JP2001145240A - Gas-insulated bus bar and gas-insulated switchgear - Google Patents
Gas-insulated bus bar and gas-insulated switchgearInfo
- Publication number
- JP2001145240A JP2001145240A JP32503999A JP32503999A JP2001145240A JP 2001145240 A JP2001145240 A JP 2001145240A JP 32503999 A JP32503999 A JP 32503999A JP 32503999 A JP32503999 A JP 32503999A JP 2001145240 A JP2001145240 A JP 2001145240A
- Authority
- JP
- Japan
- Prior art keywords
- gas
- current
- insulated
- insulated bus
- conductive
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Landscapes
- Gas-Insulated Switchgears (AREA)
- Installation Of Bus-Bars (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明はガス絶縁開閉装置に
係り、特に、ガス絶縁母線の通電導体に発生する電磁力
を軽減したガス絶縁母線及びこれを用いたガス絶縁開閉
装置に関する。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a gas-insulated switchgear, and more particularly, to a gas-insulated switchgear in which electromagnetic force generated in a current-carrying conductor of a gas-insulated bus is reduced and a gas-insulated switchgear using the same.
【0002】[0002]
【従来の技術】近年、電力需要の増大と電力設備の小型
化の要請から、送電系統の基幹では絶縁性能の高いSF
6ガスを封入した導電性タンク内に通電導体や電気装置
を収納したガス絶縁機器を多用する傾向がある。ガス絶
縁開閉機器の基本構成要素にはガス絶縁母線があり、ガ
ス絶縁母線ではSF6ガスを封入した導電性タンク内
に、通電導体が絶縁スペーサを介して支持されている。2. Description of the Related Art In recent years, due to an increase in power demand and a demand for miniaturization of power equipment, SFs having high insulation performance have been used in the backbone of power transmission systems.
There is a tendency to frequently use gas-insulated equipment in which conductive conductors and electric devices are housed in a conductive tank filled with six gases. A basic component of the gas-insulated switchgear is a gas-insulated bus. In the gas-insulated bus, a current-carrying conductor is supported via an insulating spacer in a conductive tank filled with SF6 gas.
【0003】ガス絶縁母線の通電導体に電流を通電する
と、導電性タンクには渦電流が発生する。このとき、通
電導体は他相の通電導体を流れる電流により電磁力を受
ける。When an electric current is applied to a current-carrying conductor of a gas-insulated bus, an eddy current is generated in the conductive tank. At this time, the current-carrying conductor receives an electromagnetic force due to a current flowing through the current-carrying conductor of the other phase.
【0004】また、同時にタンクに発生する渦電流から
も電磁力を受ける。特に、三相一括形と呼ばれる一つの
導電性タンク内に3本の通電導体を収納したガス絶縁母
線では、3本の通電導体が近接して配置されているた
め、通電導体間には大きな電磁力が発生する。また、三
相一括形に比べて通電導体の間隔が広く、各通電導体が
1本毎に導電性タンク内に収納されている相分離形のガ
ス絶縁母線の場合は、直線部分における通電導体の電磁
力は小さいが、曲り部と呼ばれる方向転換部分において
は通電導体の自己電流によって大きな電磁力を受ける。At the same time, electromagnetic force is also received from eddy currents generated in the tank. In particular, in a gas-insulated bus in which three conductive conductors are accommodated in one conductive tank called a three-phase batch type, since three conductive conductors are arranged close to each other, a large electromagnetic force is present between the conductive conductors. Force is generated. In addition, in the case of a phase-separated type gas-insulated bus in which the current-carrying conductors are arranged one by one in a conductive tank, the distance between the current-carrying conductors is wider than in the three-phase batch type. Although the electromagnetic force is small, a large electromagnetic force is received by the self-current of the current-carrying conductor in the direction changing portion called the bent portion.
