JPH07158482A - Fuel injection control device for multiple cylinder internal combustion engine - Google Patents

Fuel injection control device for multiple cylinder internal combustion engine

Info

Publication number
JPH07158482A
JPH07158482A JP30552593A JP30552593A JPH07158482A JP H07158482 A JPH07158482 A JP H07158482A JP 30552593 A JP30552593 A JP 30552593A JP 30552593 A JP30552593 A JP 30552593A JP H07158482 A JPH07158482 A JP H07158482A
Authority
JP
Japan
Prior art keywords
cylinder
engine
crank angle
injection
fuel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP30552593A
Other languages
Japanese (ja)
Inventor
Giichi Shioyama
議市 塩山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP30552593A priority Critical patent/JPH07158482A/en
Publication of JPH07158482A publication Critical patent/JPH07158482A/en
Pending legal-status Critical Current

Links

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/02Circuit arrangements for generating control signals
    • F02D41/04Introducing corrections for particular operating conditions
    • F02D41/042Introducing corrections for particular operating conditions for stopping the engine

Abstract

PURPOSE:To attempt compatibility between starting property and exhaust purifying property in a multiple cylinder internal combustion engine by selecting and deciding sequential injection and simultaneous injection on the basis of a crank angle position at the time of stopping according to the high and low degrees of an engine temperature when the engine is started. CONSTITUTION:In a control circuit 6, each fuel injection valve 7 for each cylinder is controlled on the basis of each signal which is detected from each sensor 1 to 5 for detecting operating condition of a multiple cylinder internal combustion engine. In the control circuit 6, a crank angle position is detected by a means 62 on the basis of a reference signal which is outputted from the crank angle sensor 1, and also the crank angle position at the time of engine stopping is memorized by a means 63. Engine starting is judged by a means 65 on the basis of an on-signal which is outputted from the engine key switch 3. A water temperature is judged by a means 66 on the basis of a signal which is outputted from the water temperature sensor 2. Sequential injection and simultaneous injection are selected and decided by a means 67 on the basis of the crank angle position at the time of stopping according to the high and low degrees of the engine temperature at the time of engine starting.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、多気筒内燃機関におけ
る始動時の燃料噴射制御装置に関し、特に、始動時の燃
料噴射方式を切り換えて始動性を確保しつつ排気浄化性
能も良好とするようにした技術に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a fuel injection control device at the time of starting in a multi-cylinder internal combustion engine, and more particularly, by switching the fuel injection system at the time of starting to ensure startability and to improve exhaust purification performance. Regarding the technology

【0002】[0002]

【発明が解決しようとする課題】多気筒内燃機関の電子
制御式の燃料噴射装置においては、特定気筒の所定のク
ランク角位置で出力され当該気筒の判別が可能な信号
(いわゆる気筒判別信号)によって当該特定気筒を判別
し、他の気筒は夫々の所定のクランク角位置で出力され
る基準信号の入力回数をカウントして気筒判別を行い、
対応する気筒に燃料噴射制御するようになっている。
In an electronically controlled fuel injection device for a multi-cylinder internal combustion engine, a signal that is output at a predetermined crank angle position of a specific cylinder and is capable of discriminating the cylinder.
(So-called cylinder determination signal) to determine the specific cylinder, other cylinders perform the cylinder determination by counting the number of times the reference signal is output at each predetermined crank angle position,
Fuel injection is controlled in the corresponding cylinder.

【0003】その場合、始動時 (クランキング時) には
前記特定の気筒の気筒判別信号が入力されるまでの間は
気筒の判別を行えないため、無条件で全気筒同時に燃料
噴射制御することが一般的であった。しかしながら、こ
のように無条件に全気筒同時噴射する方式では、各気筒
の燃焼行程1回につき複数回の燃料噴射が行われること
となるので、1回の燃料噴射で充分良好な始動性を確保
できるような場合には、燃料供給が過剰となって排気浄
化性能を悪くしてしまうという問題があった。
In this case, at the time of starting (at the time of cranking), the cylinders cannot be discriminated until the cylinder discrimination signal of the specific cylinder is input, so that the fuel injection control is performed unconditionally for all the cylinders simultaneously. Was common. However, in such a method in which all cylinders are simultaneously injected unconditionally, a plurality of fuel injections are performed for each combustion stroke of each cylinder, so a single fuel injection ensures sufficiently good startability. In such a case, there is a problem that the fuel supply becomes excessive and the exhaust gas purification performance deteriorates.

【0004】一方、機関の停止時に各気筒のクランク角
位置状態を記憶しておき、該記憶データに基づいて始動
時の各気筒のクランク角位置状態を検出できるようにし
たものがある( 特開昭60−240875号参照) 。このものに
おいても始動時には全気筒同時に燃料噴射を行うものが
開示されているが、記憶されたデータに基づいて始動当
初から燃焼行程順序に従って気筒別に燃焼行程1回当り
1回の燃料噴射を行ういわゆるシーケンシャル噴射制御
を行うことは可能である。
On the other hand, there is a system in which the crank angle position state of each cylinder is stored when the engine is stopped, and the crank angle position state of each cylinder at the time of starting can be detected based on the stored data (Japanese Patent Laid-Open No. 2000-242242). (See Sho 60-240875). In this engine as well, it is disclosed that fuel is simultaneously injected into all cylinders at the time of starting, but so-called fuel injection is performed once per combustion stroke for each cylinder according to the combustion stroke sequence from the beginning of the start based on stored data. It is possible to perform sequential injection control.

