。つま
り、分離炉にあつては、夫々のガス室に純度の高い成分
の異なる生成用ガスが単独で送給されるため、成分の異
なる生成用ガス同志の干渉が避けられ、各ガス室内で生
成される薄膜の質は生成用ガスの純度低下による悪影響
はない。
When a photovoltaic device is manufactured by the plasma CVD method using, for example, a three-chamber separation furnace, the substrates are sequentially accommodated in three metal gas chambers that are isolated and connected by a shutter, and the substrates are accommodated. An extremely high-purity thin-film forming gas (hereinafter, referred to as a generating gas) for generating a predetermined semiconductor thin film is supplied to the gas chamber, and is generated by a pair of electrodes (hereinafter referred to as a discharge electrode) facing each other. The use gas is decomposed to form a predetermined first layer thin film on the substrate surface. The metal gas chamber is grounded. After that, after the generation gas in the gas chamber is discharged, the substrate is moved to be accommodated in the adjacent gas chamber, and in this gas chamber as well, the generation gas having a different component from the above gas is fed. By glow discharge, a second thin film is formed on the surface of the first thin film of the substrate. Subsequently, after the generation gas in the gas chamber is discharged, the substrate is further moved to the adjacent gas chamber to be accommodated therein, and a predetermined generation gas having a different component from the gas is fed in the same manner as described above. By glow discharge, a third thin film is formed on the surface of the second thin film of the substrate. In other words, in the separation furnace, since the production gases with high-purity components that are different from each other are individually fed to the respective gas chambers, the interference of the production gases with different components is avoided, and the production gases are generated in each gas chamber. The quality of the formed thin film is not adversely affected by the decrease in the purity of the product gas.

しかしながら、ガス室内で生成用ガスをグロー放電させ
ると、基板に生成された薄膜と同じ成分からなる残渣
が、夫々の金属製のガス室の内壁面に付着して堆積され
ることになる。また、生成用ガスをグロー放電させて分
解させた場合には、プラスのイオン(以下イオンとい
う)が発生し、接地されている金属製のガス室内壁面と
の電界により、イオンがガス室内壁面に高速度で衝突し
てガス室の内壁面に付着している残渣を叩たき出し、残
渣の一部の成分をガス室内に浮遊させることになる。つ
まり、ガス室内に送給される生成用ガスの濃度は一定値
に制御されているにも拘らず、イオンによつて叩たき出
された残渣の一部の成分が生成用ガスに加つて濃度が増
す結果となり、薄膜を生成するための生成用ガスの成分
比率が乱されることとなつて良質の薄膜を形成できず、
光電変換効率の上昇を妨げる原因となつていることが判
明した。
However, when the production gas is glow-discharged in the gas chamber, a residue composed of the same components as the thin film produced on the substrate is attached and deposited on the inner wall surface of each metal gas chamber. Also, when the generated gas is decomposed by glow discharge, positive ions (hereinafter referred to as ions) are generated, and due to the electric field with the grounded metal gas chamber wall surface, the ions are generated on the gas chamber wall surface. The residue adhered to the inner wall surface of the gas chamber is collided at a high speed, and the residue is tapped off, so that some components of the residue are suspended in the gas chamber. In other words, even though the concentration of the production gas fed into the gas chamber is controlled to a constant value, some of the components of the residue knocked out by the ions are added to the production gas and the concentration is increased. As a result, the composition ratio of the generating gas for forming the thin film is disturbed and a good quality thin film cannot be formed,
It was found that this is a cause of hindering the increase in photoelectric conversion efficiency.

本発明は前述した問題に鑑み、プラズマCVD法の分離炉
による光起電力素子の薄膜を生成させるに当り、グロー
放電で発生するイオンのガス室の内壁面への衝突を抑制
することによつて、ガス室内の生成用ガスの成分比率を
一定値に保持して、良質の薄膜を生成させることによ
り、光電変換効率を高め得る光起電力素子の製造方法及
び製造する装置を提案するものである。
In view of the above-mentioned problems, the present invention is directed to suppressing the collision of ions generated by glow discharge with the inner wall surface of the gas chamber when generating a thin film of a photovoltaic element by a plasma CVD separation furnace. , A method for manufacturing a photovoltaic element and a device for manufacturing the photovoltaic element, which can increase the photoelectric conversion efficiency by maintaining a constant ratio of the components of the generating gas in the gas chamber and generating a high quality thin film. .

