JPH0715814A - Gas insulated switching device - Google Patents

Gas insulated switching device

Info

Publication number
JPH0715814A
JPH0715814A JP14664593A JP14664593A JPH0715814A JP H0715814 A JPH0715814 A JP H0715814A JP 14664593 A JP14664593 A JP 14664593A JP 14664593 A JP14664593 A JP 14664593A JP H0715814 A JPH0715814 A JP H0715814A
Authority
JP
Japan
Prior art keywords
tank
temperature rise
stainless steel
plate
diameter
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP14664593A
Other languages
Japanese (ja)
Inventor
Hiroshi Kaneda
浩 金田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP14664593A priority Critical patent/JPH0715814A/en
Publication of JPH0715814A publication Critical patent/JPH0715814A/en
Pending legal-status Critical Current

Links

Landscapes

  • Gas-Insulated Switchgears (AREA)
  • Installation Of Bus-Bars (AREA)

Abstract

PURPOSE:To suppress he temperature rise of a grounded tank without an increase in its diameter, by forming the grounded tank out of a clad plate made of a stainless steel plate with the lining of a copper plate. CONSTITUTION:A grounded tank 1 is formed out of a clad plate consisting of stainless steel plate 3 and a copper plate 4. Therefore, the usable temperature range of the material of the tank 1 can withstand a temperature rise over 30K, and the temperature rise of the tank 1 which is caused by its material becomes limitless (but, the limitation of temperature rise which is associated with its safety is left intact). Also, since the stainless steel plate 3 is used, the tank 1 has an enough mechanical strength as a tank, and when the diameter of the tank 1 is increased as the current-cavying capacity is increased, its plate thickness is kept within the manufacturable range associated with conventional manufacturing equipments. Further, since the stainless steel plate 3 and copper plate 4 both non-magnetic, no heat generation due to the iron loss caused by an AC magnetic field is present in the tank 1, and any overcurrent flows through the copper plate 4 having a small resistivity in the tank 1. Thereby, the temperature rise of the tank 1 can be suppressed without an increase in its diameter.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、変電所・開閉所におい
て使用されるガス絶縁開閉装置(以下GISという)に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated switchgear (hereinafter referred to as GIS) used in a substation or switchgear.

【0002】[0002]

【従来の技術】GISは、SF6 ガスのような絶縁ガス
を封入した、接地タンク(以下タンクという)内に高電
圧導体を絶縁支持して構成されるが、運転時に高電圧導
体に何千アンペアもの電流が流れるため、高電圧導体の
有する微小抵抗により熱が発生する。この熱はタンク内
に封入されたSF6 ガスを通じてタンクに伝わり、タン
クの温度を上昇させる。また、高電圧導体に電流が流れ
ることにより交流磁界が高電圧導体周囲に生じるが、タ
ンク材料が磁性体である場合には、この交流磁界により
タンクで鉄損が起こり、損失分が熱として現れてタンク
の温度を上昇させる。さらに、三相器の様に同一タンク
内に3本の高電圧導体が配置された場合には、高電圧導
体がタンクの中心に配置されていないため、高電圧導体
から生じた磁界がタンクと交錯する。このため、タンク
には局所的に渦電流が流れ、タンクの有する抵抗によっ
て熱を発生し、タンクの温度を上昇させる。
2. Description of the Related Art A GIS is constructed by insulating and supporting a high-voltage conductor in a grounded tank (hereinafter referred to as a tank), which is filled with an insulating gas such as SF 6 gas. Since amperes of current flow, heat is generated due to the small resistance of the high voltage conductor. This heat is transmitted to the tank through the SF 6 gas sealed in the tank and raises the temperature of the tank. An AC magnetic field is generated around the high-voltage conductor due to the current flowing through the high-voltage conductor.However, when the tank material is a magnetic material, this AC magnetic field causes iron loss in the tank and the loss appears as heat. Increase the temperature of the tank. Furthermore, when three high-voltage conductors are arranged in the same tank as in a three-phase device, the high-voltage conductor is not arranged in the center of the tank, so the magnetic field generated from the high-voltage conductor is Cross each other. Therefore, eddy current locally flows in the tank, heat is generated by the resistance of the tank, and the temperature of the tank rises.