【0005】しかし、始動時に無条件でシーケンシャル
噴射制御を行うことは、始動性の点で以下のような問題
を生じる。極低温 (例えば−10°C以下の低温) での始
動に際しては、供給される燃料が殆ど壁流分として吸気
ポート内に残ってしまい、噴射時期に対応した燃焼行程
に間に合って燃焼室内に流入する量が極めて少なくな
り、初爆に至るまでは相応の時間経過が必要である。つ
まり始動性が大幅に悪化する。
However, performing unconditional sequential injection control at the time of starting causes the following problems in terms of startability. When starting at an extremely low temperature (for example, a low temperature of -10 ° C or less), most of the supplied fuel remains in the intake port as a wall flow, and flows into the combustion chamber in time for the combustion stroke corresponding to the injection timing. The amount to be used is extremely small, and it will take a certain amount of time before the first explosion. That is, startability is significantly deteriorated.

【0006】本発明は、このような従来の実状に鑑みな
されたもので、始動時の各気筒のクランク角位置状態を
検出しつつ、機関の温度状態に応じて燃料噴射方式を切
り換えることにより、始動性能と排気浄化性能との両立
を図った多気筒内燃機関の燃料噴射制御装置を提供する
ことを目的とする。
The present invention has been made in view of such a conventional situation. By detecting the crank angle position state of each cylinder at the time of starting, the fuel injection system is switched according to the temperature state of the engine. An object of the present invention is to provide a fuel injection control device for a multi-cylinder internal combustion engine that achieves both a starting performance and an exhaust purification performance.

【0007】[0007]

【課題を解決するための手段】このため本発明に係る多
気筒内燃機関の燃料噴射制御装置は、図1に示すよう
に、気筒毎に燃料噴射弁を備えた多気筒内燃機関の燃料
噴射制御装置において、各気筒の所定のクランク角位置
で基準信号を出力し、かつ、特定の気筒の基準信号は当
該気筒の判別が可能に形成されてなる基準信号出力手段
と、前記基準信号に基づいて機関停止時の各気筒のクラ
ンク角位置状態を記憶する停止時クランク角位置状態記
憶手段と、気筒別に燃焼行程順序に従って燃焼行程1回
当り1回ずつ燃料噴射させるシーケンシャル噴射制御手
段と、各気筒の燃料行程1回当り複数回の燃料噴射が行
われるように複数気筒同時に燃料噴射させる同時噴射制
御手段と、機関の始動状態を判定する始動判定手段と、
機関の温度状態を検出する機関温度検出手段と、前記機
関温度検出手段によって検出される始動時の機関温度が
所定以上の状態であるときには、前記停止時クランク角
位置状態検出手段によって検出される各気筒のクランク
角位置状態に基づいて、前記シーケンシャル噴射制御手
段によりシーケンシャル噴射を行わせ、始動時の機関温
度が前記所定未満の低温状態であるときには、前記同時
噴射制御手段によって同時噴射を行わせるように燃料噴
射方式を切り換える噴射方式切換手段と、を含んで構成
したことを特徴とする。
Therefore, a fuel injection control device for a multi-cylinder internal combustion engine according to the present invention, as shown in FIG. 1, is a fuel injection control for a multi-cylinder internal combustion engine having a fuel injection valve for each cylinder. In the apparatus, a reference signal is output at a predetermined crank angle position of each cylinder, and the reference signal of a specific cylinder is based on the reference signal output means formed so that the cylinder can be discriminated. Crank angle position state storage means for storing the crank angle position state of each cylinder when the engine is stopped, sequential injection control means for injecting fuel once for each combustion stroke according to the combustion stroke sequence for each cylinder, and for each cylinder. A simultaneous injection control means for simultaneously injecting fuel into a plurality of cylinders so that a plurality of fuel injections are performed per fuel stroke; and a start determination means for determining a start state of the engine,
Engine temperature detecting means for detecting the temperature state of the engine, and when the engine temperature at the time of starting detected by the engine temperature detecting means is above a predetermined level, each detected by the crank angle position state detecting means during stop. Sequential injection is performed by the sequential injection control means based on the crank angle position state of the cylinder, and simultaneous injection is performed by the simultaneous injection control means when the engine temperature at startup is a low temperature state below the predetermined value. And an injection method switching means for switching the fuel injection method.

【0008】[0008]

【作用】基準信号出力手段により出力される特定気筒の
基準信号と他の気筒の基準信号とで、各気筒のクランク
角位置状態を検出することができ、停止時クランク角位
置記憶手段は機関の停止時において検出された各気筒の
クランク角位置状態を記憶する。
The crank angle position state of each cylinder can be detected by the reference signal of the specific cylinder output by the reference signal output means and the reference signal of the other cylinder. The crank angle position state of each cylinder detected at the time of stop is stored.

【0009】そして、前記停止時に記憶されている各気
筒のクランク角位置状態と、新たに入力される各気筒の
基準信号とに基づいて始動時における各気筒のクランク
角位置状態を検出する。一方、始動時の機関温度状態が
機関温度検出手段によって検出され、機関温度が所定以
上の常温乃至高温である場合は、シーケンシャル噴射制
御手段によって前記始動時の各気筒のクランク角位置状
態に応じてシーケンシャル噴射方式による燃料噴射が行
われる。かかる温度状態では、燃料の気化が良好に行わ
れるため良好な始動性を確保でき、また、燃料噴射量を
必要最小量に抑えられるので排気浄化性能も満たされ
る。
Then, the crank angle position state of each cylinder at the time of starting is detected based on the crank angle position state of each cylinder stored at the time of stop and the reference signal of each cylinder newly input. On the other hand, when the engine temperature state at the time of starting is detected by the engine temperature detecting means and the engine temperature is room temperature or higher than a predetermined temperature, the sequential injection control means determines the crank angle position state of each cylinder at the time of starting. Fuel injection is performed by a sequential injection method. In such a temperature state, good vaporization of the fuel is performed, so that good startability can be ensured, and the amount of fuel injection can be suppressed to the required minimum amount, so that exhaust purification performance is also satisfied.