【0005】特に、近年の送電容量の増大により、通電
導体の受ける電磁力は増加する傾向にある。さらに、三
相一括形のガス絶縁母線については、機器の小型化に伴
い通電導体の間隔が縮小される傾向にあり、通電導体の
受ける電磁力はますます増加する傾向にある。これによ
り、通電導体や通電導体を支持する絶縁スペーサなどが
破損または変形する恐れがある。[0005] In particular, with the recent increase in power transmission capacity, the electromagnetic force received by the current-carrying conductor tends to increase. Further, with regard to the three-phase package type gas-insulated bus, the spacing between the current-carrying conductors tends to be reduced with the miniaturization of the equipment, and the electromagnetic force received by the current-carrying conductors tends to increase more and more. As a result, the current-carrying conductor and the insulating spacer supporting the current-carrying conductor may be damaged or deformed.
【0006】このため、従来のガス絶縁母線では、通電
導体に流れる電流が作る磁界に対して、導電性タンクに
大きな渦電流を発生させることによって、反磁界を生成
し、通電導体の受ける電磁力を低減する方法が用いられ
ている。しかしながら、この方法は、導電性タンクに大
きな渦電流を発生させるために渦電流による発熱損失が
生じるために、タンク径を小さくしたり、タンクにステ
ンレス材などの抵抗の大きな材料を使用したり、送電容
量が大きくなった場合にはタンクの温度上昇が著しくな
るといった問題があった。For this reason, the conventional gas-insulated bus generates a demagnetizing field by generating a large eddy current in the conductive tank with respect to the magnetic field generated by the current flowing through the current-carrying conductor. Has been used. However, this method generates a large eddy current in the conductive tank, which causes heat loss due to the eddy current.Therefore, the tank diameter is reduced, or a material having a large resistance such as stainless steel is used for the tank. When the power transmission capacity becomes large, there is a problem that the temperature of the tank rises remarkably.
【0007】この問題に対処するための第1の従来技術
としては、特開昭57−121708号広報に外側導体と内側導
体をそれぞれの中心軸が一致するように配置し、内側導
体と逆方向に外側導体に電流を流すことにより、電磁力
を中心軸方向に発生させて内側導体の支持構造物の破損
を防ぐ技術が記載されている。As a first prior art for addressing this problem, Japanese Patent Laid-Open Publication No. Sho 57-121708 discloses a method in which an outer conductor and an inner conductor are arranged so that their central axes coincide with each other, and the inner conductor and the inner conductor are oriented in the opposite direction. A technique is described in which a current is applied to the outer conductor to generate an electromagnetic force in the direction of the central axis, thereby preventing damage to the support structure of the inner conductor.
【0008】第2の従来技術としては、特開昭57−1136
21号公報に三相一括型ガス絶縁母線において、通電導体
の受ける電磁力が最も大きくなる方向に導体支持絶縁物
を配することにより、通電導体支持の強度を増す技術が
記載されている。[0008] A second prior art is disclosed in Japanese Patent Application Laid-Open No. 57-1136.
Japanese Patent Application Laid-Open No. 21-213421 discloses a technique for increasing the strength of current-carrying conductor support by arranging a conductor-supporting insulator in a direction in which the electromagnetic force received by the current-carrying conductor is largest in a three-phase batch-type gas-insulated bus.
【0009】[0009]
【発明が解決しようとする課題】しかし、上記の従来技
術には以下のような問題がある。第1の従来技術では、
逆位相の電流を内側導体と外側導体に同時に通電する必
要があるが、一般に送電変電機器に用いられるガス絶縁
母線には三相交流電流を通電するために、外側導体と内
側導体に逆位相の電流を流すことは通常困難である。ま
た、第2の従来技術で直線部分については、通電導体を
支持する絶縁支持物の強度を増すことが出来るが、曲り
部分においては通電導体の受ける電磁力の方向が変化す
るために、第2の従来技術の絶縁支持物の配置方法では
強度を増すことは困難である。また、ガス絶縁母線の曲
り部の通電導体においては、通電導体を流れる自己電流
により電磁力が発生するが、第1、第2の従来技術共に
この電磁力を低減することは困難である。However, the above prior art has the following problems. In the first prior art,
It is necessary to pass currents of opposite phase to the inner conductor and the outer conductor at the same time.However, in order to apply a three-phase AC current to gas-insulated buses generally used for power transmission substation equipment, opposite phases are applied to the outer conductor and the inner conductor. It is usually difficult to pass a current. Further, in the second prior art, the strength of the insulating support for supporting the current-carrying conductor can be increased for the straight portion, but the direction of the electromagnetic force applied to the current-carrying conductor changes at the bent portion. It is difficult to increase the strength by the prior art method of arranging insulating supports. Further, in the current-carrying conductor at the bent portion of the gas-insulated bus, an electromagnetic force is generated by a self-current flowing through the current-carrying conductor, but it is difficult to reduce the electromagnetic force in both the first and second prior arts.