【0003】以上述べてきた数々の要因により、運転時
のGISのタンクは温度が上昇する。GISを安全に運
転するためには、このようなタンクの温度上昇を、タン
ク材料の使用可能温度範囲内、もしくは人がタンクに触
れても問題がないことを前提として考えられた安全基準
(30Kまでの温度上昇)以下に抑えなければならない。
また、タンクの温度上昇は高電圧導体の温度も引き上げ
ることになり、通電部に対する温度上昇規格値を上回る
ことにもなり、機器の通電性能を低下させる要因にもな
る。
Due to the various factors described above, the temperature of the GIS tank during operation rises. In order to operate the GIS safely, it is considered that such a temperature rise of the tank is within the usable temperature range of the tank material, or that there is no problem even if a person touches the tank. Temperature rise up to)) or less.
Further, the temperature rise of the tank also raises the temperature of the high-voltage conductor, which exceeds the temperature rise standard value for the current-carrying part, which also causes a reduction in the current-carrying performance of the device.

【0004】近年、電力需要の増加に伴い、GISの電
圧及び通電容量が大きくなってきている。このため、高
電圧導体を流れる電流が増え、発熱量が増加している。
さらにこれに伴って、交流磁界も大きくなっているの
で、タンク材料及び高電圧導体の配置によっては磁界に
よる鉄損や渦電流による発熱も増加し、タンクの温度上
昇が大きくなってきている。したがって、通電容量が大
きい場合には、温度上昇量を規定値以下に抑えるため
に、タンク材料の適切な選定とタンク径の大形化を行っ
て対処している。日立評論VOL64(1982年3月発行)
には、軟鋼製のタンクの内側に局部的に銅製の磁気シー
ルドを配設したGISが記載されている。このようなG
ISにおいては、渦電流は磁気シールドに流れるため、
タンクの温度上昇を抑制することができる。しかし磁気
シールドを配設することによってタンク内面に凹凸が生
じるのでタンク内の電界が乱れ、特に磁気シールドの端
部の電界を誘和するためにタンク径を大きくしなければ
ならなかった。また、タンク材料として磁性体である鋼
材(SS400 材)や、抵抗率の大きいステンレス鋼(S
US304 )を使わず、アルミニウム等の非磁性材を使う
ことにより、磁界によるタンクの直接の発熱を少なくし
たGISも知られている。しかし、このような従来のG
ISは、タンク径が大きくなりGISの配置構成を制限
する可能性があるという問題があった。
In recent years, as the demand for electric power has increased, the voltage and current carrying capacity of GIS have increased. Therefore, the current flowing through the high-voltage conductor increases, and the amount of heat generation increases.
Further, along with this, since the AC magnetic field is also increased, iron loss due to the magnetic field and heat generation due to eddy current are increased depending on the tank material and the arrangement of the high-voltage conductor, and the temperature rise of the tank is increasing. Therefore, when the current-carrying capacity is large, in order to keep the amount of temperature rise below the specified value, the tank material is appropriately selected and the tank diameter is enlarged. Hitachi Review VOL64 (issued in March 1982)
Describes a GIS in which a copper magnetic shield is locally arranged inside a mild steel tank. G like this
In IS, eddy currents flow in the magnetic shield, so
The temperature rise of the tank can be suppressed. However, since the inner surface of the tank becomes uneven by disposing the magnetic shield, the electric field in the tank is disturbed, and in particular, the tank diameter must be increased in order to attract the electric field at the end of the magnetic shield. In addition, as a tank material, a magnetic steel material (SS400 material) or stainless steel with a high resistivity (S
There is also known a GIS in which direct heat generation of a tank due to a magnetic field is reduced by using a non-magnetic material such as aluminum without using US304). However, such a conventional G
The IS has a problem that the tank diameter becomes large and the arrangement configuration of the GIS may be limited.