【0010】また、始動時の機関温度が所定未満の低温
である場合には、同時噴射制御手段により複数気筒同時
に燃焼行程1回当り複数回の燃料噴射が行われる。これ
により、壁流分に引き充てるための余剰の燃料を先立っ
て噴射させ、その後に噴射される必要分の燃料を燃焼行
程に間に合わせて燃焼室内に到達させることができ、も
って、低温時の始動性を確保できる。
Further, when the engine temperature at the time of starting is lower than a predetermined temperature, the simultaneous injection control means simultaneously injects a plurality of fuels into a plurality of cylinders per combustion stroke. As a result, surplus fuel for filling the wall flow can be injected in advance, and the necessary amount of fuel to be injected thereafter can reach the combustion chamber in time for the combustion stroke. Startability can be secured.

【0011】[0011]

【実施例】以下に本発明の実施例を図に基づいて説明す
る。図2は、本発明に係る多気筒内燃機関の燃料噴射制
御装置の一実施例を示す。図において、4サイクル4気
筒機関の機関回転と同期して回転するカムシャフト等に
クランク角センサ1が設けられる。該クランク角センサ
1は、各気筒の所定のクランク角位置で基準信号を出力
する (クランク角180 °毎に出力) 。ここで、特定気筒
(例えば第1気筒) の基準信号は他の基準信号に比較し
てパルス幅が大きいなどにより当該特定気筒であること
が判別可能となっている。したがってクランク角センサ
1は、基準信号出力手段を構成する。また、クランク角
センサ1は同時に単位クランク角 (例えば1°) 毎の単
位角信号も出力する。
Embodiments of the present invention will be described below with reference to the drawings. FIG. 2 shows an embodiment of a fuel injection control device for a multi-cylinder internal combustion engine according to the present invention. In the figure, a crank angle sensor 1 is provided on a camshaft or the like that rotates in synchronization with engine rotation of a 4-cycle 4-cylinder engine. The crank angle sensor 1 outputs a reference signal at a predetermined crank angle position of each cylinder (outputs at every crank angle of 180 °). Where specific cylinder
The reference signal of (for example, the first cylinder) has a larger pulse width than the other reference signals, so that it can be identified as the specific cylinder. Therefore, the crank angle sensor 1 constitutes a reference signal output means. The crank angle sensor 1 also outputs a unit angle signal for each unit crank angle (for example, 1 °).

【0012】そして、前記クランク角センサ1からの前
記基準信号,単位角信号の他、機関温度検出手段として
水温センサ2により検出される機関の冷却水温度信号、
エンジンキースイッチ3のON,OFF信号、エアフロ
ーメータ4により検出される吸入空気流量Q信号、スタ
ータスイッチ5のON,OFF信号などが、制御回路6
に出力される。
Then, in addition to the reference signal and the unit angle signal from the crank angle sensor 1, an engine cooling water temperature signal detected by a water temperature sensor 2 as an engine temperature detecting means,
The ON / OFF signal of the engine key switch 3, the intake air flow rate Q signal detected by the air flow meter 4, the ON / OFF signal of the starter switch 5, and the like are supplied to the control circuit 6.
Is output to.

【0013】制御回路6は、前記各種検出信号に基づい
て以下の各手段により演算/処理/判定を行い、決定さ
れた燃料噴射方式に従って各気筒に備えられた燃料噴射
弁7を駆動して燃料噴射制御を行う。以下、前記各手段
の機能の概要を説明する。機関回転速度検出手段61は、
前記単位角信号の単位時間当りの入力回数を演算して、
これに比例する機関回転速度Nを演算して検出する。ま
たは、前記各基準信号の入力間の周期を測定して、それ
に反比例する値として機関回転速度Nを演算してもよ
い。
The control circuit 6 performs calculation / processing / determination by the following means based on the various detection signals, and drives the fuel injection valve 7 provided in each cylinder according to the determined fuel injection method to drive the fuel. Injection control is performed. The outline of the function of each means will be described below. The engine speed detecting means 61 is
By calculating the number of inputs of the unit angle signal per unit time,
The engine speed N proportional to this is calculated and detected. Alternatively, the engine rotation speed N may be calculated as a value inversely proportional to the period between the inputs of the respective reference signals.

【0014】クランク角位置検出手段62は、前記基準信
号及び単位角信号を入力して各気筒のクランク角位置を
検出する。ここで、クランク角位置を単にピストン位置
として検出するのみならず、吸気−圧縮−爆発 (燃焼)
−排気のどの行程におけるクランク角位置を含めて検出
しうる。具体的には、特定気筒の基準信号の入力により
当該気筒の行程を知り、その後入力される基準信号によ
りその他の気筒の行程を知ることができる。
The crank angle position detecting means 62 receives the reference signal and the unit angle signal and detects the crank angle position of each cylinder. Here, not only is the crank angle position detected as the piston position, but intake-compression-explosion (combustion)
-It can be detected including the crank angle position in any stroke of the exhaust gas. Specifically, it is possible to know the stroke of the cylinder by inputting the reference signal of the specific cylinder, and to know the strokes of the other cylinders by inputting the reference signal thereafter.

【0015】停止時クランク角位置検出状態手段63は、
機関の停止時に前記クランク角位置検出手段62によって
検出された各気筒のクランク角位置状態 (行程を含む)
を記憶する。基本燃料噴射量演算手段64は、機関回転速
度検出手段61で演算された機関回転速度Nとエアフロー
メータ4により検出された吸入空気流量Qとに基づいて
シリンダに吸入される空気量に比例した量として基本燃
料噴射量TP を演算する。
The stop crank angle position detection state means 63 is
Crank angle position state of each cylinder detected by the crank angle position detection means 62 when the engine is stopped (including stroke)
Memorize The basic fuel injection amount calculation means 64 is an amount proportional to the amount of air taken into the cylinder based on the engine rotation speed N calculated by the engine rotation speed detection means 61 and the intake air flow rate Q detected by the air flow meter 4. The basic fuel injection amount T P is calculated as