以下図面を参照して本発明の光起電力素子の製造方法及
びその製造装置を詳細に説明する。第1図は光起電力素
子の製造装置を示した概略図であつて、1は内部に加熱
装置を設けている予熱室、2はP型半導体層を生成させ
るためのガス室、3はI型半導体層を生成させるための
ガス室、4はN型半導体層を生成させるためのガス室、
5は冷却室であつて、これらの各室はいずれもガス放出
が少ない例えばステンレススチールで製作されていて横
並びで一体的に組立てられている。またこれらの予熱室
1、各ガス室2,3,4及び冷却室5は、夫々同一高さ位置
で−側側部に基板搬入口1a,2a,3a,4a及び5aを、冷却室
5には他側側部に基板搬出口5a′を開口させている。夫
々の基板搬入口1a乃至5a及び基板搬出口5a′には、気密
に閉塞でき開閉可能なシヤツター1b乃至5b及び5b′を設
けていて、夫々のシヤツター1b乃至5b及び5b′の閉塞に
より各ガス室を個々に隔絶した状態にすることができ
る。2c,3c,4cはガス室2,3,4内に連通させてガス室上部
に設けられたガス送給管であつて、ガス送給管2cはP型
半導体を生成させる生成用ガス(SiH4+CH4+B2H6
H2)のガス供給源6に、ガス送給管3cはI型半導体層を
生成させる生成用ガス(SiH4)のガス供給源7に、ガス
送給管4cはN型半導体層を生成させる生成用ガス(SiH4
+PH3+H2)のガス供給源8に夫々接続されており、図
示しないバルブを制御して各ガス室2,3,4に生成用ガス
を送給するようになつている。1d乃至5dは予熱室1、ガ
ス室2,3,4及び冷却室5内に連通させてガス室下部に設
けられたガス排出管であつて、各ガス排出管1d乃至5dは
図示しないバルブを経て図示しない真空ポンプに接続さ
れており、予熱室1と各ガス室2,3,4及び冷却室5内を
夫々真空状態にできるようになつている。9,9′、10,1
0′、11,11′はガス室2,3,4内の上,下部に位置させて
対向しガス室内壁面等から電気的に絶縁されて配設され
ている放電電極であり、これらの放電電極9,9′、10,1
0′、11,11′は基板搬入口2a,3a,4aの開口部を妨げない
位置に設けられている。
Hereinafter, a method of manufacturing a photovoltaic element and a manufacturing apparatus thereof according to the present invention will be described in detail with reference to the drawings. FIG. 1 is a schematic view showing an apparatus for manufacturing a photovoltaic element, 1 is a preheating chamber in which a heating device is provided, 2 is a gas chamber for generating a P-type semiconductor layer, and 3 is I. A gas chamber for producing an N-type semiconductor layer, 4 a gas chamber for producing an N-type semiconductor layer,
Reference numeral 5 denotes a cooling chamber. Each of these chambers is made of, for example, stainless steel, which emits little gas, and is integrally assembled side by side. Further, the preheating chamber 1, the gas chambers 2, 3, 4 and the cooling chamber 5 are respectively provided at the same height position with the substrate carry-in ports 1a, 2a, 3a, 4a and 5a on the negative side and the cooling chamber 5. Has a substrate unloading port 5a 'on the other side. At the respective substrate loading ports 1a to 5a and the substrate loading port 5a ', there are provided shutters 1b to 5b and 5b' which can be airtightly closed and can be opened and closed. The chambers can be individually isolated. Reference numerals 2c, 3c and 4c are gas feed pipes which are provided in the upper part of the gas chambers and communicate with the insides of the gas chambers 2, 3 and 4, and the gas feed pipes 2c are gas for producing a P-type semiconductor (SiH 4 + CH 4 + B 2 H 6 +
H 2 ) gas supply source 6, gas supply pipe 3c generates I-type semiconductor layer to generate gas (SiH 4 ) gas supply source 7, and gas supply pipe 4c generates N-type semiconductor layer. Generation gas (SiH 4
+ PH 3 + H 2 ) is connected to each of the gas supply sources 8, and a not-shown valve is controlled to send the generated gas to each of the gas chambers 2, 3, and 4. 1d to 5d are gas discharge pipes provided in the lower part of the gas chambers in communication with the preheating chamber 1, the gas chambers 2, 3, 4 and the cooling chamber 5, and each of the gas discharge pipes 1d to 5d has a valve (not shown). After that, it is connected to a vacuum pump (not shown) so that the preheating chamber 1, each of the gas chambers 2, 3, 4 and the cooling chamber 5 can be in a vacuum state. 9,9 ', 10,1
Reference numerals 0 ', 11, 11' denote discharge electrodes located above and below in the gas chambers 2, 3, 4 and facing each other and electrically insulated from the wall surface of the gas chamber. Electrodes 9,9 ', 10,1
0 ', 11, 11' are provided at positions that do not obstruct the openings of the substrate carry-in ports 2a, 3a, 4a.