【0005】このような従来例として、図5及び図6
に、三相一括形で全長の短い三相短母線の断面図を示
す。三相短母線においては、全長が短い母線であるため
にタンク1内の容積が小さく、高電圧導体2の発熱がタ
ンクに伝わり易い。なおかつ、タンク1内に3本の高電
圧導体2a、2b、2cがあるため発熱量も大きい。し
たがって、タンク1の温度上昇量を規定値以下に抑える
ためには、タンク1の径を大きくして容積を増やさなけ
ればならない。従来、一般的にタンク1の材料として用
いられてきたアルミ材(A5083材、A5052材)について
考えると、A5083材は材料の使用温度範囲からの温度上
昇の限度が25Kと低いため、温度上昇量を規定値以下に
抑えるためには、タンク1の径を大きくする必要があ
る。A5052材は安全基準による30Kまでの温度上昇が許
されるが、機械的強度が他の材料に比べて弱い(引張強
さ−A5052材:24kgf/mm2 、A5083材:28kgf/mm
2 )。そのため、温度上昇対策としてタンクの径を大き
くすると、圧力容器としての強度を得るためにタンク1
の板厚が厚くなり、タンクの製作が従来のガス絶縁開閉
装置のタンクを製作する設備ではできなくなってしま
う。鋼材(SS400 材−引張強さ:41〜52kgf/mm2
及びステンレス鋼(SUS304 材−引張強さ:53kgf/
mm2 )は機械的強度において十分であるが、鋼材(SS
400 P)と磁性体なので鉄損による発熱があり、またス
テンレス鋼(SUS304 材)は抵抗率が72μΩcmと大き
く(SS400 材:14.5μΩcm、A5052材: 4.9μΩc
m)。三相器では渦電流による発熱があるため、どちら
も通電容量が大きい場合には使用できない。
As such a conventional example, FIG. 5 and FIG.
Figure 3 shows a cross-sectional view of a three-phase short bus bar with a three-phase package and a short overall length. Since the three-phase short busbar has a short overall length, the volume inside the tank 1 is small, and the heat generated by the high-voltage conductor 2 is easily transmitted to the tank. Moreover, since there are three high voltage conductors 2a, 2b and 2c in the tank 1, the amount of heat generated is large. Therefore, in order to suppress the temperature rise amount of the tank 1 to be equal to or less than the specified value, it is necessary to increase the diameter of the tank 1 and increase the volume. Considering the aluminum material (A5083 material, A5052 material) that has been generally used as the material of the tank 1 in the past, the temperature increase amount of A5083 material is as low as 25K from the operating temperature range of the material. The diameter of the tank 1 must be increased in order to keep the value below the specified value. A5052 material is the temperature rise of up to 30K by the safety standards is permitted, the mechanical strength is weaker than the other materials (tensile strength -A5052 material: 24kgf / mm 2, A5083 material: 28 kgf / mm
2 ). Therefore, if the diameter of the tank is increased as a measure for temperature rise, the tank
Since the plate thickness becomes thicker, the tank cannot be manufactured by the conventional equipment for manufacturing a gas-insulated switchgear tank. Steel material (SS400 material-Tensile strength: 41 to 52 kgf / mm 2 )
And stainless steel (SUS304 material-tensile strength: 53kgf /
mm 2 ) has sufficient mechanical strength, but steel (SS
(400 P) and magnetic material, it generates heat due to iron loss, and stainless steel (SUS304 material) has a large resistivity of 72 μΩcm (SS400 material: 14.5 μΩcm, A5052 material: 4.9 μΩc).
m). Since three-phase devices generate heat due to eddy currents, neither can be used when the current carrying capacity is large.

【0006】したがって、三相短母線においてはA5083
材を用いて径の大きいタンクを用いると、図7に示すよ
うに、三相短母線5のタンク径が他の機器(三相母線6
及び断路器7)のタンク径より大きくなってしまい、そ
の分だけ他の機器の脚8を大きくして高さを三相短母線
5に揃えなければならない。つまり、三相短母線のみタ
ンク径が大きいだけでガス絶縁開閉装置全体の高さが高
くなってしまうという問題があった。
Therefore, in the three-phase short bus, A5083 is used.
When a tank having a large diameter is used as the material, as shown in FIG. 7, the tank diameter of the three-phase short bus bar 5 is different from that of other equipment (three-phase bus bar 6).
And the diameter of the disconnector 7) becomes larger than the tank diameter, so that the legs 8 of other devices must be enlarged correspondingly and the height must be aligned with the three-phase short bus bar 5. In other words, there is a problem that the height of the entire gas-insulated switchgear becomes high even if only the tank diameter of the three-phase short bus bar is large.