【0010】本発明の目的は、ガス絶縁母線の曲り部分
において、通電導体に発生する電磁力を低減させて通電
導体の強度の健全性を図ると同時に、通電導体を支持す
るスペーサなどの絶縁支持構造物の強度や数を増すこと
無しに大容量送電による電磁力の増大に対応したガス絶
縁母線及びガス絶縁開閉装置を提供することにある。SUMMARY OF THE INVENTION It is an object of the present invention to reduce the electromagnetic force generated in a current-carrying conductor at a bent portion of a gas-insulated bus so as to improve the strength of the current-carrying conductor, and at the same time to provide an insulating support such as a spacer for supporting the current-carrying conductor. It is an object of the present invention to provide a gas-insulated bus and a gas-insulated switchgear that can cope with an increase in electromagnetic force due to large-capacity power transmission without increasing the strength and number of structures.
【0011】[0011]
【課題を解決するための手段】上記目的を達成するため
の発明は、導電性タンクと、導電性タンクの内部に収納
された通電導体を備えたガス絶縁母線からなるガス絶縁
開閉装置において、前記ガス絶縁母線の曲り部分におい
て、鉤型状の導電性タンクにおいては、前記タンクの曲
りの内側、あるいは曲線で構成されたコーナ部において
は、曲りの曲率が小さい部分を鉄または珪素鋼板で構成
する。あるいは、前記ガス絶縁母線の曲り部分におい
て、ステンレス材またはアルミ材からなる導電性タンク
の内面の曲率の小さい部分に鉄または珪素鋼板など薄板
の非磁性体を貼り付ける。According to the present invention, there is provided a gas-insulated switchgear comprising a conductive tank and a gas-insulated bus having a current-carrying conductor housed in the conductive tank. In the bent portion of the gas-insulated bus, in the hook-shaped conductive tank, inside the bent portion of the tank, or in the curved corner portion, a portion having a small curvature is formed of iron or silicon steel plate. . Alternatively, a thin non-magnetic material such as an iron or silicon steel plate is attached to a portion having a small curvature on the inner surface of a conductive tank made of stainless steel or aluminum at the bent portion of the gas-insulated bus.
【0012】前記通電導体に電流が流れて磁界が発生す
ると、前記磁性体が磁化することにより通電導体には磁
性体方向に吸引力が発生し、通電導体の曲り部分に発生
する自己電流による電磁力を低減し、導電性タンクに発
生する渦電流が通電導体に与える電磁力の影響を低減で
きる。さらに導電性タンクと通電導体の間に新たに構造
物を設ける必要がないために、絶縁破壊の原因となるよ
うな悪影響を与えない。When a current flows through the current-carrying conductor to generate a magnetic field, the magnetic material is magnetized to generate an attractive force in the direction of the magnetic material in the current-carrying conductor. The force can be reduced, and the influence of the electromagnetic force exerted on the conducting conductor by the eddy current generated in the conductive tank can be reduced. Further, since there is no need to newly provide a structure between the conductive tank and the current-carrying conductor, there is no adverse effect that causes dielectric breakdown.