前記予熱室1、ガス室2,3,4及び冷却室5の各室内に
は、基板搬入口1a乃至5aの範囲内に、高さを揃えて図示
しない例えばコンベヤからなる基板搬送手段が個々に設
けられている。これらの各基板搬送手段はシヤツタ1b乃
至5b及び5b′を開いた状態では、基板搬送手段に載置し
た基板を隣接のガス室2,3,4及び冷却室5に搬送できる
ようになつている。また、接地された金属製ガス室2,3,
4内には対向させた放電電極9,9′、10,10′、11,11′の
夫々の間隙の側方であって該電極とガス室2,3,4の内壁
面との間に位置して前記内壁面に沿つたイオン抑制電極
12,12′,12″が内壁面等から電気的に絶縁されて配設さ
れている。このイオン抑制電極12,12′,12″は、開口率
を高くした構成に形成されており、例えば所定寸法の直
径からなるステンレススチール、銅、アルミニウム等の
導電体12aを所定ピツチで渦巻円筒状に巻回したものか
らなつていて、その軸長寸法は上側及び下側放電電極9,
9、10,10′、11,11″の対向間距離を若干超えた長い寸
法で形成され、前記基板搬送手段が配設されている高さ
位置ではイオン抑制電極12,12′,12″夫々のピツチを大
きくして、基板搬送手段で搬送される基板が通過できる
ようになつている。
In each of the preheating chamber 1, the gas chambers 2, 3, 4 and the cooling chamber 5, there is individually provided a substrate transport means (not shown), for example, a conveyor, which has a uniform height within a range of the substrate loading ports 1a to 5a. It is provided. Each of these substrate transfer means can transfer the substrate placed on the substrate transfer means to the adjacent gas chambers 2, 3, 4 and the cooling chamber 5 when the shutters 1b to 5b and 5b 'are opened. . Also, grounded metal gas chambers 2, 3,
In the inside of 4, the discharge electrodes 9, 9 ′, 10, 10 ′, 11, 11 ′ are opposed to each other by a gap between the electrodes and the inner wall surfaces of the gas chambers 2, 3, 4 An ion suppression electrode located along the inner wall surface
12, 12 ', 12 "are arranged so as to be electrically insulated from the inner wall surface, etc. The ion suppressing electrodes 12, 12', 12" are formed to have a high aperture ratio. It consists of a conductor 12a made of stainless steel, copper, aluminum or the like having a diameter of a predetermined dimension wound in a spiral cylindrical shape with a predetermined pitch, and its axial length dimension is the upper and lower discharge electrodes 9,
The ion suppressing electrodes 12, 12 ', 12 "are formed at a height position slightly longer than the facing distance of 9, 10, 10', 11, 11" and at the height position where the substrate transfer means is disposed. The pitch is increased so that the substrate conveyed by the substrate conveying means can pass through.

13a,13b,13cは直流又は高周波電源からなる放電用電源
であつて、夫々の正電極は各ガス室2,3,4の上側の放電
電極9,10,11に接続され、負電極は下側の放電電極9′,
10′,11′に接続するとともに接地され、各放電電極間
の電圧は夫々の放電用電源13a,13b,13c内に設けられた
図示しない電圧調整部とスイツチとにより、個々に電圧
調整でき個々に課電できるようになつている。14a,14b,
14cはイオン抑制用電源であつて、夫々の負電極は前記
イオン抑制電極12,12′,12″に接続されており、その正
電極は夫々接地されている。これらのイオン抑制用電源
14a,14b,14cは、内蔵している図示しない電圧調整部に
より、その出力電圧を0〜−50ボルト程度の範囲で調整
できるようになつており、また図示しないスイツチによ
りイオン抑制電極12,12′,12″を個々に課電できるよう
になつていて、これらにより3室分離炉からなる光起電
力素子の製造装置が構成されている。
13a, 13b, 13c are discharge power sources consisting of direct current or high frequency power sources, each positive electrode is connected to the upper discharge electrodes 9, 10, 11 of each gas chamber 2, 3, 4 and the negative electrode is Side discharge electrode 9 ',
It is connected to 10 ', 11' and grounded, and the voltage between each discharge electrode can be individually adjusted by a voltage adjusting unit and a switch (not shown) provided in each discharge power supply 13a, 13b, 13c. It is possible to apply electricity to. 14a, 14b,
Reference numeral 14c denotes an ion suppressing power source, the negative electrodes of which are connected to the ion suppressing electrodes 12, 12 ', 12 ", and the positive electrodes of which are grounded.
The output voltage of 14a, 14b, and 14c can be adjusted in the range of 0 to -50 volts by a built-in voltage adjusting unit (not shown), and the ion suppressing electrodes 12, 12 are made by a switch (not shown). ′, 12 ″ can be individually charged, and these constitute a photovoltaic device manufacturing apparatus composed of a three-chamber separation furnace.