【0007】[0007]

【発明が解決しようとする課題】本発明は、上述したよ
うな従来技術の課題を解決するために提案されたもので
あり、その目的は、30Kまでの温度上昇に耐える使用可
能温度範囲をもち、タンクとして十分な機械的強度を有
し、なおかつ非磁性体で抵抗率も低いような理想的な材
料をタンク材料として用いたガス絶縁開閉装置と同等の
ものを提供することである。
SUMMARY OF THE INVENTION The present invention has been proposed to solve the problems of the prior art as described above, and its object is to have a usable temperature range that can withstand a temperature rise up to 30K. The object of the present invention is to provide a gas-insulated switchgear that has sufficient mechanical strength as a tank, and is made of an ideal material that is a non-magnetic material and has a low resistivity as a tank material.

【0008】[0008]

【課題を解決するための手段】上記目的を達成するため
に本発明においては、接地されたタンク内に絶縁支持部
材を介して高電圧導体を固定し、この絶縁支持部材とタ
ンク内に封入されたSF6 ガスで高電圧導体を絶縁する
ガス絶縁開閉装置において、前記タンクがステンレン鋼
板と銅板で構成されたクラッド板で構成されていること
を特徴とするGISを提供する。
In order to achieve the above object, according to the present invention, a high voltage conductor is fixed in a grounded tank through an insulating support member, and the insulating support member and the tank are sealed. A gas-insulated switchgear for insulating a high-voltage conductor with SF 6 gas, wherein the tank is composed of a clad plate composed of a stainless steel plate and a copper plate.

【0009】[0009]

【作用】以上のような構成を有する本発明のGISにお
いては、タンクをステンレス鋼板と銅板で構成されたク
ラッド板で構成することにより、材料の使用可能温度範
囲は30K以上の温度上昇に耐えることができ、タンク材
料による温度上昇制限がなくなる(但し安全面からの温
度上昇制限30Kは残る)。また、ステンレス鋼を用いて
いるため、タンクとして十分な機械的強度があり、通電
容量の増加にともないタンク径を大きくしても、タンク
の板厚を従来設備での製作可能範囲に収められる。さら
に、ステンレス鋼も銅も非磁性体なので交流磁界による
鉄損による発熱もない。また、ステンレス鋼の抵抗率は
72μΩcmであるのに対し、銅の抵抗率は1.78μΩcm程度
であるため、クラッド板を交差する磁界により生じた渦
電流の大半は抵抗率の低い銅材の方を流れるので、渦電
流に起因する発熱も従来に比べて小さくなる。
In the GIS of the present invention having the above-described structure, the tank is composed of the clad plate composed of the stainless steel plate and the copper plate so that the usable temperature range of the material can withstand the temperature increase of 30 K or more. The temperature rise limitation due to the tank material is eliminated (however, the temperature rise limitation of 30K remains for safety reasons). Further, since stainless steel is used, it has sufficient mechanical strength as a tank, and even if the diameter of the tank is increased with the increase of the current carrying capacity, the plate thickness of the tank can be kept within the range that can be manufactured by conventional equipment. Furthermore, since stainless steel and copper are non-magnetic materials, there is no heat generation due to iron loss due to an alternating magnetic field. Also, the resistivity of stainless steel is
While the resistivity of copper is 72 μΩcm, the resistivity of copper is about 1.78 μΩcm, so most of the eddy current generated by the magnetic field that crosses the clad plate flows through the copper material with low resistivity, so it is caused by the eddy current. Heat generation is also smaller than in the past.

【0010】[0010]

【実施例】以下に、本発明によるガス絶縁開閉装置の一
実施例について、図1乃至図4を参照して具体的に説明
する。なお、図5乃至図7に示した従来技術と同一部分
には同一符号を付している。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the gas-insulated switchgear according to the present invention will be specifically described below with reference to FIGS. The same parts as those in the conventional technique shown in FIGS. 5 to 7 are designated by the same reference numerals.

【0011】本実施例の基本的な構成は、図5乃至図7
に示した従来技術と同様である。図1及び図2に示すよ
うに、タンク1内には高電圧導体2a〜2cが配置され
ている。
The basic structure of this embodiment is shown in FIGS.
This is similar to the prior art shown in FIG. As shown in FIGS. 1 and 2, high voltage conductors 2 a to 2 c are arranged in the tank 1.