【0013】[0013]
【発明の実施の形態】以下、本発明のガス絶縁母線の第
1実施例を図1〜図3を用いて説明する。図1は第1実
施例のガス絶縁母線の概略構成図、図2は第1実施例の
ガス絶縁母線の断面図、図3は本発明の原理を示す図1
の部分拡大図である。ガス絶縁母線は変電所や開閉所で
の送電に使用される。DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A first embodiment of a gas-insulated bus according to the present invention will be described below with reference to FIGS. FIG. 1 is a schematic configuration diagram of a gas-insulated bus of the first embodiment, FIG. 2 is a cross-sectional view of the gas-insulated bus of the first embodiment, and FIG.
FIG. Gas-insulated buses are used for power transmission at substations and switchyards.
【0014】図4にはガス絶縁開閉装置の側面図、図5
には図4正面を示す。図4及び図5に示すように、ガス
絶縁開閉装置は相分離形のガス絶縁母線20、または三
相一括形のガス絶縁母線20a、遮断器6、断路器7な
どの機器からなり、ガス絶縁母線の導電性タンク内には
通電導体が一本から三本配置され、さらに絶縁性能に優
れたSF6ガスなどが充填されて構成されている。ガス
絶縁開閉装置は変電所や開閉所での電力系統の開閉に使
用される。遮断器6は、電力系統に生じた地絡等の障害
箇所を即座に系統から切離し、機器の損傷や破壊を防ぐ
為に使用される。FIG. 4 is a side view of the gas insulated switchgear, and FIG.
4 shows the front view of FIG. As shown in FIGS. 4 and 5, the gas insulated switchgear includes devices such as a phase-separated gas insulated bus 20 or a three-phase collective gas insulated bus 20a, a circuit breaker 6, a disconnector 7, and the like. One to three current-carrying conductors are arranged in the conductive tank of the bus bar, and are filled with SF6 gas or the like having excellent insulation performance. Gas-insulated switchgears are used to open and close power systems at substations and switchyards. The circuit breaker 6 is used for immediately disconnecting a fault location such as a ground fault occurring in the power system from the system and preventing damage or destruction of equipment.
【0015】ガス絶縁開閉装置は、ブッシング8及びケ
ーブル9を介して外部の送変電機器と接続される。The gas insulated switchgear is connected to external power transmission and transformation equipment via a bushing 8 and a cable 9.
【0016】図4、図5に示すように、ガス絶縁開閉装
置の基本的な構成要素にはガス絶縁母線20、20aが
あり、ガス絶縁開閉装置の各機器はガス絶縁母線によっ
て接続されている。図2に示すようにガス絶縁母線は、
導電性タンク1、通電導体2、絶縁スペーサ4、5及び
導電性タンク1内に密封された絶縁性ガスであるSF6
ガス(図示せず)などから構成される。導電性タンク1
はアルミ材またはステンレス材などで形成されている。
図2の断面図に示すように、絶縁スペーサ4はエポキシ
樹脂などの誘電体で形成されており、円錐または円版状
の形状をしている。この他、柱状の形状をした絶縁スペ
ーサ5などがある。通電導体2は主にアルミ材などで形
成され、絶縁スペーサ4によって支持されて、導電性タ
ンク1内に3〜5気圧程度の不燃性ガス(絶縁ガス)で
あるSF6ガスと共に密閉収納される。As shown in FIGS. 4 and 5, basic components of the gas insulated switchgear include gas insulated buses 20 and 20a, and the components of the gas insulated switchgear are connected by the gas insulated bus. . As shown in FIG. 2, the gas-insulated bus is
The conductive tank 1, the conductive conductor 2, the insulating spacers 4 and 5, and the insulating gas SF 6 sealed in the conductive tank 1.
It is composed of gas (not shown) and the like. Conductive tank 1
Is made of aluminum or stainless steel.
As shown in the cross-sectional view of FIG. 2, the insulating spacer 4 is formed of a dielectric material such as epoxy resin and has a conical or circular shape. In addition, there is an insulating spacer 5 having a columnar shape. The current-carrying conductor 2 is mainly formed of an aluminum material or the like, is supported by an insulating spacer 4, and is hermetically housed in the conductive tank 1 together with SF6 gas, which is a noncombustible gas (insulating gas) of about 3 to 5 atm.