【0016】始動判定手段65は、エンジンキースイッチ
3のON信号の入力によって始動を判定し、該始動判定
直後に水温判定手段66が水温センサ2からの信号により
極低温た否かを判定し、該判定情報を噴射方式・噴射順
序決定手段67に送出する。噴射方式・噴射順序決定手段
67は水温に応じてシーケンシャル噴射方式及び同時噴射
方式のいずれかを決定すると共に、決定された噴射方式
に対応する各気筒への噴射順序を決定する。
The start determination means 65 determines the start by inputting the ON signal of the engine key switch 3, and immediately after the start determination, the water temperature determination means 66 determines whether or not the temperature is extremely low based on the signal from the water temperature sensor 2. The determination information is sent to the injection method / injection order determining means 67. Injection method / injection sequence determination means
67 determines either the sequential injection method or the simultaneous injection method according to the water temperature, and also determines the injection order to each cylinder corresponding to the determined injection method.

【0017】噴射パルス幅演算手段68は、前記基本燃料
噴射量TP を冷却水温度等によって補正して求めた最終
的に燃料噴射量に相当する噴射パルス幅Ti を演算し、
該噴射パルス信号を噴射弁駆動手段69に出力する。噴射
弁駆動手段69は、前記噴射方式・噴射順序決定手段67に
より決定された噴射方式・噴射順序に従って燃焼時期に
対応する気筒の燃料噴射弁7に接続された駆動用トラン
ジスタ70を前記噴射パルス幅に相当する時間通電するこ
とにより、該燃料噴射弁7を開弁駆動させ、設定された
量の燃料を噴射供給させる。
The injection pulse width calculating means 68 calculates the injection pulse width T i finally obtained by correcting the basic fuel injection amount T P with the cooling water temperature or the like,
The injection pulse signal is output to the injection valve driving means 69. The injection valve driving means 69 controls the driving transistor 70 connected to the fuel injection valve 7 of the cylinder corresponding to the combustion timing according to the injection method / injection order determined by the injection method / injection order determining means 67 to inject the injection pulse width. By energizing for a time corresponding to, the fuel injection valve 7 is driven to open, and a set amount of fuel is injected and supplied.

【0018】かかる始動時の燃料噴射制御を図3に示し
たフローチャートに従って詳細に説明する。このルーチ
ンは、スタータスイッチ5のON操作つまりクランキン
グ開始と同時に開始される。ステップ (図ではSと記
す。以下同様) 1では、後述する別ルーチンにより前回
の機関停止時に記憶された気筒カウンタCYLCNTの
値及びこの値に対応する気筒のクランク角θを読み込
む。これによって機関停止時における各気筒のクランク
角位置状態を知ることができる。
The fuel injection control at the time of starting will be described in detail with reference to the flow chart shown in FIG. This routine is started at the same time when the starter switch 5 is turned on, that is, the cranking is started. In step (denoted as S in the figure. The same applies hereinafter) 1, the value of the cylinder counter CYLCNT stored when the engine was stopped last time and the crank angle θ of the cylinder corresponding to this value are read by another routine described later. This makes it possible to know the crank angle position state of each cylinder when the engine is stopped.

【0019】ステップ2では、水温センサ2により検出
された冷却水温度Tを、極低温として設定された所定値
0 (例えば−10°C) 以下であるかを判定する。そし
て、所定値T0 以下の極低温時には、ステップ3以降に
進んで、同時噴射方式により燃料噴射を行う。まず、ス
テップ3では、前記ステップ1で読み込まれた気筒カウ
ンタCYLCNTの値が0又は2であるか否かを判定す
る。
In step 2, it is determined whether the cooling water temperature T detected by the water temperature sensor 2 is equal to or lower than a predetermined value T 0 (for example, -10 ° C) set as an extremely low temperature. Then, when the temperature is extremely low, which is equal to or lower than the predetermined value T 0 , the process proceeds to step 3 and thereafter, and the fuel injection is performed by the simultaneous injection method. First, in step 3, it is determined whether the value of the cylinder counter CYLCNT read in step 1 is 0 or 2.

【0020】0又は2である場合は、ステップ4へ進み
所定の燃料噴射時期に全気筒同時に燃料噴射を行う。本
実施例は4サイクル4気筒機関であり、したがって機関
の1回転につき1回の割合、また、1気筒当りでは1サ
イクル当り2回の燃料噴射が行われることになる。ここ
で、ステップ1で読み込まれたクランク角θを基準とし
てクランク角センサ1から入力された単位角信号をカウ
ントして加算することにより現在のクランク角を計測し
つつ前記燃料噴射時期を検出する。尚、既に燃料噴射時
期を経過していた場合は、そのままステップ5へ進むよ
うにしてもよいが、噴射の遅れを重視して初回は無条件
に噴射する構成としてもよい。
If it is 0 or 2, the process proceeds to step 4 and fuel injection is performed simultaneously for all cylinders at a predetermined fuel injection timing. This embodiment is a four-cycle four-cylinder engine, and therefore fuel injection is performed once per one revolution of the engine, and twice per cylinder per cycle. Here, the fuel injection timing is detected while measuring the current crank angle by counting and adding the unit angle signals input from the crank angle sensor 1 with the crank angle θ read in step 1 as a reference. It should be noted that if the fuel injection timing has already passed, the process may proceed to step 5 as it is, but it is also possible to make an unconditional injection at the first time by emphasizing the injection delay.