次にこのように構成した3室分離炉からなる光起電力素
子の製造装置により光起電力素子を製造する方法を説明
する。図示した状態で、先づ、図示しない真空ポンプを
駆動して予熱室1を除いたガス室2,3,4及び冷却室5を
真空状態にする。その後、シヤツタ1bのみを開いて予熱
室1内の図示しない基板搬送手段上に基板Pを載置して
シヤツタ1bを閉じ予熱室1内に設けた図示しない加熱装
置により基板Pを加熱するとともに、予熱室1内を真空
状態にする。続いて、基板Pが所定温度に達した時点で
シヤツタ2bを開くとともに予熱室1及びガス室2内の基
板搬送手段を駆動して基板Pをガス室2内に搬送し、シ
ヤツタ2bを閉じる。その後、ガス室2内にガス供給源6
からP型半導体層を生成させるための所定成分比率の生
成用ガスを送給し、また放電電極9,9′間に放電用電源1
3により高電圧を印加するとともに、イオン抑制用電源1
4aによりイオン抑制電極12aに例えば数ボルトの負電圧
を印加する。そのため放電電極9,9′間に印加した高電
圧で、対向した放電電極9,9′間の生成用ガスはグロー
放電して分解し両放電電極9,9′間に位置している基板
Pの表面にP型半導体層を生成させる。このとき、ガス
が分解された残渣はガス室2の内壁面にも付着する。一
方、グロー放電により発生したイオンNは接地されて零
電圧である金属製のガス室内壁面に向つて突進するが、
内壁面の手前に配設されて負電圧が印加されているイオ
ン抑制電極12の電界の影響をうけて、イオンNはイオン
抑制電極12に引き寄せられて大地に流れ、ガス室2の内
壁面には到達しない。つまり、発生したイオンNがガス
室2の内壁面に付着している残渣に衝突して残渣を叩た
き出すことがないため、ガス室2内のガスの成分比率は
ガス供給源6から送給された生成用ガスの所定の成分比
率に保持でき、生成されたP型半導体層は極めて特性の
良いものとなる。そして、基板Pに半導体層を生成させ
た後は、放電電極9,9′に対する電圧の印加を停止して
ガス室2内の生成用ガスを排出して真空状態にする。そ
の後、シヤツタ3bを開くとともにガス室2及び3内の図
示しない基板搬送手段を駆動して基板Pをガス室3内に
搬送して、シヤツタ3bを閉じる。続いてガス室3内にガ
ス供給源7からI型半導体層を生成させるための所定成
分比率の生成用ガスを送給し、放電電極10,10′に高電
圧を印加して前記同様に生成用ガスをグロー放電させ
て、基板PのP型半導体層の表面にI型半導体層を生成
させる。この場合にもグロー放電によるガス分解で発生
したイオンNはイオン抑制電極12′に引寄せられて、ガ
ス室3の内壁面には到達せず内壁面に付着している残渣
を叩たき出すことがない。そのため、このガス室3内に
おいては、送給された生成用ガスに残渣から出た成分の
一部が混入することがなく、特性の極めて良いI型半導
体層が生成される。その後は、前記同様にしてガス室3
内を真空にした後シヤツタ4bを開いて、ガス室3内の基
板Pをガス室4内に搬送し、シヤツタ4bを閉じてガス供
給源8からN型半導体層を生成させる生成用ガスをガス
室4内に送給して、基板PのI型半導体層の表面にN型
半導体層を生成させる。この場合も、発生したイオンN
はガス室4の内壁面には到達せず、ガスの成分比率に変
化を来たさないので特性が極めて良いN型半導体層が生
成される。このようにしてN型半導体層を生成させた後
は、ガス室4内を真空にしてシヤツタ5bを開いて、ガス
室4及び冷却室5内の基板搬送手段を駆動させて、ガス
室4内の基板Pを冷却室5に搬送し、冷却室5内で基板
Pを所定温度にした後、シヤツタ5b′を開くとともに冷
却室5内の基板搬送手段を駆動して基板Pを基板搬出口
5a′を通して冷却室5から搬出させる。
Next, a method of manufacturing a photovoltaic element by the photovoltaic element manufacturing apparatus including the three-chamber separation furnace configured as described above will be described. In the illustrated state, first, a vacuum pump (not shown) is driven to bring the gas chambers 2, 3, 4 and the cooling chamber 5 excluding the preheating chamber 1 into a vacuum state. After that, only the shutter 1b is opened, the substrate P is placed on the substrate transfer means (not shown) in the preheating chamber 1, the shutter 1b is closed, and the substrate P is heated by the heating device (not shown) provided in the preheating chamber 1. The preheating chamber 1 is evacuated. Subsequently, when the substrate P reaches a predetermined temperature, the shutter 2b is opened and the substrate transfer means in the preheating chamber 1 and the gas chamber 2 is driven to transfer the substrate P into the gas chamber 2 and the shutter 2b is closed. Then, the gas supply source 6 is placed in the gas chamber 2.
To supply a generating gas having a predetermined component ratio for generating a P-type semiconductor layer from the discharge electrode to the discharge electrodes 9 and 9 '.
High voltage is applied by 3 and power supply for ion suppression 1
A negative voltage of, for example, several volts is applied to the ion suppression electrode 12a by 4a. Therefore, due to the high voltage applied between the discharge electrodes 9 and 9 ', the gas for generation between the opposed discharge electrodes 9 and 9'is glow-discharged and decomposed, and the substrate P located between the discharge electrodes 9 and 9'is decomposed. A P-type semiconductor layer is formed on the surface of. At this time, the residue obtained by decomposing the gas also adheres to the inner wall surface of the gas chamber 2. On the other hand, the ions N generated by the glow discharge are grounded and rush toward the metal gas chamber wall surface of zero voltage,