【0017】次に、本実施例の作用を図2及び図3を用
いて説明する。図2は図1の概略断面図、図3は本発明
の原理を表す図2の部分拡大図である。本実施例は、相
分離形のガス絶縁母線に適用した例であり、導電性タン
ク1内に一本の通電導体2が収められた構造を持つ。Next, the operation of this embodiment will be described with reference to FIGS. FIG. 2 is a schematic sectional view of FIG. 1, and FIG. 3 is a partially enlarged view of FIG. 2 showing the principle of the present invention. This embodiment is an example in which the present invention is applied to a phase-separated gas-insulated busbar, and has a structure in which one conductive conductor 2 is housed in a conductive tank 1.
【0018】通電導体2に矢印10の方向(右方向)に
通電電流(交流)を流すと、非磁性体で構成された導電性
タンク1の内部及び外部には磁束が矢印11の方向に発
生する。ガス絶縁母線の直線部分では、この磁束11は
通電電流10に直交しているために通電導体は電磁力を
受けない。しかしながら、ガス絶縁母線の曲り部分にお
いては、図3に示すように磁束11の影響により、通電
導体2は矢印12の方向に電磁力を受ける。特に通電電
流10が大きい場合には導体2の受ける電磁力12によ
って絶縁スペーサーの強度が不足する恐れがある。この
時、本発明による曲り部分の内側に設置された磁性体壁
3は通電電流10による磁束11によって磁化される。
この磁性体壁3が磁化されることにより通電導体2は磁
性体壁3の方向に吸引力13を受ける。磁束11による
電磁力12と磁性体壁3による吸引力13は方向が逆で
あるため、結果として通電導体2の受ける力を小さくす
ることが出来る。従って、絶縁スペーサ5または通電導
体2の強度を増すこと無しに送電容量の増大に対応する
ことが出来る。When an energizing current (alternating current) is applied to the energizing conductor 2 in the direction of arrow 10 (right direction), a magnetic flux is generated inside and outside the conductive tank 1 made of a non-magnetic material in the direction of arrow 11. I do. In the linear portion of the gas-insulated bus, the magnetic flux 11 is orthogonal to the current 10, so that the current-carrying conductor does not receive any electromagnetic force. However, at the bent portion of the gas-insulated bus, the current-carrying conductor 2 receives an electromagnetic force in the direction of the arrow 12 due to the influence of the magnetic flux 11 as shown in FIG. In particular, when the current 10 is large, the strength of the insulating spacer may be insufficient due to the electromagnetic force 12 received by the conductor 2. At this time, the magnetic body wall 3 installed inside the bent portion according to the present invention is magnetized by the magnetic flux 11 generated by the current 10.
When the magnetic wall 3 is magnetized, the current-carrying conductor 2 receives an attractive force 13 in the direction of the magnetic wall 3. Since the direction of the electromagnetic force 12 due to the magnetic flux 11 and the direction of the attraction force 13 due to the magnetic body wall 3 are opposite, as a result, the force received by the current-carrying conductor 2 can be reduced. Therefore, it is possible to cope with an increase in power transmission capacity without increasing the strength of the insulating spacer 5 or the current-carrying conductor 2.
【0019】次に、本発明のガス絶縁母線の第2実施例
を図6、図7を用いて説明する。図6は第2実施例の概
略斜視図、図7は図6の概略断面図である。図7の括弧
内の図番は後ろに隠れている部分を示している。本実施
例は、三相一括形のガス絶縁母線に適用した例であり、
3本の通電導体2a、2b、2cが一対で導電性タンク
1a内に収納されている以外は第一実施例と同じ構成を
している。Next, a second embodiment of the gas-insulated bus of the present invention will be described with reference to FIGS. FIG. 6 is a schematic perspective view of the second embodiment, and FIG. 7 is a schematic sectional view of FIG. The figure numbers in parentheses in FIG. 7 indicate the parts hidden behind. The present embodiment is an example in which the present invention is applied to a three-phase collective gas insulated bus.
The configuration is the same as that of the first embodiment except that three conductive conductors 2a, 2b, and 2c are housed in a pair in the conductive tank 1a.