【0021】次いで、ステップ5でクランク角センサ1
から新たに基準信号が入力されるのを待ち、基準信号が
入力されるとステップ6で、当該基準信号が特定気筒
(本実施例では第1気筒) に対応する信号であるか否か
を判定する。そして、特定気筒であると判定された場合
はステップ7へ進んで気筒カウンタCYLCNTの値を
対応する値、ここでは0にセットした後、また、特定気
筒でないと判定された場合はステップ8へ進み、気筒カ
ウンタCYLCNTをインクリメントした後ステップ9
へ進む。
Next, in step 5, the crank angle sensor 1
Waits for a new reference signal to be input from, and when the reference signal is input, in step 6, the reference signal is changed to the specific cylinder.
It is determined whether the signal corresponds to (first cylinder in this embodiment). If it is determined that the cylinder is a specific cylinder, the process proceeds to step 7, and the value of the cylinder counter CYLCNT is set to a corresponding value, here, 0, and if it is determined that the cylinder is not the specific cylinder, the process proceeds to step 8. , Step 9 after incrementing the cylinder counter CYLCNT
Go to.

【0022】ステップ9では、スタータスイッチ4がO
Nのままであるか否かを判定し、ONのままであれば、
ステップ3へ戻って同時噴射方式による燃料噴射が繰り
返される。かかる同時噴射による始動が終了し、スター
タスイッチ4がOFF操作されると、ステップ9からス
テップ10以降へ進みシーケンシャル噴射方式による燃料
噴射に切り換えられる。
In step 9, the starter switch 4 is turned off.
It is determined whether or not it remains N, and if it remains ON,
Returning to step 3, fuel injection by the simultaneous injection method is repeated. When the start by the simultaneous injection is completed and the starter switch 4 is turned off, the process proceeds from step 9 to step 10 and subsequent steps, and the fuel injection is switched to the sequential injection system.

【0023】また、ステップ2で冷却水温度Tが所定値
0 を超えるときには、始動開始からステップ10以降へ
進みシーケンシャル噴射方式により燃料噴射が行われ
る。まず、ステップ10では、前記気筒カウンタCYLC
NTの値に応じて次に燃料噴射される気筒を判定する。
具体的には、本実施例の場合、燃焼行程順序が第1気筒
→第3気筒→第4気筒→第2気筒であるとして、CYL
CNT=0,1,2,3に夫々対応する燃料噴射気筒
は、第1気筒,第3気筒,第4気筒,第2気筒となるの
で、各値に対応するステップ11A〜11Dのいずれかへ進
み、所定の噴射時期を待って対応する気筒の燃料噴射弁
7から燃料噴射を行う。かかるシーケンシャル噴射方式
においては、各気筒別の吸気行程において順次燃料噴射
が行われる。つまり、各気筒について1サイクル (1燃
焼行程) 当り1回の割合で順次燃料噴射が行われる。
When the cooling water temperature T exceeds the predetermined value T 0 in step 2, the process proceeds from step 10 to step 10 and thereafter, and fuel injection is performed by the sequential injection method. First, in step 10, the cylinder counter CYLC
The cylinder to be next injected with fuel is determined according to the value of NT.
Specifically, in the case of the present embodiment, CYL is assumed that the combustion stroke sequence is the first cylinder → the third cylinder → the fourth cylinder → the second cylinder.
Since the fuel injection cylinders corresponding to CNT = 0, 1, 2, and 3 are the first cylinder, the third cylinder, the fourth cylinder, and the second cylinder, respectively, go to any of steps 11A to 11D corresponding to each value. After advancing, the fuel injection is performed from the fuel injection valve 7 of the corresponding cylinder after waiting a predetermined injection timing. In such a sequential injection method, fuel injection is sequentially performed in the intake stroke of each cylinder. That is, fuel injection is sequentially performed for each cylinder once per cycle (one combustion stroke).

【0024】次いでステップ12へ進み、新たな基準信号
の入力を待ち、基準信号が入力されるとステップ13で当
該基準信号が特定気筒に対応する信号であるか否かを判
定し、特定気筒である場合はステップ13へ進んで気筒カ
ウンタCYLCNTの値を0にセットし、特定気筒でな
い場合はステップ14へ進んで気筒カウンタCYLCNT
をインクリメントした後ステップ10へ戻り、以後運転停
止までシーケンシャル噴射制御を繰り返す。
Next, in step 12, the input of a new reference signal is awaited. When the reference signal is input, it is determined in step 13 whether or not the reference signal is a signal corresponding to a specific cylinder. If there is, the process proceeds to step 13 and the value of the cylinder counter CYLCNT is set to 0. If it is not a specific cylinder, the process proceeds to step 14 and the cylinder counter CYLCNT.
After returning to step 10, the sequential injection control is repeated until the operation is stopped.

【0025】次に、運転停止時に各気筒のクランク角位
置状態を記憶するルーチンを図4に基づいて説明する。
ステップ21で、機関の回転が完全に停止したか否かを判
定する。これは、キースイッチ3のOFF操作後、所定
時間の経過をみたり、クランク角センサ1からの単位角
信号の入力の停止を検出したりして行えばよい。
Next, a routine for storing the crank angle position state of each cylinder when the operation is stopped will be described with reference to FIG.
In step 21, it is determined whether the rotation of the engine has completely stopped. This may be performed by observing a lapse of a predetermined time after the key switch 3 is turned off or by detecting the stop of the input of the unit angle signal from the crank angle sensor 1.

【0026】そして、機関が完全に停止したことを確認
した後、ステップ22へ進んで、現在の気筒カウンタCY
LCNTの値及び対応する気筒のクランク角θを、バッ
クアップ機能付のRAMに記憶する。この記憶された値
が、既述したように始動開始時に読み込まれるわけであ
る。かかる構成とすれば、始動時に水温に応じて同時噴
射方式とシーケンシャル噴射方式とを切り換えることに
より、燃料が気化しにくい極低温時の始動性を確保しつ
つ、常温,高温時には始動に必要なだけの燃料を供給し
て排気浄化性能を良好に維持することができる。図5
は、冷却水温度を横軸パラメータとして、シーケンシャ
ル噴射方式と同時噴射方式との場合の始動から完爆に至
るまでの所要時間を比較した実験結果を示す。
After confirming that the engine has completely stopped, the routine proceeds to step 22, where the current cylinder counter CY
The value of LCNT and the corresponding crank angle θ of the cylinder are stored in the RAM with a backup function. This stored value is read at the start of starting as described above. With such a configuration, by switching between the simultaneous injection method and the sequential injection method according to the water temperature at the time of start-up, while ensuring the startability at extremely low temperatures at which fuel is difficult to vaporize, it is only necessary to start at normal temperature and high temperature. The fuel can be supplied to maintain good exhaust gas purification performance. Figure 5
Shows the experimental results comparing the time required from the start to the complete explosion in the sequential injection method and the simultaneous injection method with the cooling water temperature as the horizontal axis parameter.