Under the influence of the electric field of the ion suppression electrode 12 which is arranged in front of the inner wall surface and is applied with a negative voltage, the ions N are attracted to the ion suppression electrode 12 and flow to the ground, and the ions N are formed on the inner wall surface of the gas chamber 2. Does not reach. That is, since the generated ions N do not collide with the residue attached to the inner wall surface of the gas chamber 2 and knock out the residue, the gas component ratio in the gas chamber 2 is sent from the gas supply source 6. The generated P-type semiconductor layer can be kept at a predetermined component ratio, and the generated P-type semiconductor layer has extremely good characteristics. Then, after the semiconductor layer is generated on the substrate P, the application of the voltage to the discharge electrodes 9, 9'is stopped, and the generation gas in the gas chamber 2 is discharged to make a vacuum state. After that, the shutter 3b is opened, the substrate transfer means (not shown) in the gas chambers 2 and 3 is driven to transfer the substrate P into the gas chamber 3, and the shutter 3b is closed. Subsequently, the gas supply source 7 supplies a generation gas having a predetermined component ratio to the gas chamber 3 to generate the I-type semiconductor layer, and a high voltage is applied to the discharge electrodes 10 and 10 'to generate the same as the above. The discharge gas is glow-discharged to form an I-type semiconductor layer on the surface of the P-type semiconductor layer of the substrate P. Also in this case, the ions N generated by the gas decomposition by the glow discharge are attracted to the ion suppressing electrode 12 ', and do not reach the inner wall surface of the gas chamber 3 and strike out the residue attached to the inner wall surface. There is no. Therefore, in the gas chamber 3, a part of the components generated from the residue is not mixed in the fed production gas, and an I-type semiconductor layer having excellent characteristics is produced. After that, in the same manner as above, the gas chamber 3
After the inside is evacuated, the shutter 4b is opened, the substrate P in the gas chamber 3 is transferred into the gas chamber 4, and the shutter 4b is closed to generate a generation gas for generating an N-type semiconductor layer from the gas supply source 8. It is fed into the chamber 4 to form an N-type semiconductor layer on the surface of the I-type semiconductor layer of the substrate P. Also in this case, the generated ions N
Does not reach the inner wall surface of the gas chamber 4 and the composition ratio of the gas does not change, so that an N-type semiconductor layer having excellent characteristics is produced. After the N-type semiconductor layer is generated in this way, the inside of the gas chamber 4 is evacuated to open the shutter 5b, and the substrate transfer means in the gas chamber 4 and the cooling chamber 5 is driven so that the inside of the gas chamber 4 is driven. Substrate P is transferred to the cooling chamber 5, the substrate P is brought to a predetermined temperature in the cooling chamber 5, the shutter 5b 'is opened, and the substrate transfer means in the cooling chamber 5 is driven to transfer the substrate P to the substrate unloading port.
It is carried out from the cooling chamber 5 through 5a '.