【0020】即ち、本実施例でも、ガス絶縁母線の曲が
り部分において、内側部分の導電性タンク3aが磁性体
で構成されている。That is, also in this embodiment, in the bent portion of the gas-insulated bus, the conductive tank 3a in the inner portion is made of a magnetic material.
【0021】従って、本実施例でも、第1実施例と同様
に、通電導体の受ける電磁力を低減することが出来る。
一般に、三相一括形のガス絶縁母線の直線部分において
は、導電性タンク1aをすべてステンレス材やアルミ材
などの非磁性体で構成すると、導電性タンクに発生する
渦電流によって通電導体2a、2b、2c間の電磁力を
低減することが知られている。しかしながら、ガス絶縁
母線の曲がり部分においては、とくに曲がり部分におけ
る曲率半径の小さい通電導体2a、2cの自分自身の通
電電流による電磁力については低減できない。本発明の
曲がり部分内側の導電性タンク3aを磁性体で構成する
ことにより、各通電導体2a、2b、2cの自分自身の
通電電流による電磁力も低減することが出来る。Therefore, also in this embodiment, the electromagnetic force applied to the current-carrying conductor can be reduced as in the first embodiment.
Generally, when the conductive tank 1a is entirely made of a non-magnetic material such as stainless steel or aluminum material in the straight portion of the three-phase gas-insulated bus, if the conductive tanks 2a, 2b , 2c is known to be reduced. However, in the bent portion of the gas-insulated bus, the electromagnetic force caused by the current flowing through the current-carrying conductors 2a and 2c having a small radius of curvature cannot be reduced. By forming the conductive tank 3a inside the bent portion of the present invention from a magnetic material, the electromagnetic force of the current-carrying conductors 2a, 2b, 2c due to its own current can be reduced.
【0022】次に、本発明の第3実施例を図8で、第4
実施例を図9を用いて説明する。図8及び図9はそれぞ
れ、第1実施例、第2実施例がガス絶縁母線の曲がり部
分における導電性タンク1、1aを磁性体3、3aで構
成するが、第3、第4実施例では図8、図9に示すよう
に曲がり部を含めて導電性タンク1、1aは非磁性体で
構成するが、導電性タンク曲がり部内側のタンク内面に
磁性体の薄板3bを貼り付ける。本実施例によれば、第
1実施例、第2実施例に比べてより安価に製作すること
が可能になり、また、曲がり部分の通電導体の電磁力を
低減できるという効果は変わらない。また、各実施例と
も通電導体と導電性タンクの間には新たに構造物を設け
ないので、本発明が絶縁破壊などの原因になる事がな
い。Next, a third embodiment of the present invention will be described with reference to FIG.
An embodiment will be described with reference to FIG. FIGS. 8 and 9 respectively show the first and second embodiments in which the conductive tanks 1 and 1a at the bent portions of the gas-insulated buses are formed of the magnetic bodies 3 and 3a, but in the third and fourth embodiments, As shown in FIGS. 8 and 9, the conductive tanks 1 and 1a including the bent portion are made of a non-magnetic material, and a thin plate 3b made of a magnetic material is attached to the inner surface of the tank inside the bent portion of the conductive tank. According to the present embodiment, it is possible to manufacture at a lower cost than in the first embodiment and the second embodiment, and the effect of reducing the electromagnetic force of the current-carrying conductor in the bent portion remains unchanged. Further, in each of the embodiments, since no new structure is provided between the current-carrying conductor and the conductive tank, the present invention does not cause dielectric breakdown or the like.