【0012】そして、以上のような基本的な部品構成に
加え、本実施例では、タンク1をステンレス鋼3と銅4
のクラッド板で構成し、内側が銅4になるようにしてい
る。機械的強度を確保するためのステンレス鋼3は、30
K以上の温度上昇でも圧力容器材料としての使用が許容
されているため、A5083材の様なタンク材料による温度
上昇制限はなくなる(但し製品としての保守安全面から
の温度上昇制限は残る)。また、ステンレス鋼を用いて
いるため、機械的強度が強く、高電圧導体からの発熱に
よる温度上昇を規定値以下に抑えるためにタンク径を大
きくする必要がない。さらに、ステンレス鋼も銅も非磁
性体なので交流磁界によって生じる鉄損による発熱もな
い。また、ステンレス鋼の電気抵抗率は高いが、銅の電
気抵抗率は充分に低いために、磁界による渦電流は大半
が銅の方に流れるため、これによる発熱も少なく問題に
ならない。さらに、磁気シールドを配設する必要がな
く、タンク1内には凸凹がないので電界が乱れることも
なく、しかも電界設計が容易である。
In addition to the basic component structure as described above, in this embodiment, the tank 1 is made of stainless steel 3 and copper 4.
It is made of a clad plate, and the inside is made of copper 4. Stainless steel 3 for ensuring mechanical strength is 30
Since the use as a pressure vessel material is allowed even if the temperature rises above K, the temperature rise limitation by the tank material such as A5083 material is eliminated (however, the temperature rise limitation remains from the viewpoint of maintenance safety as a product). Further, since stainless steel is used, the mechanical strength is strong, and it is not necessary to increase the tank diameter in order to suppress the temperature rise due to heat generation from the high-voltage conductor to a specified value or less. Furthermore, since stainless steel and copper are non-magnetic materials, there is no heat generation due to iron loss caused by an alternating magnetic field. Further, although the electrical resistivity of stainless steel is high, the electrical resistivity of copper is sufficiently low that most of the eddy current due to the magnetic field flows toward the copper, so that heat generation due to this is small and it is not a problem. Further, it is not necessary to dispose a magnetic shield, and since there is no unevenness in the tank 1, the electric field is not disturbed and the electric field design is easy.

【0013】したがって、タンクの容積が三相短母線の
ように小さい場合でも、タンクの温度上昇を規定値以下
に抑えることができ、隣接の大きなガス容積を有する機
器で、温度上昇制約を受けない機器と同等なタンク径で
ガス絶縁開閉装置を構成することが可能である。したが
って、図4に示すように、ガス絶縁開閉装置の各機器の
タンク径が同等に揃うために、脚の高さが従来例のよう
に高くならず、ガス絶縁開閉装置の高さを低く抑えられ
る。
Therefore, even if the volume of the tank is small like a three-phase short bus bar, the temperature rise of the tank can be suppressed to a specified value or less, and the equipment having a large gas volume adjacent thereto is not subject to the temperature rise restriction. It is possible to construct a gas insulated switchgear with a tank diameter equivalent to that of the equipment. Therefore, as shown in FIG. 4, since the tank diameters of the respective devices of the gas-insulated switchgear are the same, the height of the legs does not increase as in the conventional example, and the height of the gas-insulated switchgear is kept low. To be

【0014】[0014]

【発明の効果】以上説明したように、本発明において
は、タンクをステンレス鋼板と銅板で構成されたクラッ
ド板で構成することにより、従来温度上昇の問題からタ
ンク径を大きくせざるを得なかった機器を、他の機器と
同等のタンク径で構成した信頼性の高いガス絶縁開閉装
置。
As described above, in the present invention, the tank diameter is inevitably increased due to the problem of temperature increase by forming the tank with the clad plate made of the stainless steel plate and the copper plate. A highly reliable gas-insulated switchgear that has the same tank diameter as other equipment.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明によるタンクの部分断面図1 is a partial cross-sectional view of a tank according to the present invention.

【図2】本発明による代表的実施例のガス絶縁開閉装置
を示す構成図
FIG. 2 is a block diagram showing a gas insulated switchgear according to a typical embodiment of the present invention.

【図3】本発明による三相短母線の断面図(図1のA−
A線断面図)
FIG. 3 is a sectional view of a three-phase short bus bar according to the present invention (A- in FIG. 1).
(A line sectional view)

【図4】本発明による三相短母線の横断面図FIG. 4 is a cross-sectional view of a three-phase short bus bar according to the present invention.