これにより、基板Pの表面にはP型,I型,N型の各半導体
層が順次積層された状態となつて光起電力素子が完成す
る。そして前記各半導体層P,I,Nは隔絶されたガス室内
で成分比率が一定した生成用ガスにより生成されたもの
であるため、夫々の半導体層は極めて純度が高く成分も
安定したものとなつて、完成した光起電力素子は光電変
換効率の極めて高いものとなる。
Thus, the P-type, I-type, and N-type semiconductor layers are sequentially stacked on the surface of the substrate P, and the photovoltaic element is completed. Since each of the semiconductor layers P, I, and N is generated by the generating gas having a constant component ratio in the isolated gas chamber, each semiconductor layer has extremely high purity and stable components. Thus, the completed photovoltaic device has extremely high photoelectric conversion efficiency.

なお、本実施例では、1枚の基板Pを予熱室1から冷却
室5までの間を間歇的に搬送させ、且つ各ガス室には成
分の異なる生成用ガスを送給させた光起電力素子を製造
する工程を説明したが、搬送される基板Pの枚数は適宜
である。また生成用ガスの成分についても適宜であつ
て、それらに何ら限定されるものではない。更にイオン
抑制電極は導電体を渦巻円筒状で形成したが、導電体を
簾状、暖簾状にし曲成したものを使用することもでき
る。また、金網を円筒状に形成してもよい。この場合、
基板搬送位置に対向する位置には所定形状の基板挿通口
を形成することにより同様に使用できる。更にまた、本
実施例では説明上、1枚の基板を予熱室からガス室を経
て冷却室まで間歇的に搬送することにより薄膜を順次積
層する製造工程を示したが、先行の基板に引き続いて新
らたな基板を予熱室に収容し、各室に基板を収容した状
態で光起電力素子を連続的に製造する場合でも同様の効
果が得られることは勿論である。なお、各ガス室を隔絶
するシヤツタを、ガスカーテンに代えて区画してもよ
い。
In the present embodiment, one substrate P is intermittently transported from the preheating chamber 1 to the cooling chamber 5 and each gas chamber is supplied with a production gas having a different component. Although the process of manufacturing the element has been described, the number of substrates P to be conveyed is appropriate. Further, the components of the generated gas are also appropriate and are not limited to them. Further, although the ion-suppressing electrode is formed of a spirally-cylindrical conductor, it is also possible to use a curved and bent conductor made of a conductor. Further, the wire net may be formed in a cylindrical shape. in this case,
The same can be used by forming a substrate insertion opening having a predetermined shape at a position facing the substrate transfer position. Furthermore, in the present embodiment, for the sake of explanation, a manufacturing process has been shown in which one substrate is intermittently transported from the preheating chamber to the cooling chamber to the cooling chamber to sequentially stack thin films. Needless to say, the same effect can be obtained even when a new substrate is housed in the preheating chamber and the photovoltaic elements are continuously manufactured with the substrate housed in each chamber. Note that the shutter that separates each gas chamber may be partitioned instead of the gas curtain.