【0023】以上説明したように、各実施例によれば、
ガス絶縁母線などのガス絶縁開閉装置の曲がり部分にお
ける通電導体の電磁力を抑制することにより、絶縁スペ
ーサや導体などの強度を増すこと無しに導電性タンクな
ど機器の縮小化や大容量化が可能となる。As described above, according to each embodiment,
By suppressing the electromagnetic force of the current-carrying conductors at the bends of gas-insulated switchgear such as gas-insulated busbars, it is possible to reduce the size and capacity of conductive tanks and other equipment without increasing the strength of insulating spacers and conductors. Becomes
【0024】[0024]
【発明の効果】本発明によれば、通電電流からの磁場に
より導電性タンクの磁性体壁が発生する磁化吸引力によ
り、通電導体の曲がり部分に発生する電磁力を低減する
ことができる。According to the present invention, it is possible to reduce the electromagnetic force generated in the bent portion of the current-carrying conductor due to the magnetization attraction generated by the magnetic wall of the conductive tank due to the magnetic field from the current.
【図1】本発明のガス絶縁母線の第1実施例の概略構成
図。FIG. 1 is a schematic configuration diagram of a first embodiment of a gas-insulated bus of the present invention.
【図2】図1の概略断面図。FIG. 2 is a schematic sectional view of FIG.
【図3】本発明の第1実施例の作用説明の為の図2の拡
大図。FIG. 3 is an enlarged view of FIG. 2 for explaining the operation of the first embodiment of the present invention.
【図4】本発明の第1実施例の作用説明の為のガス絶縁
開閉装置の概略構成図。FIG. 4 is a schematic configuration diagram of a gas insulated switchgear for explaining the operation of the first embodiment of the present invention.
【図5】図4の概略上面図。FIG. 5 is a schematic top view of FIG. 4;
【図6】本発明のガス絶縁母線の第2実施例の概略構成
図。FIG. 6 is a schematic configuration diagram of a second embodiment of the gas-insulated bus of the present invention.
【図7】図6の概略断面図。FIG. 7 is a schematic sectional view of FIG. 6;
【図8】本発明のガス絶縁母線の第3実施例の概略断面
図。FIG. 8 is a schematic sectional view of a third embodiment of the gas-insulated bus of the present invention.
【図9】本発明のガス絶縁母線の第4実施例の概略断面
図。FIG. 9 is a schematic sectional view of a fourth embodiment of the gas-insulated bus of the present invention.
1・1a…導電性タンク、2・2b…通電導体、3・3
a・3b…本発明による導電性タンク曲がり部分磁性
体、4…絶縁スペーサ(板状)、5・5a・5b・5c
…絶縁スペーサ(柱状)、6…遮断器、7…開閉器、8
…ブッシング、9…ケーブル、10…通電電流の方向を
示す矢印、11…通電電流による磁束を示す矢印、12
…通電電流による通電導体の受ける電磁力の方向を示す
矢印、13…本発明による磁性体から通電導体が受ける
力の方向を示す矢印、20…相分離形ガス絶縁母線、2
0a…三相一括形ガス絶縁母線。1.1a: conductive tank, 2.2b: conductive conductor, 3.3
a · 3b: conductive tank bent partial magnetic body according to the present invention; 4: insulating spacer (plate), 5.5a · 5b · 5c
... Insulating spacer (column), 6 ... Circuit breaker, 7 ... Switch, 8
... Bushing, 9 ... Cable, 10 ... Arrow indicating the direction of energizing current, 11 ... Arrow indicating magnetic flux by energizing current, 12
... Arrows indicating the direction of the electromagnetic force applied to the current-carrying conductor by the current, 13... Arrows indicating the direction of the force applied to the current-carrying conductor from the magnetic material according to the present invention, 20...
0a: Three-phase collective gas-insulated bus.
───────────────────────────────────────────────────── フロントページの続き (72)発明者 六戸 敏昭 茨城県日立市国分町一丁目1番1号 株式 会社日立製作所国分事業所内 Fターム(参考) 5G017 AA01 BB20 HH06 5G365 DA14 DB01 DD04 DD06 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Toshiaki Rokunohe 1-1-1, Kokubuncho, Hitachi City, Ibaraki Prefecture F-term in Hitachi Kokubu Works, Ltd. (reference) 5G017 AA01 BB20 HH06 5G365 DA14 DB01 DD04 DD06
Claims (3)
電性タンクを備えたガス絶縁母線において、曲り部分に
おける導電性タンクの内側が磁性体で、外側が非磁性体
で構成されていることを特徴とするガス絶縁母線。1. A gas-insulated bus bar having a conductive tank containing an insulating gas and a current-carrying conductor therein, wherein the inside of the conductive tank at the bent portion is made of a magnetic material and the outside is made of a non-magnetic material. A gas-insulated bus bar.