【0027】図示の如く、極低温側になるほど、同時噴
射方式の方が短時間で始動が完了する結果が得られた。
この主要因としては、噴射開始直後、シーケンシャル噴
射方式とした場合は、その初回噴射燃料分の殆どの量が
吸気ポート内に壁流分として残留し、燃焼室内への燃料
到達が期待できないということが挙げられ、より低温側
へ移行するほど、その傾向が強くなるものと解釈できる
(これは、燃料の揮発性,粘性の性状変化に起因する現
象と考えられる) 。これに対し、低温時における同時噴
射方式とした場合の完爆に至るまでの所要時間は大幅な
改善効果を示している。この要因は、前述の内容の逆説
になるが、例えば始動開始直後、吸気行程 (要求燃料噴
射点) が後になる気筒に関して考えるとき、始動の瞬間
に不要な燃料噴射が行われるわけであり、正規 (吸気行
程に同期して) 噴射される噴射分Ti が作用する前に、
余剰分の燃料が吸気ポート内に介在することになる。即
ち、この余剰分の燃料が吸気ポート内壁流分として作用
し、次に関わる正規噴射パルス幅に相当する燃料分が前
記の壁流分に上乗せされて吸気ポート内に供給されるこ
とが、燃焼室への燃料到達時間を早める効果として表
れ、結果としてシーケンシャル噴射の場合よりも始動性
が向上する大きな要因となりうる。
As shown in the figure, as the temperature becomes extremely low, the simultaneous injection method has the result that the start is completed in a shorter time.
The main reason for this is that if the sequential injection method is used immediately after the start of injection, most of the initial injected fuel remains as a wall flow in the intake port, and it is not possible to expect fuel to reach the combustion chamber. It can be interpreted that the tendency becomes stronger as the temperature shifts to lower temperatures.
(This is considered to be a phenomenon caused by changes in the properties of fuel volatility and viscosity). On the other hand, when the simultaneous injection method is used at low temperature, the time required until complete explosion shows a significant improvement effect. This factor is a paradox of the above contents, but when considering, for example, a cylinder whose intake stroke (requested fuel injection point) is later immediately after the start of start, unnecessary fuel injection is performed at the moment of start, Before the injected injection amount T i acts (synchronously with the intake stroke),
Excess fuel will be present in the intake port. That is, the surplus fuel acts as a flow on the inner wall of the intake port, and the fuel corresponding to the next-related normal injection pulse width is added to the wall flow to be supplied to the intake port. It appears as an effect of accelerating the fuel arrival time to the chamber, and as a result, it can be a major factor of improving the startability as compared with the case of sequential injection.

【0028】言い換えれば、当初からシーケンシャル噴
射を行う場合、初回より吸気行程に同期して燃料を供給
するが、この1〜2噴射回数分は壁流分として作用し、
燃料室への燃料到達が同時噴射方式に比べ遅れることに
なるといえる。図6は、前記図5に示した実験データの
取得時に測定した始動時のHC排出量を示すが、始動時
間を短縮化可能とした分、同時噴射方式の場合の方がH
C排出レベルも低く、シーケンシャル噴射方式に比べ、
排出レベルの再現性も安定しており本発明の効果の程が
わかる。
In other words, when performing sequential injection from the beginning, the fuel is supplied from the first in synchronism with the intake stroke, but the number of injections 1 to 2 acts as a wall flow,
It can be said that the arrival of fuel in the fuel chamber is delayed compared to the simultaneous injection method. FIG. 6 shows the HC emission amount at the time of starting, which was measured when the experimental data shown in FIG. 5 was obtained. However, since the starting time can be shortened, the HC injection amount in the case of the simultaneous injection method is higher.
The C emission level is low, and compared to the sequential injection method,
The reproducibility of the discharge level is also stable and the effect of the present invention can be seen.

【0029】一方、図6において常温始動域は始動性
(完爆までの所要時間) に大きな差は認められなかっ
た。これは前述の燃料の揮発性,粘性の点で壁流相当分
がさほど多量ではなく、燃焼室への燃料到達が比較的容
易に実現できていることによるものと考えられる。した
がって、常温始動域では不必要な燃料を供給する同時噴
射方式は排気性能(特にHC低減) の観点から適切とは
いえず、始動所要時間が二者で同等であれば必要とする
気筒に必要な燃料量だけ噴射するシーケンシャル噴射方
式の方が好ましい。即ち、常温以上ではシーケンシャル
噴射方式、低温時は同時噴射方式とした本発明の特徴が
理解できる。
On the other hand, in FIG. 6, the room temperature starting region is the starting property.
No significant difference was found in the time required to complete the explosion. It is considered that this is because the amount of the wall flow is not so large in view of the volatility and viscosity of the fuel described above, and the fuel reaches the combustion chamber relatively easily. Therefore, the simultaneous injection method that supplies unnecessary fuel in the normal temperature starting region is not appropriate from the viewpoint of exhaust performance (especially HC reduction). A sequential injection method in which only a sufficient amount of fuel is injected is preferable. That is, it is possible to understand the features of the present invention in which the sequential injection method is used at room temperature or higher and the simultaneous injection method is used at low temperature.