以上詳述したように、本発明に係る光起電力素子の製造
方法によれば、夫々のガス室内で発生するイオンをイオ
ン抑制電極の作用により夫々のガス室の内壁面に衝突さ
せないように抑制したので、内壁面に付着した分解ガス
の残渣を叩たき出すことがない。従つてガス室に送給さ
れた生成用ガスの成分比率を変化させることがなく、基
板には成分比率が一定した生成用ガスによる良質で特性
が極めて良い半導体層を安定して生成させ得て、光電変
換効率の高い光起電力素子を安定的に製造することがで
きる。また、本発明に係る光起電力素子の製造装置は、
半導体層を生成させるガス室内の、対向配設した放電電
極の対向間隙の側方、つまりガス室内壁面の前方にイオ
ン抑制電極を設けて、これを負電圧または零電圧とする
ことにより、ガス室内で発生したイオンを引き寄せるこ
とができ、イオンをガス室の内壁面に衝突するのを簡単
に防止することができる。また、このイオン抑制電極は
ガス室の内壁面の前方に設けるため、放電電極が対向す
る空間を邪魔することもなく基板に生成させる半導体層
に悪影響もない。更に、このイオン抑制電極は構造及び
取付けが簡単であつて安価で目的を達成することができ
る。
As described above in detail, according to the method for manufacturing a photovoltaic element of the present invention, the ions generated in each gas chamber are suppressed from colliding with the inner wall surface of each gas chamber by the action of the ion suppression electrode. Therefore, the residue of the decomposition gas attached to the inner wall surface is not knocked out. Therefore, without changing the composition ratio of the production gas sent to the gas chamber, it is possible to stably produce a semiconductor layer of good quality and excellent characteristics by the production gas having a constant composition ratio on the substrate. Therefore, a photovoltaic element having high photoelectric conversion efficiency can be stably manufactured. In addition, the photovoltaic device manufacturing apparatus according to the present invention,
By providing an ion suppression electrode on the side of the facing gap of the discharge electrodes arranged opposite to each other, that is, in front of the wall surface of the gas chamber in the gas chamber where the semiconductor layer is generated, and by setting this to a negative voltage or zero voltage, the gas chamber The ions generated in 1 can be attracted, and it is possible to easily prevent the ions from colliding with the inner wall surface of the gas chamber. Further, since the ion suppression electrode is provided in front of the inner wall surface of the gas chamber, it does not obstruct the space where the discharge electrode faces and does not adversely affect the semiconductor layer formed on the substrate. Further, the ion suppressing electrode is simple in structure and mounting, and is inexpensive and can achieve the purpose.

【図面の簡単な説明】[Brief description of drawings]

第1図は本発明に係る光起電力素子の製造装置を示す概
略構造断面図である。 1…予熱室、2,3,4…ガス室、5…冷却室、9,9′、10,1
0′、11,11′…放電電極、12,12′,12″…イオン抑制電
極、13a,13b,13c…放電用電源、14a,14b,14c…イオン抑
制用電源、P…基板、N…イオン。
FIG. 1 is a schematic structural sectional view showing an apparatus for manufacturing a photovoltaic element according to the present invention. 1 ... Preheating chamber, 2, 3, 4 ... Gas chamber, 5 ... Cooling chamber, 9, 9 ', 10, 1
0 ', 11, 11' ... Discharge electrode, 12, 12 ', 12 "... Ion suppression electrode, 13a, 13b, 13c ... Discharge power supply, 14a, 14b, 14c ... Ion suppression power supply, P ... Substrate, N ... ion.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】区画して連接されている複数の金属製ガス
室からなる分離炉の前記ガス室の夫々に、対向した一対
の電極を配置して、半導体薄膜を生成する生成用ガスを
送給し、前記生成用ガスをグロー放電させ、前記ガス室
に基板を順次収容して前記基板の表面に半導体薄膜を生
成させる光起電力素子の製造方法において、 前記電極の間隙の側方であって、前記電極と前記ガス室
の内壁面との間に位置して開口率の高いイオン抑制電極
を前記内壁面に沿って配設し、前記イオン抑制電極を前
記ガス室に対し負電圧とし、前記ガス室内の生成用ガス
のグロー放電により発生したイオンを該ガス室内の内壁
面に対する衝突を抑制して半導体薄膜を生成させる光起
電力素子の製造方法。
1. A pair of electrodes facing each other is arranged in each of the gas chambers of a separation furnace composed of a plurality of metal gas chambers that are partitioned and connected to each other, and a production gas for producing a semiconductor thin film is sent. In the method of manufacturing a photovoltaic element, in which a supply gas is generated, the discharge gas is glow-discharged, a substrate is sequentially housed in the gas chamber, and a semiconductor thin film is generated on the surface of the substrate. The ion suppression electrode having a high aperture ratio located between the electrode and the inner wall surface of the gas chamber is arranged along the inner wall surface, and the ion suppression electrode is set to a negative voltage with respect to the gas chamber, A method of manufacturing a photovoltaic element, which suppresses collision of ions generated by glow discharge of a generating gas in the gas chamber with an inner wall surface of the gas chamber to generate a semiconductor thin film.
【請求項2】区画して連接されている複数の金属製ガス
室からなる分離炉を備え、前記ガス室の夫々に、対向し
た一対の電極を配置して、半導体薄膜を生成する生成用
ガスを送給し、前記生成用ガスをグロー放電させる光起
電力素子の製造装置において、 前記電極の間隙の側方であって、前記電極と前記ガス室
の内壁面との間に位置し、前記内壁面に沿って配設され
た開口率の高いイオン抑制電極と、前記イオン抑制電極
を前記ガス室に対し負電圧とするイオン抑制用電源とを
設けた光起電力素子の製造装置。
2. A production gas for producing a semiconductor thin film, comprising a separation furnace comprising a plurality of metallic gas chambers which are partitioned and connected to each other, and a pair of electrodes facing each other are arranged in each of the gas chambers. In the apparatus for manufacturing a photovoltaic element for glow-discharging the gas for generation, which is lateral to the gap between the electrodes and located between the electrode and the inner wall surface of the gas chamber, An apparatus for manufacturing a photovoltaic element, comprising: an ion suppression electrode having a high aperture ratio, which is disposed along an inner wall surface; and an ion suppression power supply that sets the ion suppression electrode to a negative voltage with respect to the gas chamber.
JP59089876A 1984-05-04 1984-05-04 Photovoltaic device manufacturing method and manufacturing apparatus Expired - Lifetime JPH0715883B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP59089876A JPH0715883B2 (en) 1984-05-04 1984-05-04 Photovoltaic device manufacturing method and manufacturing apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP59089876A JPH0715883B2 (en) 1984-05-04 1984-05-04 Photovoltaic device manufacturing method and manufacturing apparatus