電性タンクを備えたガス絶縁母線において、非磁性体の
導電性タンクの曲り部分において、導電性タンク内面の
一部分に非磁性体を張り付けたことを特徴とするガス絶
縁母線。2. A non-magnetic material is attached to a part of the inner surface of a conductive tank at a bent portion of the non-magnetic conductive tank in a gas-insulated bus having a conductive tank containing an insulating gas and a conductive conductor therein. A gas-insulated bus bar.
と、前記電力系統に生じた地絡個所又は短絡個所を切り
離すための遮断器と、接続変更や点検修理の際に対象と
なる回路を電源から切り離すための断路器とを備えたガ
ス絶縁開閉装置において、前記ガス絶縁母線として請求
項1ないし2の何れか記載のガス絶縁母線を備えたこと
を特徴とするガス絶縁開閉装置。3. A gas-insulated bus for transmitting power to an electric power system, a circuit breaker for disconnecting a ground fault point or a short-circuit point generated in the electric power system, and a circuit to be used for connection change and inspection / repair. A gas insulated switchgear comprising a disconnector for disconnecting from a power supply, wherein the gas insulated switchgear according to any one of claims 1 to 2 is provided as the gas insulated bus.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32503999A JP2001145240A (en) | 1999-11-16 | 1999-11-16 | Gas-insulated bus bar and gas-insulated switchgear |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP32503999A JP2001145240A (en) | 1999-11-16 | 1999-11-16 | Gas-insulated bus bar and gas-insulated switchgear |
Publications (1)
Publication Number | Publication Date |
---|---|
JP2001145240A true JP2001145240A (en) | 2001-05-25 |
Family
ID=18172476
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP32503999A Pending JP2001145240A (en) | 1999-11-16 | 1999-11-16 | Gas-insulated bus bar and gas-insulated switchgear |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP2001145240A (en) |
-
1999
- 1999-11-16 JP JP32503999A patent/JP2001145240A/en active Pending
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP4490486B2 (en) | High voltage switchgear assembly | |
CA1314579C (en) | Multiphase gas expansion circuit breaker for a gas-insulated metalclad cell | |
JP2887857B2 (en) | Gas insulated switchgear | |
JP2002101509A (en) | Switching device | |
JP2001145240A (en) | Gas-insulated bus bar and gas-insulated switchgear | |
JP3228635B2 (en) | Gas insulated switchgear | |
JP2001250731A (en) | Current transformer | |
JPH07123547A (en) | Gas insulated switchgear | |
JP3532252B2 (en) | Gas insulated switchgear | |
JP2904601B2 (en) | Gas insulated switchgear | |
JP3558736B2 (en) | Gas insulated switchgear | |
JPH10295008A (en) | Complex gas-insulated electrical energy transformation facility | |
JP3083185B2 (en) | Gas insulated disconnector | |
JP2766368B2 (en) | Three-phase one-tank gas circuit breaker with current transformer | |
JPH02266806A (en) | Compressed-gas-insulated switchgear | |
KR20150144414A (en) | Insulating spacer and gas insulated switchgear having the same | |
JPH02288119A (en) | High voltage electrical equipment | |
JP3767227B2 (en) | Gas insulated electrical equipment | |
KR20190002927U (en) | Connection part between gas insulated switchgear and solid insulated switchgear | |
Toyoda et al. | A study on a compact three-phase encapsulated GCB | |
JPS59127509A (en) | Gas insulated switching device | |
JP2001251711A (en) | Gas-insulated switchgear | |
JP2002223509A (en) | Connecting device for gas-insulated switchgear and stationary induction electrical apparatus | |
JPH03145913A (en) | Gas insulation switching device | |
JPS59149706A (en) | Gas insulated switching device |