【0030】尚、前記本発明の実施例では同時噴射方式
は機関の1回転毎に1回の割合で全気筒同時噴射する方
式としたが、機関の1回転当り2回つまりシーケンシャ
ル噴射方式における噴射時期毎に2気筒同時に噴射する
いわゆるグループ噴射方式を採用してもよく、各気筒の
2回の噴射タイミングを対等 (夫々同じ行程で噴射)と
し、1回は正規噴射とすることができる。
In the above-described embodiment of the present invention, the simultaneous injection system is a system in which all cylinders are simultaneously injected once for each revolution of the engine. However, the injection is performed twice per revolution of the engine, that is, in the sequential injection system. A so-called group injection method in which two cylinders are simultaneously injected at each time may be adopted, and two injection timings of each cylinder may be made equal (injection in the same stroke), and one injection may be performed normally.

【0031】また、前記実施例では、停止時に気筒カウ
ンタCYLCNTと同時に単位クランク角のカウントに
よるθの値も記憶して、始動開始後基準信号が入力され
る前から燃料噴射が可能な構成としたが、簡易的には気
筒カウンタCYLCNTの値のみを記憶しておいて、始
動開始後基準信号を1回入力した後に燃料噴射を開始す
る構成としてもよい。但し、この方式では、前記の全気
筒同時噴射方式では最初に基準信号が非噴射の場合 (実
施例の場合では気筒カウンタCYLCNTの値が1,3
の場合) 噴射が遅れてしまうので、前記のグループ噴射
にするか、若しくは、最初に入力した基準信号に合わせ
て全気筒同時噴射を行うような構成とすることもでき
る。
Further, in the above-described embodiment, the value of θ obtained by counting the unit crank angle is stored at the same time as the cylinder counter CYLCNT at the time of stop, so that the fuel injection can be performed after the start is started and before the reference signal is input. However, for simplicity, only the value of the cylinder counter CYLCNT may be stored, and the fuel injection may be started after the reference signal is input once after the start. However, in this method, when the reference signal is not injected first in the all-cylinder simultaneous injection method (in the case of the embodiment, the value of the cylinder counter CYLCNT is 1, 3).
In this case, since the injection is delayed, it is possible to adopt the group injection described above, or to perform simultaneous injection for all cylinders in accordance with the reference signal input first.

【0032】[0032]

【発明の効果】以上説明してきたように本発明によれ
ば、機関停止時のクランク角位置状態を記憶しておき、
始動時に機関の温度状態に基づいて常温以上ではシーケ
ンシャル噴射方式、所定以下の低温時は同時噴射方式に
切り換える構成としたため、低温時の始動性を良好に確
保できると共に、常温以上では不必要な燃料噴射を停止
して排気浄化性能を良好に維持でき、始動性と排気浄化
性能の両立を図れるものである。
As described above, according to the present invention, the crank angle position state when the engine is stopped is stored,
Based on the temperature condition of the engine at the time of starting, it is configured to switch to the sequential injection method at room temperature or higher and the simultaneous injection method at low temperature below a predetermined value, so that it is possible to ensure good startability at low temperature and unnecessary fuel at room temperature or higher. The injection can be stopped and the exhaust purification performance can be favorably maintained, and both startability and exhaust purification performance can be achieved.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の構成・機能を示すブロック図。FIG. 1 is a block diagram showing the configuration and functions of the present invention.

【図2】本発明の一実施例の構成を示す図。FIG. 2 is a diagram showing the configuration of an embodiment of the present invention.

【図3】同上実施例の燃料噴射制御ルーチンを示すフロ
ーチャート。
FIG. 3 is a flowchart showing a fuel injection control routine of the above embodiment.

【図4】同じく機関停止時のクランク角位置状態記憶ル
ーチンを示すフローチャート。
FIG. 4 is a flow chart showing a crank angle position state storage routine when the engine is stopped.

【図5】同じく水温に対する始動所要時間の関係を示す
線図。
FIG. 5 is a diagram showing the relationship between the water temperature and the required start time.

【図6】同じく始動後経過時間に対するHC排出濃度の
関係を示す線図。
FIG. 6 is a graph showing the relationship between the HC emission concentration and the elapsed time after starting.

【符号の説明】[Explanation of symbols]

1 クランク角センサ 2 水温センサ 3 エンジンキースイッチ 5 スタータスイッチ 6 制御回路 7 燃料噴射弁 63 停止時クランク角位置状態記憶手段 65 始動判定手段 66 水温判定手段 67 噴射方式・噴射順序切換手段 1 Crank angle sensor 2 Water temperature sensor 3 Engine key switch 5 Starter switch 6 Control circuit 7 Fuel injection valve 63 Crank angle position state storage means 65 Stop determination means 66 Water temperature determination means 67 Injection method / injection sequence switching means