Publications (2)

Publication Number Publication Date
JPS60233817A JPS60233817A (en) 1985-11-20
JPH0715883B2 true JPH0715883B2 (en) 1995-02-22

Family

ID=13982965

Family Applications (1)

Application Number Title Priority Date Filing Date
JP59089876A Expired - Lifetime JPH0715883B2 (en) 1984-05-04 1984-05-04 Photovoltaic device manufacturing method and manufacturing apparatus

Country Status (1)

Country Link
JP (1) JPH0715883B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3571785B2 (en) * 1993-12-28 2004-09-29 キヤノン株式会社 Method and apparatus for forming deposited film
US20110126902A1 (en) * 2008-07-25 2011-06-02 Ulvac, Inc. Apparatus and method for manufacturing thin film solar cell, and thin film solar cell

Also Published As

Publication number Publication date
JPS60233817A (en) 1985-11-20

Similar Documents

Publication Publication Date Title
JP6386519B2 (en) CVD apparatus and method of manufacturing CVD film
US5039376A (en) Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
JPS6029295B2 (en) Non-single crystal film formation method
JP3964951B2 (en) Equipment for coating substrates
US20160023900A1 (en) Ozone generator and ozone generation method
US20080305275A1 (en) CVD system and substrate cleaning method
CN102362337A (en) Plasma processing apparatus and method of producing amorphous silicon thin film using same
JP4158726B2 (en) Thin film manufacturing equipment
JP2000109979A (en) Surface treatment method by dc arc discharge plasma
JP2003527478A (en) Apparatus for plasma-chemical deposition of polycrystalline diamond
JP4279217B2 (en) Plasma processing apparatus and method for manufacturing solar cell using the same
JP4273382B2 (en) Plasma processing apparatus and thin film forming method
JPH0715883B2 (en) Photovoltaic device manufacturing method and manufacturing apparatus
JP2001077029A (en) Thin film manufacturing device and its manufacture method
JPH0576172B2 (en)
CA1248210A (en) Upstream cathode assembly
US4915978A (en) Method and device for forming a layer by plasma-chemical process
EP0100611B1 (en) Reduced capacitance electrode assembly
JP3144165B2 (en) Thin film generator
JP4576190B2 (en) Plasma processing equipment
CN107267957B (en) Device for chemical vapor deposition and chemical vapor deposition method
JP4692878B2 (en) Plasma CVD equipment
JPS62159419A (en) Apparatus for forming amorphous semiconductor thin film
JP3276445B2 (en) Plasma CVD equipment
JP3634605B2 (en) Method for forming a thin film using a rotating electrode