【図5】従来の三相短母線の断面図FIG. 5 is a sectional view of a conventional three-phase short bus bar.

【図6】従来の三相短母線の横断面図FIG. 6 is a cross-sectional view of a conventional three-phase short bus bar.

【図7】従来のガス絶縁開閉装置を示す構成図FIG. 7 is a block diagram showing a conventional gas-insulated switchgear.

【符号の説明】[Explanation of symbols]

1…タンク、2a,2b,2c…高電圧導体、3…ステ
ンレス鋼、4…銅、5…三相短母線、6…三相母線、7
…断路器、8…脚。
1 ... Tank, 2a, 2b, 2c ... High-voltage conductor, 3 ... Stainless steel, 4 ... Copper, 5 ... Three-phase short busbar, 6 ... Three-phase busbar, 7
… Disconnectors, 8… legs.

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 絶縁ガスを封入した接地タンクに3相一
括して高電圧導体を収納したガス絶縁開閉装置におい
て、 前記接地タンクが、ステンレス鋼板の内側に銅板を接合
したクラッド板で構成されていることを特徴とするガス
絶縁開閉装置。
1. A gas-insulated switchgear in which three-phase high-voltage conductors are housed together in a grounding tank filled with insulating gas, wherein the grounding tank is composed of a clad plate in which a copper plate is joined inside a stainless steel plate. Gas insulated switchgear characterized by
JP14664593A 1993-06-18 1993-06-18 Gas insulated switching device Pending JPH0715814A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP14664593A JPH0715814A (en) 1993-06-18 1993-06-18 Gas insulated switching device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP14664593A JPH0715814A (en) 1993-06-18 1993-06-18 Gas insulated switching device

Publications (1)

Publication Number Publication Date
JPH0715814A true JPH0715814A (en) 1995-01-17

Family

ID=15412419

Family Applications (1)

Application Number Title Priority Date Filing Date
JP14664593A Pending JPH0715814A (en) 1993-06-18 1993-06-18 Gas insulated switching device

Country Status (1)

Country Link
JP (1) JPH0715814A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904961B2 (en) 2003-01-07 2005-06-14 Honeywell International, Inc. Prime surface gas cooler for high temperature and method for manufacture
WO2010029632A1 (en) 2008-09-11 2010-03-18 三菱電機株式会社 Gas-insulated switchgear

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6904961B2 (en) 2003-01-07 2005-06-14 Honeywell International, Inc. Prime surface gas cooler for high temperature and method for manufacture
WO2010029632A1 (en) 2008-09-11 2010-03-18 三菱電機株式会社 Gas-insulated switchgear
US8520368B2 (en) 2008-09-11 2013-08-27 Mitsubishi Electric Corporation Gas insulated switchgear

Similar Documents

Publication Publication Date Title
CA2725925C (en) Method and apparatus to move an arcing fault to a different location in an electrical enclosure
JPH0715814A (en) Gas insulated switching device
JPH044707A (en) Gas insulation switchgear
JPH023365B2 (en)
KR102643753B1 (en) Gas Insulated Switchgear
JPS6226969Y2 (en)
JPH02285909A (en) Conductor connector
JP2004281302A (en) Gas-insulated circuit breaker and gas-insulated switchgear
JPH04207917A (en) Gas insulated electric apparatus
JPH10295008A (en) Complex gas-insulated electrical energy transformation facility
JPS62123906A (en) Gas insulated apparatus
JPH02266806A (en) Compressed-gas-insulated switchgear
JPS6235327B2 (en)
JPH07123547A (en) Gas insulated switchgear
JPH02288119A (en) High voltage electrical equipment
JPH0223049Y2 (en)
JP2001251711A (en) Gas-insulated switchgear
JP2000270450A (en) Gas insulated bus and gas insulated switchgear
JPS6111042B2 (en)
JPH01278210A (en) Gas insulated switchgear
JPH01321808A (en) Three-phase separated electric machinery
JP2001145240A (en) Gas-insulated bus bar and gas-insulated switchgear
JPS6235329B2 (en)
JPS6254220B2 (en)
Langhammer Overvoltages caused by the interruption of small inductive transformer currents