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】気筒毎に燃料噴射弁を備えた多気筒内燃機
関の燃料噴射制御装置において、 各気筒の所定のクランク角位置で基準信号を出力し、か
つ、特定の気筒の基準信号は当該気筒の判別が可能に形
成されてなる基準信号出力手段と、 前記基準信号に基づいて機関停止時の各気筒のクランク
角位置状態を記憶する停止時クランク角位置状態記憶手
段と、 気筒別に燃焼行程順序に従って燃焼行程1回当り1回ず
つ燃料噴射させるシーケンシャル噴射制御手段と、 各気筒の燃料行程1回当り複数回の燃料噴射が行われる
ように複数気筒同時に燃料噴射させる同時噴射制御手段
と、 機関の始動状態を判定する始動判定手段と、 機関の温度状態を検出する機関温度検出手段と、 前記機関温度検出手段によって検出される始動時の機関
温度が所定以上の状態であるときには、前記停止時クラ
ンク角位置状態検出手段によって検出される各気筒のク
ランク角位置状態に基づいて、前記シーケンシャル噴射
制御手段によりシーケンシャル噴射を行わせ、始動時の
機関温度が前記所定未満の低温状態であるときには、前
記同時噴射制御手段によって同時噴射を行わせるように
燃料噴射方式を切り換える噴射方式切換手段と、 を含んで構成したことを特徴とする多気筒内燃機関の燃
料噴射制御装置。
1. A fuel injection control device for a multi-cylinder internal combustion engine having a fuel injection valve for each cylinder, wherein a reference signal is output at a predetermined crank angle position of each cylinder, and the reference signal of a specific cylinder is the reference signal. Reference signal output means formed so that the cylinder can be discriminated, stop crank angle position state storage means for storing the crank angle position state of each cylinder when the engine is stopped based on the reference signal, and combustion stroke for each cylinder A sequential injection control means for injecting fuel once per combustion stroke in accordance with the order; a simultaneous injection control means for simultaneously injecting fuel into a plurality of cylinders so that a plurality of fuel injections are performed per fuel stroke for each cylinder; Starting determination means for determining the starting state of the engine, engine temperature detection means for detecting the temperature state of the engine, and engine temperature at the time of startup detected by the engine temperature detection means are predetermined. In the above state, based on the crank angle position state of each cylinder detected by the stop crank angle position state detection means, the sequential injection control means causes the sequential injection to be performed, and the engine temperature at the start is Fuel injection for a multi-cylinder internal combustion engine, characterized in that when the temperature is lower than a predetermined temperature, the injection method switching means switches the fuel injection method so that the simultaneous injection is performed by the simultaneous injection control means. Control device.
JP30552593A 1993-12-06 1993-12-06 Fuel injection control device for multiple cylinder internal combustion engine Pending JPH07158482A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP30552593A JPH07158482A (en) 1993-12-06 1993-12-06 Fuel injection control device for multiple cylinder internal combustion engine

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP30552593A JPH07158482A (en) 1993-12-06 1993-12-06 Fuel injection control device for multiple cylinder internal combustion engine

Publications (1)

Publication Number Publication Date
JPH07158482A true JPH07158482A (en) 1995-06-20

Family

ID=17946200

Family Applications (1)

Application Number Title Priority Date Filing Date
JP30552593A Pending JPH07158482A (en) 1993-12-06 1993-12-06 Fuel injection control device for multiple cylinder internal combustion engine

Country Status (1)

Country Link
JP (1) JPH07158482A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036928A3 (en) * 1999-03-18 2002-09-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Starting device and control method thereof for direct-injection internal combustion engine
KR100399179B1 (en) * 2000-12-19 2003-09-22 기아자동차주식회사 Fuel Injection Method and Crank-Angle Sensing Unit for Engine
EP1840360A1 (en) * 2006-03-31 2007-10-03 Mazda Motor Corporation Control system for multi-cylinder four-cycle engine
JP2009156219A (en) * 2007-12-27 2009-07-16 Denso Corp Control device for internal combustion engine
JP2009174489A (en) * 2008-01-28 2009-08-06 Yanmar Co Ltd Control device for diesel engine
US7987043B2 (en) 2008-08-21 2011-07-26 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1036928A3 (en) * 1999-03-18 2002-09-11 Mitsubishi Jidosha Kogyo Kabushiki Kaisha Starting device and control method thereof for direct-injection internal combustion engine
KR100399179B1 (en) * 2000-12-19 2003-09-22 기아자동차주식회사 Fuel Injection Method and Crank-Angle Sensing Unit for Engine
EP1840360A1 (en) * 2006-03-31 2007-10-03 Mazda Motor Corporation Control system for multi-cylinder four-cycle engine
JP2009156219A (en) * 2007-12-27 2009-07-16 Denso Corp Control device for internal combustion engine
JP2009174489A (en) * 2008-01-28 2009-08-06 Yanmar Co Ltd Control device for diesel engine
WO2009096210A1 (en) * 2008-01-28 2009-08-06 Yanmar Co., Ltd. Engine
CN101925728A (en) * 2008-01-28 2010-12-22 洋马株式会社 Engine
US7987043B2 (en) 2008-08-21 2011-07-26 Toyota Jidosha Kabushiki Kaisha Fuel injection control apparatus for internal combustion engine

Similar Documents

Publication Publication Date Title
JP3045921B2 (en) Fuel injection control device for internal combustion engine
JPH10318021A (en) Starting time fuel injection controller for internal combustion engine
JP3856100B2 (en) Fuel injection control device for internal combustion engine
JPH0972234A (en) Fuel injection controller for internal combustion engine
JP4259109B2 (en) Engine fuel injection control device
JP4309079B2 (en) Fuel injection control device for internal combustion engine
JPH1030474A (en) Fuel injection controller of multi-cylinder internal combustion engine
JPH11107823A (en) Stop position estimating device for internal combustion engine
JPH07158482A (en) Fuel injection control device for multiple cylinder internal combustion engine
JP2007239638A (en) Fuel injection control device for internal combustion engine
JP2003056381A (en) Fuel injection controller
JPH0217704B2 (en)
JP3814862B2 (en) Fuel injection device for start of internal combustion engine
JP3778349B2 (en) Fuel injection control device for start-up of internal combustion engine
JP3562277B2 (en) Engine start control device
JP4722676B2 (en) Fuel injection control device for multi-cylinder engine
JP2879993B2 (en) Fuel injection control device for internal combustion engine
JP3692641B2 (en) Fuel injection control device for internal combustion engine
JP3818326B2 (en) Fuel injection control device for start-up of internal combustion engine
JP4103480B2 (en) Fuel injection control device
JP3735957B2 (en) Fuel injection control device for internal combustion engine
JP2003328815A (en) Start phase fuel injection control system for multicylinder internal combustion engine
JP2002161783A (en) Fuel injection control device for multicylindered engine
JP2001342874A (en) Fuel injection control device of internal combustion engine
JP2005240606A (en) Crank angle determining device for internal combustion engine